用户名: 密码: 验证码:
晋南平顺铁矿床成岩成矿作用及成矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平顺铁矿床位于山西省南部,是华北地区重要的矽卡岩型铁矿矿集区。矿石类型单一,矿化蚀变明显。铁矿体形态复杂,大小不一,主要赋存于中生代中性侵入体与中奥陶统碳酸盐岩接触带及附近。本文通过岩石学、地质年代学、地球化学、矿床学和找矿地质学综合研究,对平顺铁矿床成矿物质来源、运移和沉淀过程以及控矿因素等内容有了更进一步的认识,提出了岩体与矿床关系、矿床成因模式和找矿预测区及找矿方向。
     平顺铁矿床位于太行山构造岩浆岩带南段,发育燕山期岩浆岩,首次获得橄榄角闪辉长岩和闪长岩的SHRIMP锆石U-Pb年龄,其成岩年龄分别为125.5±2.3Ma和123.4±1.7Ma,形成于早白垩世。杂岩体的岩石学和地球化学特征表明:(1)杂岩体岩石类型主要为橄榄角闪辉长岩、角闪闪长岩、闪长岩—二长闪长岩和正长岩以及闪长玢岩,辉长岩、角闪闪长岩中存在大量具有环带结构橄榄石、辉石、角闪石捕掳晶,闪长岩中发育有环带结构斜长石,电子探针分析显示,这些捕掳晶和具环带结构斜长石的核部显示主要来源于地幔,幔部具有壳幔岩浆混合成因的特点;(2)杂岩体具有低硅高镁,轻稀土富集而重稀土亏损,和微弱Eu正异常;富集大离子亲石元素(如Sr、Ba、K),和亏损高场强元素(如Nb、Ta、Ti),说明岩浆起源于富集地幔,并受到下地壳物质的混染;(3)杂岩体La/Sm-La投图说明杂岩体形成与岩浆混合作用或者源区部分熔融程度有关,与结晶分离作用关系不大;(4)Sr-Nd、Pb同位素研究显示,杂岩体起源于EMI,并受到下地壳物质的混染,值得注意的是B001样品显示起源EMⅡ,可能受到古太平洋俯冲作用影响。考虑到平顺杂岩体成岩年代与太行山其它地区或者是整个华北地区岩浆岩形成年代大体一致(都集中在120-135Ma)和地球化学相似等特征,认为早白垩世整个太行山(华北)地区具有相同或相似的大地构造环境。基于此,提出了平顺杂岩体成因模式。
     平顺铁矿床矿化蚀变分带明显,通过对蚀变带元素组成和蚀变矿物流体包裹体特征研究表明:(1)Fe质具有从岩体向围岩运移和Na质从围岩向岩体运移的特征;(2)成矿前(透辉石和石榴石)流体物理化学特征与成矿后(绿帘石和方解石)流体物理化学特征具有显著的变化,这可能是导致Fe质沉淀主导因素;(3)Fe质可以从岩体中心向围岩长距离运移的原因是,C1元素提供了载体,多期岩浆活动提供了动力和流体。矿(岩)石微量元素和稀土元素组成特征表明矿体与岩体具有一定的继承性,说明二者在成因关系密切。另外,矿(岩)石S-Pb同位素研究显示,S来源于地层,Pb来源比较复杂,地幔、造山带以及上地壳都有贡献。结合岩体的空间分布特征、岩浆侵位期次和时间间隔以及成矿物质来源、运移和沉淀等重要内容,建立成矿模式。
     矿床(体)的空间定位主要受岩浆侵入体、褶皱和断层等因素控制。侵入体:平顺地区在空间上存在两岩浆岩带,通过地质构造组合、岩石学、地球化学、蚀变程度等内容综合研究认为:第一岩浆岩带属被动就位机制,岩体内部可形成呈捕虏体状赋存的铁矿体,岩体内部具有很好找矿潜力;第二岩浆岩带属主动就位机制,岩体内部捕虏体罕见,相应的铁矿床主要产于岩体与围岩接触带处;另外两岩浆岩带属于同一次岩浆作用事件,第二岩浆岩带可能是由第一岩浆带侧向侵位形成,二者在深部相连空间范围内很可能成矿。褶皱:决定岩浆岩总体分布,侵入体常常分布在褶皱背斜的核部,并作用于围岩形成层间破碎带和滑脱带,岩浆顺势沿着软弱层贯入、交代,形成铁矿体,并保留了原有背向斜构造特征。断层:矿区内主要存在三组断层,东西向古老断层、南北向伸展断层和北北东向次级断层。新老断层交叉形成断层交汇点,这些交汇点往往发生岩浆侵位和成矿作用,并空间上具有等距分布的特点,间距一般为4km~5km。
     基于以上分析,总结了成矿规律,指出了找矿标志,并运用地质、磁法综合成矿预测方法开展成矿预测,提出了第三成矿区、芦沟北地段、北洛峡地段、隐伏矿体找、龙将沟岩体南缘、双井、落赛和东郊8处找矿预测区。
Located in the south of Shanxi province, Pingshun deposit is an important locality for skarn iron deposits in the North China. With single type and obvious mineralization and alteration zones, the ore bodies in various forms are hosted along the contact belt between the intrusives and carbonate rocks. On the basis of petrology, geochronology, geochemical, ore deposit geology and exploration and prospecting geology studies, this study makes investigation on source, migration, precipitation of materials and ore-controlling factors, proposing the relationship between rocks and deposits, the metallogenic model, prospecting targets and directions.
