用户名: 密码: 验证码:
时效及ECAP处理无镍Ti基记忆合金相变与力学行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近等原子比Ni-Ti记忆合金由于具有较低的弹性模量,良好的形状记忆效应、超弹性性能,作为生物医用材料已经得到了广泛应用。但Ni-Ti合金中Ni含量高达50at.%,在人体体液环境作用下,Ni原子可能游离出来,对人体健康产生危害。为消除Ni元素可能产生的危害,研制开发无镍Ti基记忆合金已成为当前生物医用材料研究的一个热点,其中,Ti-Mo基、Ti-Nb基记忆合金是Ti基记忆合金研制的两个主要合金系列。
     Ti-xMo-4Nb-2V-3Al(x=7.6~11mass%)合金为美国Memry公司研制开发的新型生物医用钛合金,该系列Ti-Mo基合金具有较低的弹性模量,较高的屈服强度,且Mo元素含量约为10mass%的合金固溶处理后呈现出良好的超弹性。本论文研究了时效处理对Ti-9.8Mo-3.9Nb-2V-3.1Al合金组织、变形行为和超弹性的影响规律;对Ti-9.5Mo-4Nb-2V-3Al合金的形状记忆效应进行了分析研究;借助等径弯角挤压(ECAP)技术对Ti-9.8Mo-3.9Nb-2V-3.1Al合金和Ti-25at.%Nb合金进行超细晶及时效处理,研究了超细晶Ti基记忆合金的超弹性行为。
     组织分析表明,Ti-9.8Mo-3.9Nb-2V-3.1Al合金固溶后淬火得到β+ω_(ath)两相组织,ωath呈细片层状。经300℃时效30分钟,合金基体上析出弥散椭球状ωiso相,尺寸约10nm。400℃时效30分钟后析出长度约为100nm针状相及椭球状尺寸为20nm的ω_(iso)相。500℃时效30分钟后,大量析出的相均匀弥散分布。600℃时效30分钟相以晶界析出为主,晶粒内有少量相析出,700℃时效30分钟后,相析出数量进一步减少,晶粒内部几乎未有相。
     拉伸试验表明,Ti-9.8Mo-3.9Nb-2V-3.1Al合金变形行为可分为三种类型:固溶态及350℃,400℃,450℃时效30分钟的合金属于第Ⅰ类型,其应力-应变曲线呈现较明显加工硬化;250℃、300℃及500℃时效后试样属于第Ⅱ类型,材料屈服后出现平缓应力平台,加工硬化不明显;600℃、700℃时效后的试样属于第Ⅲ类型,其应力-应变曲线表现为双屈服现象,第一屈服强度较低,屈服后加工硬化明显。固溶处理后Ti-9.8Mo-3.9Nb-2V-3.1Al合金呈现出较好的超弹性行为,拉伸4%应变后卸载,恢复应变为2.8%,残余应变为1.2%。经400℃时效处理30分钟后,超弹性进一步提高,恢复应变达3.2%,残余应变为0.8%。300℃或500℃时效处理后,超弹性性能完全消失。Ti-9.8Mo-3.9Nb-2V-3.1Al合金在600℃、700℃时效30分钟,再次表现出良好的超弹性行为,恢复应变达3.3%。由于非热ωath相对基体的强化作用,固溶处理后合金具有较高的屈服强度,弥散均匀分布于基体上的相可极大提高材料的强度。
     Ti-9.8Mo-3.9Nb-2V-3.1Al合金马氏体转变温度Ms为-56℃。升温过程中,当温度不高于250℃时,由于ωath相不断溶解,合金的电阻随温度升高而降低。温度范围为250~380℃时,由于不断析出等温ωiso相,电阻随温度升高而增加。温度范围为380~450℃时,ωiso相作为β→α转变的中间过渡相而不断溶解,电阻随温度升高下降。温度范围为450~600℃时,α相从β相析出,电阻随温度升高而增加。温度范围为600~850℃时,发生α→β转变,α相不断溶解到基体中,温度升高到850℃时,α相全部转变为β相。
     本研究采用冷坩埚悬浮熔炼炉制备的Ti-9.5Mo-4Nb-2V-3Al(mass%)合金具有良好的形状记忆效应,合金固溶后水冷得到β+ω_(ath)+α"三相组织。拉伸过程中,合金表现出双屈服现象,第一屈服阶段伴随应力诱发马氏体相α"转变(β→α")。变形后的材料经223℃保温5分钟处理,呈现形状记忆效应,呈现完全形状记忆的最大应变量为2.2%。DSC和电阻试验表明,Ti-9.5Mo-4Nb-2V-3Al合金形状记忆的机理在于应力诱发的马氏体α"在加热时逆转变为母相β,其转变温度为92℃。Ti-9.5Mo-4Nb-2V-3Al合金经300~400℃时效30~60分钟后,表现出一定的超弹性。300℃时效60分钟后,合金拉伸4%后卸载,可恢复应变为3.2%,而300℃时效120分钟后,超弹性丧失。