     Located in the south Taihang mountains structural magmatic belt, Pingshun iron deposits have large of Yanshan epoch magmatic rocks. Zircon from olivine gabbro-diabase and diorite were first yield SHRIMP U-Pb ages of123.4±1.7Ma and125.5±2.3Ma respectively, formed in early cretaceous. Petrological and geochemical features of complex rocks show that:(1) complex rocks are mainly composed of olivine gabbro-diabase, hornblende diorite, diorite-monzodiorite, sinaite and dioritic porphyrite. Olive gabbro-diabas, hornblende diorite and diorite have olivine and pyroxene capture crystals and zonal structure plagioclase respectively, according to the dates by electron probe, the core of which indicates that they derived from mantle source, outside band from crust-mantle mixed source;(2) The complex rocks are of the similar geochemical features such as low slicon and high magnesium, enrichment of light REE with a weak positive anomaly of Eu, depletion of heavy REE, enrichment of LILE, especially Sr, Ba and K and depletion of HFSE, especially Nb, Ta and Ti, which indicate that the magma derived from earth mantle, mixing with the lower crustal matters.(3) The diagram of La/Sm-La shows that formations of complex rocks is closely related with magma mixing or degree of mantle partial melting, instead of fractional crystallization;(4) The research of Sr-Nd and Pb isotopic indicates that magma of complex rocks is originated from partial melting EMI, and mixed with the lower crustal matter. It is noticed that the B001sample is originated from EMII and resulted from subduction of the Paleo-Pacific plate. Considering that the diagenetic ages of complex rock body in Pingshun agrees with the the magmatic formation of other parts of the Taihang Mountains or other regions in north China (120Ma~135Ma) sharing the similar geochemical features, it shows that they have the same tectonic environment in Early Cretaceous. Based on this, this study puts forward the genetic model of complex body.
     The mineralized alteration zoning of iron ore deposit in Pingshun area are obvious. Through studying the composition of mineral elements in alteration zoning and the characteristics of fluid inclusions of alteration mineral, it proposes such features as follows: First, Fe migrates from rock mass to outward. To the contrary, Na migrates from the surrounding rock to inward. Second, the physicochemical characteristics of the fluid (diopside and garnet) before mineralization and the fluid characteristics of (epidote and calcite) after mineralization changed significantly, which may be the dominant factor that lead to Fe precipitation. Third, that Fe migrates from the center to wall rocks is due to Cl element functioning as a carrier and multiple magmatism resulting in power and fluid. The compositions of trace elements and REE indicated that orebody and rockmass have some of the inheritance, which can explain the phenomenon that they are closely related in the course of formation. In addition, the S-Pb isotope of rock (ore) indicated the following cases:S comes from the stratum, the source of Pb is more complex. Mantle, orogen and upper crust have a contribution to the source of Pb. Regarding the spatial distribution of rock, magma emplacement, and the interval of time and distribution of ore bodies as well as the material source, migration and precipitation etc. This study established the metallogenetic model.
     The deposits'Spatial location is mainly controled by magmatic intrusions, folds, faults and other factors. Intrusions:There are two magmatic belts in Pingshun area. Based on the comprehensive study of tectonic association, petrology, geochemistry and wallrock alteration, this study points that the first magmatic belt is a passive mechanism. The xenolithediron body bearing in the rock that has excellent ore potential. The second magmatic belt is an active mechanism, in which Xenolith is hardly found while the iron body mainly exists in the boundary between rock and surrounding rocks. Meanwhile,both of the two magmatic belt belong to the same geological event. The second magmatic belt was resulted from lateral emplacement of the first magmatic belt, two of which are very likely to be connected in the deep and have mineralization. Folds:It decide the general distribution of magmatic rocks. Usually, magmatic intrusions distribute in the kernel part of the anticlinal folds. It also effects the surrounding rock, forming interlayered fractured zone and slippage, during which magma injection, metasomatism and mineralization took place along with weak layer penetration. On the basis of this, iron ore bodies are shaped and the original anticlinal folds tectonic are retained. Faults:there are three main faults in the study region, east-west ancient faults, south-north faults, and north north east to subprime faults. New faults penetrated with old faults, resulting in fault's intersections. Usually, in fault's intersections magma emplacement and metallogenic broke out, leading to the existence of rocks with the characteristics of isometric distribution in space and distance ranging from4km to5km.
     Based on the comprehensive analyses and with geological settings mentioned above, the metallogenic regularity and the criteria for ore prospecting have been proposed. By applying the geologic and magnetic method, it points such8metallogenic prognosis as the third metallogenic belt, northern part of Lugou, Beiluoxia, concealed orebody, Long jianggou, Shuang jing, Luosai and Dongjiao
引文
[1]山西地质局212队.西平顺西安里铁矿61年度年终地质报告[R].1961
    [2]山西省地质局212地质队.芦沟矿区地质勘探报告[R].1960
    [3]山西省地质局212地质队.山西省壶关县石河沐—陵川县六泉一带地质普查报[R].1963
    [4]山西省地质局212地质队.北洛峡、茴菜峡、廿亩、水沟四矿区地质勘探报告[R].1963
    [5]山西省地质局212地质队.后墁—水沟岭矿区地质勘探报告[R].1973
    [6]山西省地质局212地质队.北洛峡矿区地质勘探报告[R].1973
    [7]山西省地质局212地质队.山西省平顺县西安里铁矿交界坡矿区详细勘探地质[R].1982
    [8]刘建朝,刘淑文,张海东.山西省平顺县西安里铁矿矿产预测项目报告[R].北京:中国地质调查局,2008
    [9]陈正乐.华北陆块铁矿床成矿规律总结研究2009年续作设计书[R].2009
    [10]赵一鸣,林文蔚,毕承思,等.中国夕卡岩矿床[M].北京:地质出版社,1990:1-354
    [11]黄华盛.矽卡岩矿床的研究现状[M].北京:中国地质大学出版社,1994:3-49
    [12]Einaudi M T, Meinert L D, Newberry R J. Skarn deposits[J]. Economic Geology,1981, 75:317-381
    [13]Aksyuk A M. Physico_chemical conditions of the formation of skarns of the magmatic stage[A]. Skarns_their genesis and metal-logeny[C]. Athens:Theophrastus Publications S.A.1991:593-617
    [14]Meinert L D. A review of skarn that contain gold[A]. In:Lentz D R, ed. Mineralized intrusion_related skarn systems[C]. Quebec. Short Course Series 1998,26.359-414
    [15]郭宗山.杨子江下游某些矽卡岩型铜矿床[J].地质学报,1957,31(1)
    [16]欧阳自远.中国的矽卡岩型矿床[J].地质科学,1958,23
    [17]沈保丰,陆松年,翟安民,等.中国接触交代铁矿[J].中国地质科学院院报天津地质矿产研究所分刊,1980,1(2)
    [18]翟裕生,姚书振,林新多.长江中下游地区铁铜矿床类型、形成条件和成矿演化[J]. 地球科学,1983,(4)
    [19]冯钟燕,于方.论太行山北段矽卡岩矿床成矿的岩浆岩条件—纪念乐森教授从事地质科学教育工作六十年论文集[C].北京:地质出版社,1984
    [20]裴荣富,刘瑛,吕凤翔.再论大冶式铁矿[J].中国地质科学院矿床地质研究所所刊,1985(3)
    [21]陈毓川,黄民智,徐珏,等.大厂锡石硫化物多金属成矿带地质特征及成矿系列[J].地质学报,1985,59(3)
    [22]王玉荣.高温高压下络合物研究的地球化学意义与实验方法[J].科学通报,1978,23(11)
    [23]赵一鸣,林文蔚,张德全,等.交代成矿作用及其找矿意义—几个重要含矿交代建造的研究[M].北京:北京科学技术出版社,1992:1-156
    [24]赵一鸣.我国一些重要夕卡岩Pb_Zn多金属矿床的交代分带[J].矿床地质,1997,16(2):120-129
    [25]赵一鸣,张轶男,毕承思,等.安徽淮北三铺地区镁夕卡岩金(铜,铁)矿床生成地质环境、分带和流体演化[J].矿床地质,1999,18(1):1-10
    [26]赵一鸣,吴良士,白鸽,等.中国主要金属矿床成矿规律[M].北京:地质出版社,2004:1-411
    [27]梁祥济,程莱仙,曲国林.在高温高压下卤素和钾、钠卤化物在铁矿形成中的作用和影响[J].地球科学,1982,(3):87-98
    [28]梁祥济.中国夕卡岩和夕卡岩矿床形成机理的实验研究[M].北京:学苑出版社,2000:1-365
    [29]王莉娟,王京彬,王玉往等.内蒙黄岗梁矽卡岩型铁锡矿床稀土元素地球化学[J].岩石学报,2002,18(4):575-584
    [30]田建涛,喻亨祥,扬准,等.矽卡岩成因及成矿作用研究进展综述[J].中国科技信息,2005,23:107-108
    [31]刘云华,莫宣学,张雪亭,等.东昆仑野马泉地区矽卡岩矿床地球化学特征及其成因意义[J].华南地质与矿产,2006,(3):31-36
    [32]汪青松.淮北地区矽卡岩型铁铜矿床控矿条件分析与成矿模式[J].资源调查与环境,2010,31(2): 103-110
    [33]张海东,刘建朝,刘淑文,等.太行山南段平顺地区矽卡岩铁矿地质特征及成矿模式探讨[J].矿物岩石,2009,29(3):53-59
    [34]张海东,刘建朝,戈小红,等.晋南平顺地区两岩浆岩带内在联系及找矿意义[J].中国地质,2010,37(5):1511-1519
    [35]张海东,刘建朝,陈正乐,等.山西平顺地区矽卡岩型铁矿矿床地质特征及成矿物质来源探讨[J].地质与勘探,2010,46(4):634-642
    [36]张海东,刘建朝,江爱国,等.太行山南段平顺铁矿成矿地质特征及找矿预测研究[J].地球科学与环境学报,2009,32(3):237-239
    [37]秦克章,汪东波,王之田,等.中国东部铜矿床类型、成矿环境、成矿集中区与成矿系统[J].矿床地质,1999,18(4)
    [38]山西省地质厅物探2队.山西省平顺西安里芦沟、水沟铁矿区磁测结果报告[R].1962
    [39]山西省地质局212地质队.西安里地区矽卡岩型铁矿控矿地质因素的初步认识[R].华北富铁矿工作经验交流会议资料汇编.1975:5-34
    [40]华北地质科学研究所一室铁矿研究队,河北地质学院地勘系.西安里接触交代型铁矿的蚀变交代作用特征[J].华北地质科技学报,1975:5
    [41]山西省地质局212地质队.再论“邯邢式”铁矿的钠化成矿机制[J].山西地质科技,1979,(2):1-9
    [42]李凯明,赵海玲,邓晋福.山西平顺岩体岩石学、矿物学特征及角闪石成因[J].北京地质,2002,14(4):41-49
    [43]李宁,冯钟燕,于方.山西北落峡铁矿床流体包裹体研究与矿床成因讨论[J].矿床地质,1989,(3):113-124
    [44]牛树银,陈路,许传诗,等.太行山区地壳演化及成矿规律[M].北京:地震出版社,1994:1-200
    [45]章百明,赵国良,马国玺,等.河北省主要成矿区带矿床成矿系列及成矿模式[M].北京:石油工业出版社,1996:1-273
    [46]罗照华,邓晋福,赵国春,等.太行山造山带岩浆活动特征及其造山过程反演[J].地球科学,1997,22(3):279-284
    [47]郭连红,金鑫光.山西平顺西安里岩浆岩带岩石谱系划分及其特征[J].西部探矿工 程,2003,(9):14-18
    [48]刘建朝,张海东,刘淑文,等.太行山南段杂岩体成因研究[J].地质论评,2009,55(3):318-328
    [49]孙东升,张海东,成欢,等.太行山南段中生代杂岩体成因及其演化研究[J].地球科学,待审
    [50]邓晋福,罗照华,苏尚国,等.岩石成因、构造环境与成矿作用[M].北京:地质出版社,2004:150-204
    [51]高山,Roberta. L, Rudniek,等.华北克拉通岩石圈地幔置换作用和壳慢生长耦合的Re-Os同位素证据[J].地学前缘,2003,10:61-67
    [52]杨兴科,杨永恒,季丽丹,等.鄂尔多斯盆地东部热力作用的期次和特点[J].地质学报,2006,80(5):705-711
    [53]Deng J F, Mo X X, Zhao H L, et al. A new model for the dynamic evolution of Chinese lithosphere:continental roots-plume tectonics[J]. Earth Sci. Rev,2004,65:223-275
    [54]Wu F Y, Wilde S, zhang G L, Sun D Y. Geochronology and petrogenesis of the post-orogeniec Cu-Ni sulfide-bearing mafic-cultramafic complexes in Jilin Province, NE China [J]. Asian Earth Sci,2004.23:781-797
    [55]Lu F X, Zheng J P, Shao J A et al. Asthenospheric upwelling and lithospheric thinning in late Cretaceous-Cenozoic in eastern North China[J]. Earth Science Frontiers,2006.13 (2):86-92
    [56]孙东升,张海东,成欢,等.太行山南段中生代杂岩体成因及其演化研究[J].地球科学,待审
    [57]Gao S, Rudnick RL, Yuan H L et al. Recycling lower continental crust in the North China Craton[J]. Nature,2004,432(6):892-897
    [58]Kumazawa M, Maruyama S. Whole earth tectonics[J]. Jour Geol Soc Japan,1994, 100(1):81-102
    [59]Maruyama S. Plume tectonics[J]. J Geol Soc Japan,1994,100(1):24-49.