     ECAP处理Ti-9.8Mo-3.9Nb-2V-3.1Al合金研究表明,经过400℃处理1道次,得到长条状晶粒,材料强度明显提高。ECAP处理1道次后,合金屈服强度为1296MPa,抗拉强度为1355MPa,模量提高到88.9GPa。处理2道次后,屈服强度高达1500MPa,模量提高到104.9GPa,但塑性急剧下降。700℃快速退火10s,可明显降低ECAP处理后Ti-9.8Mo-3.9Nb-2V-3.1Al合金的模量,此时模量为63GPa。300℃处理1道次得到更为细长的晶粒,屈服强度为1265MPa,极限抗拉强度为1310MPa。经400℃ECAP处理2道次后,材料表面出现明显开裂。
     ECAP处理Ti-25at.%Nb合金研究表明,在550℃ECAP处理4道次后,晶粒明显拉长,难以得到细小的等轴晶。400℃进行ECAP处理,晶粒细化明显,其中,处理2道次后,得到的微观组织以拉长晶粒为主,局部区域开始出现尺寸约为500nm的等轴超细晶。4道次ECAP处理后,可以得到等轴细化的超细晶组织,晶粒尺寸在300nm左右。400℃ECAP处理后Ti-25at.%Nb合金的强度、超弹性性能得到提高。ECAP+时效处理可以进一步提高强度和超弹性性能,其中,2道次和4道次处理后时效,合金的完全超弹性应变为1.5%,小应变(1.5%)时超弹性性能稳定。
Ni-Ti shape memory alloys (SMAs) are widely used in biomedical applicationsdue to their superior properties such as low elastic modulus, shape memory effect andsuperelasticity. However, since Ni-Ti alloy contains Ni of about50at.%, the possibilityof Ni-hypersensitivity has been pointed out because of the Ni extricated in the bodyfluid. New practical shape memory alloys consisted of non toxic elements, especiallyNi-free, have been a hotspot in biomedical materials area. Ti-Mo based SMAs andTi-Nb based SMAs are the two kinds of important Ni-free alloys.
     Ti-xMo-4Nb-2V-3Al(x=7.6~11mass%) alloys are newly developed Ti-basedbiomedical materials by Memry corporation in USA. These alloys exhibit low Young′smodulus, good superelasticity behavior when Mo element content is about10mass%.In the present study, the effect of aging on the microstructure, deformation behaviorand superelasticity of Ti-9.8Mo-3.9Nb-2V-3.1Al alloy and the shape memory effect(SME) of Ti-9.5Mo-4Nb-2V-3Al alloy were investigated. Ti-9.8Mo-3.9Nb-2V-3.1Alalloy and Ti-25at.%Nb alloy were processed by Equal Channel Angular Pressing(ECAP) and aging treatment to obtain ultra-fine grain (UFG) microstructure, and thesuperelasticity of these alloys with UFG microstructure were investigated.