    [60]Peaeock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust. Earth Planet. Sei. Lett,1994,121:227-244
    [61]Luo Z H, Deng J F, Cao Y Q, et al. Magmatic activities and orogenic process of Taihang shan intraplate orogen[J]. Journal of China University of Geosciences,1999,10(1):76-79
    [62]Xu W L, Lin Jingqian. The discovery and study of mantle-derived dunite inclusions in hornblende-diorite in the Handan Xingtai area,Hebei[J]. Acta Geologica Sinica,1991,65(1):33-41
    [63]Zhang H F, Zheng J P. Geochemical characteristics and petrogenesis of Mesozoic basalts from the North China Craton:a case study in Fuxin,Liaoning province[J]. Chinese Science Bulletin,2003,48(9):924-930
    [64]山西省地质局212地质队,山西省东南部地质图说明书(1:200000)[R],1981
    [65]陈智超,陈斌,田伟.太行山北段中生代岩基及其包体锆石U-Pb年代学和Hf同位素性质及其地质意义[J].岩石学报,2007,23(2):296-305
    [66]周凌,陈斌.南太行洪山正长岩体的成因和意义:锆石SHRIMP年代学、化学成分和Sr-Nd同位素特征[J]_自然科学进展,2005,15(11):1357-1364
    [67]蔡剑辉,阎国翰,牟保磊,等.北京房山岩体锆石U-Pb年龄和Sr、Nd、Pb同位素与微量元素特征及成因探讨[J].岩石学报,2005,21(3):776-788
    [68]杨兴科,晁会霞,郑孟林,等.鄂尔多斯盆地东部紫金山岩体SHRIMP测年地质意义[J].矿物岩石,2008,28(1):54-63
    [69]Hacker B R, Ratschbacher L, Webb L, et al. U-Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen, China[J]. Earth Planet, Sci. Lett., 1998,161:215-230
    [70]Yang X K, Chao Huixia,N.IVolkova,Zheng Menglin,Yao Weihua. Geochemisty and SHRIMP geochronology of alkaline rocks of the Zijinshan massif in the eastern Ordos basin China[J]. Russian Geology and Geophysics,2009,50(9):751-762
    [71]陈斌,田伟,翟明国,等.太行山和华北其它地区中生代岩浆作用的锆石U-Pb年代学和地球化学特征及其岩浆成因和地球动力学意义[J].岩石学报,2005,21:13-24.
    [72]彭头平,王岳军,范蔚茗,等.南太行山闪长岩的SHRIMP锆石U-Pb年龄及岩石成因研究[J].岩石学报,2004,20:1253-1262
    [73]邓晋福.岩浆—成矿作用—板块构造[J].质科技情报,990,(2):9-44
    [74]张京俊,琇明,陈平,等.山西省矿床成矿系列特征及成矿模式[M].北京:煤炭工业出版社,2003:15-50
    [75]张旗,王焰,刘红涛,等.中国埃达克岩的时空分布及其形成背景[J].地学前缘, 2003,10(4):385-400
    [76]王强,许继锋,赵振华,等.大别山燕山期亏损重稀土元素花岗岩类的成因及其动力学意义[J].岩石学报,2001,17:551-564
    [77]刘红涛,孙世华,刘建明等.华北克拉通北缘中生代高Sr花岗岩类:地球化学与源区性质[J].岩石学报,2002,18(3):257-274.
    [78]肖龙,Rapp P R,许继锋.深部过程对埃达克质岩石成分的制约[J].岩石学报,2004,20:219-228
    [79]董建华,陈斌,周凌.太行山南段浮山岩体的成因:岩石学和地球化学证据[J].自然科学通报,2003,13(7):767-774
    [80]郑建平,路凤香,S.Y.O'Reilly.等.1999.华北地台东部古生代与新生代岩石圈地幔特征及其演化[J].地质学报,73(1):47
    [81]邓晋福,赵国春,赵海玲,等.中国东部燕山期火山岩构造组合与造山:深部过程[J].地质论评,2000,46(1):41-43
    [82]陈斌,刘超群,田伟.太行中生代岩浆作用过程中的壳幔岩浆混合作用:岩石学和地球化学证据[J].地学前缘,2006.13(2):140-147
    [83]陈斌,田伟.太行山和华北其他地区中生代岩浆作用的锆石U-Pb年代学和地球化学特征及其岩浆成因和地球动力学意义[J].岩石学报,2005,11(1):13-23
    [84]王式洗,韩宝福,李瑞,马昌.太行山北段王安镇岩体地球化学研究及其地球动力学意义[J].岩石圈地质科学,1994,29-38
    [85]钱青,钟孙霖,李通艺,等.八达岭基性岩和高Sr-Ba花岗岩地球化学特征及成因讨论:华北和大别-苏鲁造山带中生代岩浆岩对比[J].岩石学报,18(3):275-292
    [86]Chen B, Jahn B M, Zhai M G. Sr-Nd isotopic characteristics of the Mesozoic magmatism in the Taihang-Yanshan orogen, north China craton,and implications for Archean lithosphere thinning[J]. J Geol Soc, London,2003a,160:963-970
    [87]Chen B, Zhai M G. Geochemistry of late Mesozoic lamprophyre dykes from the Taihang Mountains, north China, and implications for the sub-continental lithospheric mantle[J].Geol Mag 2003b,140:87-93
    [88]Peaeock S M, Rushmer T, Thompson A B. Partial melting of subducting oceanic crust. Earth Planet. Sei. Lett,1994,121:227-244
    [89]Zhang H F, Zheng J P. Geochemical characteristics and petrogenesis of Mesozoic basalts from the North China Craton:a case study in Fuxin.Liaoning province[J]. Chinese Science Bulletin,2003,48(9):924-930
    [90]牛树银,董国润,许传诗.论太行山构造岩浆带的岩浆来源及其成因[J].地质论评,1995,41(4):301-309
    [91]Wu F Y, Wilde S, zhang G L, et al. Geochronology and petrogenesis of the post-orogeniec Cu-Ni sulfide-bearing mafic-cultramafic complexes in Jilin Province, NE China [J]. Asian Earth Sci,2004.23:781-797
    [92]Xu W L, Lin J Q. The discovery and study of mantle-derived dunite inclusions in hornblende-diorite in the Handan Xingtai area,Hebei[J]. Acta Geologica Sinica,1991, 65(1):33-41
    [93]陈斌,翟明国,邵济安.太行山北段中生代岩基的成因和意:主要和微量元素地球化学证据[J]_中国科学D辑,2002,32(11):896-906
    [94]陈斌,田伟,翟明国等.太行山和华北其它地区中生代岩浆作用的锆石U-Pb年代学和地球化学特征及其岩浆成因和地球动力学意义[J].岩石学报,2005,21:13-24
    [95]陈斌,翟明国,邵济安.太行山北段中生代岩基的成因和意:主要和微量元素地球化学证据[J].中国科学D辑,2002,32(11):896-906
    [96]Chen B, Jahn B M, Zhai M G. Sr-Nd isotopic characteristics of the Mesozoic magmatism in the Taihang-Yanshan orogen, north China craton,and implicat-ions for Archean lithosphere thinning[J]. Geol Soc, London,2003a,160:963-970
    [97]Chen B, Tian W, Zhai M G, et al. Zircon U-Pb geochronoloy and geochemistry of Mesozoic magmatism in the Taihang Mountains and other places of the North China Craton, with implications for petrogenesis and geodynamic setting[J].Acta Petrologica Sinica,2005,21(1):13-24
    [98]Lu F X, Zheng J P, Shao J A, et al. Asthenospheric upwelling and ithospheric thinning in late Cretaceous-Cenozoic in eastern North China[J]. Earth Science Frontiers,2006.13 (2):86-92
    [99]杨进辉,吴福元,邵济安等.冀北张一宣地区后城组、张家口组火山岩锆石U-Pb年龄和Hf同位素[J].地球科学,2006.31(1):71-80
    [100]Xie S W, Gao S, Liu X M,et al. U-Pb ages and Hf isotopes of detrital zircons of Nanhua sedimentary rocks from the Yangtze gorges:Implications for genesis of neoproterozoic magmatism in South China[J]. Sedimentary rocks,2009,34(1):117-126
    [101]罗照华,邓晋福,赵国春,等.太行山造山带岩浆活动特征及其造山过程反演[J].中国地质大学学报—地球科学,1997,22(3):27-254
    [102]罗照华,邓晋福,韩秀卿.太行山造山带岩浆活动及其造山过程反演[M].北京:地质出版社,1999.1-124
    [103]罗照华,魏阳,辛后田,等.太行山中生代板内造山作用与华北大陆岩石圈巨大减薄[J].2006,13(6):52-61
    [104]Compston W, Williams IS, Mayer C.1984. U-Pb geochronology of zircons from Lunar Breceia using a Sensitive High Resolution Lon Microprobe. Prne. X IV Lunar Planelary Seience Conference. J. Geophysics. Res.,9(suppl.):525-535
    [105]赵文霞,胡育贤,廖成竹.电子探针中的Map图在矿物出溶体中的应用—以石榴石橄榄岩中橄榄石的矿物出溶体为例[J].中山大学学报(自然科学版),2004,43(5):95-98
    [106]郡全树,石学法,王昆山,等.南海新生代玄武岩中单斜辉石矿物化学及成因意义[J].岩石学报,2007,23(11):2981-2989
    [107]吴静,黄智龙,颜以彬.云南鸡街碱性超基性岩杂岩体中橄榄石的矿物化学[J]_矿物岩石地球化学通报,2004,23(1):40-45
    [108]陈光远,孙岱生,邵岳.胶东昆嵛山二长花岗岩富矿物成因矿物学研究[J].现代质,1996,10(2):175-186
    [109]姜常义,安三元.论火成岩中钙质角闪石的化学组成特征及岩石学意义[J].矿物岩石,1984,3
    [110]宋彪,张玉海,渝牛.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,2002,48(增刊):26-30
    [111]Williams I S, Claesson S. Isotope evidence for the Precambrian province and Caledonian metamorphism of high grad paragneiss from the Seve Nappes, Scandinavian Caledonides, II. Ion microprobe zircon U-Th-Pb. Contrib Mineral. Petrol.,1987, 97:205-217