     Microscopic analysis indicates that β+ωathdual phases microstructure wereobtained in solution treated Ti-9.8Mo-3.9Nb-2V-3.1Al alloy, and the shape of ωathphase is lamina. After aging at300℃for30minutes, ellipsoidal shape ωisophase witha size about10nm precipitated in the matrix. As aged at400℃for30minutes,needle-like phase about100nm in length precipitated and ellipsoidal shape ωisophase increased about20nm in size. After aging at500℃for30minutes, lots of phase precipitated and dispersed homogeneously in the matrix. However, as agingtemperature increased to600℃, phase precipitated along grain boundary dominantly, and a few phase precipitated inside grains. When the aging temperaturewas700℃, the amount of phase along the grain boundary decreased and there waslittle phase precipitated inside grains.
     Tensile test indicates that deformation behavior of Ti-9.8Mo-3.9Nb-2V-3.1Alalloy can be divided into three groups. For Group I, the stress-strain curves show workhardening after yielding. The specimens aged at350℃,400℃and450℃for30minutes belong to group I, showing a similar deformation behavior to that of STspecimen, with obvious work hardening after yielding. For group II, the stress-straincurves show little work hardening after yielding. Specimens aged at250℃,300℃and500℃for30minutes belong to Group II. For group III, the stress-strain curvesshow two yielding phenomena and a high work-hardening rate after first yielding, butvery small after the second yielding. Specimens aged at600℃and700℃for30minutes belong to group III. The solution treated Ti-9.8Mo-3.9Nb-2V-3.1Al alloyexhibits good superelasticity with a recoverable strain of2.8%and a remained strain of1.2%. After aging at400℃for30minutes, the specimen exhibits excellentsuperelasticity with a recoverable strain of3.2%and a remained strain of0.8%.However, after aging at300℃and500℃, the superelasticity lost completely. Asaging temperature increased to600℃and700℃, the superelasticity was restored witha recoverable strain of3.3%. Because of the strengthening effect of ωathphaseprecipitates, the solution treated specimen exhibits high yielding strength. Dispersed phase homogeneously in the matrix can increase the strength strongly.
     The martensitic transformation temperature (Ms) of Ti-9.8Mo-3.9Nb-2V-3.1Alalloy is-56℃.When the temperature is lower than250℃, the resistance ratiodecrease during heating on the resistance (ρ) vs. temperature (T) curves, because ofthe ωathphase dissolving into the matrix. As the temperature is in the range of250~380℃,the resistance ratio increases during heating because of the precipitation of ωisophase. The resistance ratio decreases again during heating from380℃to450℃with the dissolving of ωisoand the precipitation of α phase. When the temperature isin the range of450~600℃, the resistance ratio increases because of the precipitationof α phase from β phase. As the temperature is in the range of600~850℃,resistanceratio decreases because of the dissolving of α phase by α→β transformation. The αphase to β phase transformation completed at850℃.
     A multifunctional alloy with a nominal chemical composition ofTi-9.5Mo-4Nb-2V-3Al (mass%) was prepared by cold crucible levitation meltingtechnique, which exhibits shape memory effect. The microstructure of solution treatedTi-9.5Mo-4Nb-2V-3Al alloy is β+ωath+α" three phases. This alloy exhibits doubleyielding stage during tensile deformation. There is a stress induced martensitictransformation (SIM) of β α" during the first yielding stage. Deformed specimensexhibit shape memory effect after heated at223℃for5minutes, and the shaperecoverable strain is2.2%. DSC and ρ-T experiments indicated that α" induced bystress which can transform to parent phase (β) during heating. And the start temperatureof transformation (As) is92℃. After aged at300~400℃for30~60minutes,Ti-9.5Mo-4Nb-2V-3Al alloy exhibites superelastic behavior. The recoverable strain is3.2%for specimen after aged at300℃for60minutes unloading from tensile strain of4%. However, after aging at300℃for120minutes, the superelasticity lostcompletely.