    [112]杨学明,杨晓勇,陈双喜译.岩石地球化学[M].合肥:中国科学技术大学出版社,2000:50-214
    [113]Zindler A, Hart S R. Chemical geodynamics[J]. Ann. Rev. Earth Planet Sci.,1986,14: 493-571
    [114]DePaolo D J. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization[J]. Earth Planet. Sci. Letl.,1981,53:189-202
    [115]Fan W M, Guo F, Tang Y J. Post-orogenic bimodal volcanism along the Sulu Orogenic Belt in eastern China:Phys[J]. Chem. Earth (A),2001,26(9-10):733-746
    [116]Zhang H F, Sun M, Zhou M F, et al. Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton:evidence from Sr-Nd-Pb isotopic systernaties of mafic igneous rocks[J]. Geol. Mag,2004,141:55-62
    [117]Jahn B M, Wu F Y, Lo C H. Crust-rnantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie Complex, Central China[J]. Chem. Geol,1999,157:119-146
    [118]Fan W M, Guo F, Wang Y J, et al.. Late Mesozoic volcanism in the northern Huaiyang tectone-magmatic belt, central China; partial melts from a lithospherie mantle with subducted continental crust relicts beneath the Dabie Orogen? [J]. Chem. Geol.,2009: 27-48
    [119]Zhang H F, Sun M, Zhou X H, et al. Mrsozrric. lithosphere destruction beneath the North China Craton:evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng btralts [J]. Contrib. Mineral. Petrol.,2002,141:241-253
    [120]Hart S R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 1984,309:735-757
    [121]Zindler A, Hart S. Chemical geodynamics. Ann. Rev, Earth Planet. Sci.,1986,14: 493-571
    [122]Chen J F, Xie Z, Li H M, Zhang X D, Zhou T X, Park Y S, Ahn K S, Chen D G, Zhang X. U-Pb zircon ages for a collision-related K-rieh eomplex at Shidao in the Sulu ultrahigh pressure terrane, China[J]. Geochem. J,2003c,37:35-46
    [123]Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar:implications for continental growth and crust mantle recycling[J]. J. Petrol,1995,36:91-931
    [124]Janousek V, Braithwaite CJ R, Bowesb D R, et al. Magma-mixing in the genesis of herecynian calc-alkaline granitoids:an integrated petrographic and geochemical study of the Sa zava intrusion, Central Bohemian Pluton, Czech Republic [J]. Lithos,2004,78: 67-99
    [125]Lu F X, Zheng J P, Shao J A, et al. Asthenospheric upwelling and ithospheric thinning in late Cretaceous-Cenozoic in eastern North China[J]. Earth Science Frontiers,2006.13 (2):86-92
    [126]谢磊,王德滋,等.浙江普陀花岗岩体中的石英闪长岩包体:斜长石内部复杂环带研究与岩浆混合历史记录[J].岩石学报,2004,20(6):1397-1408
    [127]Wang K, Plank T, Walker J D, et al. A mantle melting profile across the Basin and Range, SW USA[J]. Geophys. Res.2002,107:10.1029/2001JB000209
    [128]Yang J H, Wu F Y, Chung S L, et al. Sources and petrogenesis of late Triassic dolerite dikes in the Liaodong Peninsula:implications for post-collsional lithosphere thinning of the eastern North China Craton [J]. Petro,2007,48; 1973-1997
    [129]Guo J H, Chen F K, Zhang X M, et al. Petrogenesis and tectonic significance of the granitoids from the Sulu UHP metamorphic belt:constraints from zircon U-Pb ages and geochemical data, Paper abstract collection of the workshop for the subduction, break-off and thinning of continental lithosphere[M]. Beijing,2001,99-102
    [130]Hacker B R, Ratschbacher L, Webb L, et al. U-Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie orogen, China[J]. Earth Planet, Sci. Lett.,1998, 161:215-230
    [131]Yang X K, Chao Huixia, N.IVolkova, et al. Geochemisty and SHRIMP geochronology of alkaline rocks of the Zijinshan massif in the eastern Ordos basin China[J]. Russian Geology and Geophysics,2009,50(9):751-762
    [132]Xu Y G, Huang X L, Ma J L, et al. Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton:constraints from SHRIMP zircon U-Pb chronology and geochemistry of Mesozoic plutons from western Shandong[J] Contrib. Mineral. Petrol.,2004,147:750-767
    [133]刘玲,陈斌,刘安坤.北太行紫荆关基性岩体的成因:岩石学和地球化学证据[J].地球科学—中国地质大学学报,2009,34(1):165-176
    [134]Yan G H, Xu B L, Mu B L et al, Alkaline intrusives at the East foot of the Taihang-Da Hinggan Mountains:ehronology, Sr, Nd and Pb isotopic characteris- tics and their implications.2000, Acta Geologica Sinica,74(4):774-781
    [135]蔡剑辉,阎国翰,常兆山,等.王安镇岩体岩石地球化学特征及成因探讨[J].岩石学报,2003,19(1):81-92
    [136]蔡剑辉,阎国翰,肖成东,等.太行山-大兴安岭构造岩浆带中生代侵入岩Nd、Sr、 Pb同位素特征及物质来源探讨[J].岩石学报,2004,20(5):1225-1242
    [137]李红阳,牛树银,王立峰,等.幔柱构造理论[M].北京:地震出版社,2002
    [138]李思田.中国东部及邻区中、新生代盆地演化及地球动力学背景[M].中国地质大学出版社,1997
    [139]李兆鼐.中国东部中、新生代火成岩及其深部过程[M].北京: 地质出版社,2003:207-208
    [140]牛树银,罗殿文,叶东虎等.幔枝构造及其成矿规律.[M]北京:地质出版社,1996
    [141]牛树银,侯增谦,孙爱群.核幔成矿物质(流体)的反重力迁移—地幔热柱多级演化成矿作用[J].地学前缘,2001,8(3):95-103
    [142]翟明国.华北克拉通破坏前的状态—对讨论华北克拉通破坏问题的一个建议[J].大地构造与成矿学,2008.32(4):616-520
    [143]杨兴科,刘池阳,杨永恒,等.热力构造的概念分类特征及其研究进展[J].地学前缘,2005,12(4):385-396
    [144]Fan W M, Menzies M A. Destruetion of aged lower lithosphere and aeeretion of asthenosphere mantle beneath eastern China[J]. Geotectonica Metallogenia,1992. 6:171-180
    [145]Griffin W L,O'Reilly S Y, Ryan C C. Composition and thermal structure of the lithosphere beneath South Africa, Siberia and China:porton microprobe studies. Abstract of the International Symposium on Cenozoic Volcanic Rock and Deep-seated Xenoliths of China and its Environs[R]. Beiiing,1992.65-66
    [146]Griffin W L, Zhang A D, O'Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In Mantle Dynamics and Plate Interactions in East Asia(eds. Flower M F J, Chung S L, Lo C H, Lee T Y) [R]. Am. Geophy. Union, Washington, D.C., Geodyn. Ser.,1998,27:107-126
    [147]Meissner R and Mooney W. Weakness of the lower continental erust:a condition for delamination, uplift, and escape[J]. Tectonophysics,1998,296:47-60
    [148]Menzies M A, Fan W M, Zhang M. Palaeozoic and Cenozoic lithoprobe and the loss of > 120km of Archean lithosphere, Sino-Korean craton, China. In Magmatic Processes and Plate Tectonic (eds. Prichard H M, Alabaster T, Harris N B W, Neary CR) [J].. Geol. Soe. Special Publ.,1993.76:71-81
    [149]路凤香,韩柱国,郑建平,等.辽宁复县地区古生代岩石圈地慢特征[J].地质科技情报,1991,10(增刊):2-20
    [150]郑建平,路凤香.胶辽半岛金伯利岩中地慢捕虏体岩石学特征:古生代岩石圈地慢及其不均一性[J].岩石学报,1999,15:65-74
    [151]Fan Q C, Hooper P R. The mineral chemistry of ultramafic xenoliths of eastern China: Implications for upper mantle composition and the paleogeotherms[J]. Petrol.,1989.30: 1117-1158
    [152]鄂莫岚,赵大升.中国东部新生代玄武岩及深源岩石包体[M].北京:科学出版社,1987:490
    [153]池际尚.中国东部新生代玄武岩及上地慢研究[M].武汉:中国地质大学出版社,1988
    [154]马杏垣.中国岩石圈动力学纲要.北京:地质出版社,1987
    [155]Chen L, Zheng T Y, Xu W W. A thinned lithospheric image of the Tanlu Fault Zone, eastern China:Constructed from wave equation based receiver function migration. [J]. Geophy. Res,2006,111:2005JB003974
    [156]Chen L, Tao W, Zhao L, et al. Distinct lateral variation of lithospheric thickness in the northeastern North China Craton. Earth Planet[J]. Sci. Lett.,2008,267:56-68
    [157]Xu Y G. Thermo-tectonic destruction of the Archean lithospheric keel beneath eastern China:evidence, timing and mechanism, Phy-Chem[J]. Earth(A),2001,26:747-757
    [158]徐义刚,林传勇,史兰斌,等.中国东部上地慢古地温及其地质意义[J].中国科学,1995,25:874-881
    [159]Yang J H, Wu F Y, Chung S L, et al. Sources and petrogenesis of late Triassic dolerite dikes in the Liaodong Peninsula:implications for post-collsional lithosphere thinning of the eastern North China Craton. [J]. Petro.2007,48,1973-1997
    [160]Deng J F, Mo X X, Zhao H L, et al. A new model for the dynamic evolution of Chinese lithosphere:continental roots-plume tectonics[J]. Earth Science, Rew,2004,65:223-275
    [161]郁建华.北京地区岩浆深成作用[M].北京:地质出版社,1999:10-85
    [162]Sleep N H. Evolution of the continental lithosphere[J]. Annu. Rev. Earth Planet. Sei., 2005,33:369-393
    [163]Sun W D, Ding X, Hu Y H,et al. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth Planet.Sci.Lett,2007,262:533-542
    [164]Zhao D P, Maruyama S, Omori S. Mantle dynamies of Western Pacific and East Asia: Insight from seismic tomography and mineral Physics[J]. Gondwana Res,2007,11: 120-131
    [165]邓晋福,苏尚国,刘翠等,等.关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉,还是热侵蚀和化学交代?[J].地学前缘,2006,13:105-119
    [166]邓晋福,苏尚国,赵海玲,等.华北地区燕山期岩石圈减薄的深部过程[J].地学前缘,2003,10(3):41-50
    [167]Alberade F, The growth of continental crust[J]. Tetonophysics.11998,96:1-14
    [168]I.Yu. Safonova., Intraplate magmatism and oceanic plate stratigraphy of the Paleo-Asian and Paleo-Pacific Oceans from 600 to 140 Ma[J]. Ore Geology Reviews.2009,104(3):445-449
    [169]Jaha B M, Wu F Y, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Trans. R. Soc. Edinb. Earth Sic.2000,91: 181-193
    [170]Jun Y, Jiang F C, Xi S X. Geochemistry of Cretaceous mafic rocks from the Lower Yangtze region, eastern China:Characteristics and evolution of the lithospheric mantle [J]. Journal of Asian Earth Sciences,2008,33:177-193
    [171]田建吉,胡瑞忠,苏文超,等.661铀矿床流体包裹体特征及成矿流体来源探讨[J].矿物岩石地球化学通报,2010,29(1):17-25
    [172]张连昌,沈远超,李厚民,等.胶东地区金矿床流体包裹体的He、Ar同位素组成及成矿流体来源示踪[J].岩石学报,2002,18(4):559-565
    [173]王莉娟,彭志刚,祝新友,等.青海省锡铁山Sedex型铅锌矿床成矿流体来源及演化:流体包裹体及同位素地球化学证据[J].岩石学报,2002,25(11):3007-3015
    [174]申萍,沈远超,刘铁兵,等.新疆阔尔真阔腊金矿田成矿流体地球化学及其意义[J]. 中国科学D辑,2005,35(9):862-869
    [175]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999:1-290
    [176]赵斌,李院生,赵劲松.岩浆夕卡岩的包裹体证据[J].地球化学,1995,24(2):198-200
    [177]赵斌,赵劲松,张熏泽.岩浆成因矽卡岩的实验依据[J].科学通报,1993,38(21):1986-1989
    [178]郑建民,毛景文,陈懋弘,等.冀南邯郸-邢台地区矽卡岩铁矿的地质特征及成矿模式[J].地质通报,007,26(2):150-154
    [179]贾木欣,于方,冯钟燕.邯邢式铁矿成因机理探讨[J].矿冶,2006,15(2):80-85
    [180]刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984
    [181]翟裕生.矿田构造与成矿学[M].北京:地质出版社,1981
    [182]翟裕生.矿田构造学概论[M].北京:冶金工业出版社,1984
    [183]Wu F Y, Sun D Y, Li H M, et al. The nature of basement beneath the Songliao Basin in NE China:Geochemical and isotopic constraints [J]. Physics and Chemistry of the Earth,2001,26(9-10):793-803
    [184]Lu F X, Zheng J P, Shao J A, et al. Asthenospheric upwelling and ithospheric thinning in late Cretaceous-Cenozoic in eastern North China[J]. Earth Science Frontiers,2006.13 (2):86-92
    [185]宋学信,张景凯.中国各种成因黄铁矿的微量元素特征[J].中国地质科学院矿床地质研究所所刊,1986:2-120
    [186]胡明铭,郑明华,陈建平.藏东玉龙铜矿床似层状矿体成矿物质来源[J].矿物岩石,1999,19(3):73-76
    [187]孙超.吉林省香炉碗子金矿床稀土元素地球化学特征研究[J].吉林地质,1998,17(2):54-258
    [188]Hoefs J. Stable Isotope Geochemistry (3ed Edition)[M]. Springer-Verlag, Berlin, 1997:1-201
    [189]Ohmotto H, Rye R O. Isotopes of sulphur and carbon. In:Barnes HL(ed.), Geochemistry of Hydro thermal Ore Deposits[M]. New York:John Wiley,1979.509-567
    [190]张静,杨艳,胡海珠,等.河南银洞沟造山型因矿床碳硫铅同位素地球化学[J].岩 石学报,2009,25(11):2833-2842
    [191]席明杰,马生明,朱立新,等.硫同位素在地球化学异常成因研究中的应用[J].地质学报,2009,83(5):705-720
    [192]沈渭洲.稳定同位素地球化学[M].北京:原子能出版社,1987:2-45
    [193]张乾,潘家永,邵树勋.中国某些多属矿床矿石铅来源的铅同位素诠释[J].地球化学,2000,29(3):231-238
    [194]张乾,潘家永,刘家军,等.滇西地区上地幔铅同位素组成的确定及其应用[J].地质地球化学,2002,30(3):1-6
    [195]张莉,杨荣生,毛世东,等.阳山金矿床锶铅同位素组成特征与成矿物质来源[J].岩石学报,2009,25(11):2811-2822
    [196]Zartman R E, Doe B R. Plumbotectonica-the mode[J]. Tectonophysics,1981. 75:135-162
    [197]Zhu B Q, Zhang J L, Tu X L, et al. Pb, Sr, and Nd isotopic features in organic matter from China and their implications for petroleum generation and migration. Geochimica et Cosmochimica Acta,2001,65(15):2555-2570
    [198]李九玲,李玉山,谬婉萍.等.闪长玢岩钠长石化的实验研究[J].地质学报,1979,1:60-72
    [199]邢集善,杨巍然,邢作云,等.中国东部深部构造特征及其与矿集区关系[J].地学前缘,2007.14(3):114-129
    [200]余元昌,李刚,肖国荃,等.铜绿山接触交代铜铁矿床[M],1985:1-128
    [201]郑健民.冀南邯邢地区矽卡岩铁矿成矿流体及成矿预测[D],2007:2-93
    [202]毛景文,李晓峰,李厚民,等.中国造山带内生金属矿床类型、特点和成矿过程探讨[J].地质学报,2005,79(3):342-363
    [203]潘兆橹.结晶学与矿物学[M].北京:地质出版社.1994,150-189
    [204]朱自澄.构造地质学[M].北京:中国地质大学出版社,1999,20-170
    [205]童航寿.拆离构造动力学与地洼理论[J].大地构造与成矿学,2002,26(3):225-228
    [206]童航寿.拆离构造动力学与地洼理论[J].大地构造与成矿学,2002,26(3):225-228
    [207]寇玉才,李战业,王英孝,等.尕林格矽卡岩型铁多金属矿床地质-地球物理模型[J].西北地质,2010,43(2):20-32
    [208]刘天佑,吴招才,詹应林,等.磁异常小波多尺度分解及危机矿山的深部找矿:以大冶铁矿为例[J].地球科学,2007,32(1):135-140
    [209]马秀兰,任海燕,薛培林.那陵郭勒河东矿区磁法异常找矿的检查与验证[J].青海科技,2006,(4):47-49
    [210]董英君.应用重磁方法勘查铁矿的效果-以辽宁建昌县马道铁矿为例[J].矿床地质,2006,25(3):321-328
    [211]Bhattacharyya B K., Lei K. Spectral analysis ofgravity and magnetic anomalies due to two-dimensionalstructure[J].Geophysics,1975,40:993-1013
    [212]孙中任,赵雪娟,黄永卫.浅谈常规数据处理在地面高精度磁测工作中的应用[J].地质与勘探,2004,40(增刊):46-49
    [213]郭志宏,管志宁,熊盛青.长方体△T场及其梯度场无解析奇点理论表达式[J].地球物理学报,2004,47(6):6-29
    [214]赵宪堂,牛汝宝,万国普.激发极化法电测深中极化率参数η的一种处理方法探讨[J].物探化探计算技术,2003,2,5(2):122-125
    [215]吾守艾力,焦彦杰,吴文贤,等.双频激电在新寨锡多金属矿区外围找矿中的应用[J].四川地质学报,2010,30(4):475-478
    [216]宁津生,邱卫根,陶本藻.地球重力场模型理论[M].武汉:武汉测绘科技大学出版,1990:1-119
    [217]杨辉.重力、地震联合反演基岩密度及综合解释[J].石油地球物理勘探,1998(4):4-7
    [218]罗孝宽,郭绍雍.应用地球物理教程—重力、磁法[M].北京:地质出版社,1991:174-205
    [219]关键.吉林通化南岔式金矿地质—地球物理—地球化学综合找矿模型[J].中国地质,2001,28(12):22-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700