     Ti-9.8Mo-3.9Nb-2V-3.1Al alloy was processed by ECAP to obtain the UFGmicrostructure. After one pass ECAP at400℃, the micrograph is lath microstructureand the strength increases obviously. The yielding strength (σ0.2) is1296MPa and thetensile strength1355MPa. The Young′s modulus increases to88.9GPa. After twopasses ECAP, the yielding strength (σ0.2) is more than1500MPa with Young′s modulus104.9GPa, but the plasticity decreases sharply. When materials were flash annealed at700℃for10s after1pass ECAP, the Young′s modulus decreased to63GPa. Afterone pass ECAP at300℃, The yielding strength and ultimate tensile strength are1265MPa and1310MPa, respectively. It is noted that there were cracks on the surface ofspecimen after2pass ECAP.
     The microstructure analyses of Ti-25at.%Nb alloy after4passes ECAP at550℃indicates that the grains of Ti-25at.%Nb alloy were elongated, but no obtained UFG.The grains were refined obviously as the process temperature decreased to400℃.After2passed ECAP at400℃, most grains were elongated, and some equiaxed UFGare observed with grain size about500nm. The equiaxed UFG can be obtained after4passes ECAP at400℃with a grain size about300nm. The strength andsuperelasticity can be improved by ECAP+aging treatment. After2,4passes ECAPprocessing and aged at300℃for60minutes, the strain can be restored completely when unloaded from tensile strain of1.5%. The Ti-25at.%Nb alloy after ECAP andaged at300℃for30minutes exhibits good superelastic stability at a tensile strain of1.5%.
引文
[1]贺志荣蔡继峰,刘艳,李春月. Ti-Ni基形状记忆合金及其应用研究进展.金属热处理,2009,34(05):64-69.
    [2]赵连城郑玉峰.生物医用镍钛合金.北京,科学出版社,2004.
    [3]袁志山,白鸽玲,冯昭伟,王江波,缪卫东,李崇剑.生物医用无Ni超弹性β钛形状记忆合金研究进展.材料导报,2009,0786-89.
    [4]徐祖耀等.形状记忆材料.上海:上海交通大学出版社,2000.
    [5](日)舟久保熙康编千东范译.形状记忆合金.北京:机械工业出版社,1992.
    [6]彭红樱,魏中国,杨大智.高温形状记忆合金的研究进展.材料科学与工程,1994,(01).
    [7]郑玉红,李崇剑,龙毅,万发荣.低温Cu-Al-Mn形状记忆合金弹簧性能的研究.金属功能材料,2007,14(3):1-5.
    [8]张初阳,王小祥. Fe-Mn-Si-Cr-Ni形状记忆合金超弹性的研究.材料科学与工程,1999,17(2):42-45.
    [9] S. M. Kim, J. Kim, D. H. Shin, Y. G. Ko, C. S. Lee, S. L. Semiatin. Microstructure development andsegment formation during ECApressing of Ti-6Al-4V alloy. Scripta Materialia,2004,50(7):927-930.
    [10] I. P. Semenova, G. I. Raab, L. R. Saitova, R. Z. Valiev. The effect of equal-channel angular pressingon the structure and mechanical behavior of Ti-6Al-4V alloy. Materials Science and Engineering A,2004,387-389805-808.
    [11]赵永庆,张喜燕,白晨光.钛合金及应用.北京:化学工业出版社,2005.
    [12] P. R. Walker, J. LeBlanc, M. Sikorska. Effects of aluminum and other cations on the structure ofbrain and liver chromatin. Biochemistry,1989,28(9):3911-3915.
    [13] D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro. Design and mechanical properties ofnew β type titanium alloys for implant materials. Materials Science and Engineering A,1998,243(1-2):244-249.
    [14] S. Miyazaki, H. Y. Kim, H. Hosoda. Development and characterization of Ni-free Ti-base shapememory and superelastic alloys. Materials Science and Engineering: A,2006,438-44018-24.
    [15] J. P. Cui, Y. L. Hao, S. J. Li, M. L. Sui, D. X. Li, R. Yang. Reversible movement of homogenouslynucleated dislocations in a β-titanium alloy. Physical Review Letters,2009,102(4).
    [16] Y. L. Hao, S. J. Li, S. Y. Sun, R. Yang. Effect of Zr and Sn on Young's modulus and superelasticityof Ti-Nb-based alloys. Materials Science and EngineeringA,2006,441(1-2):112-118.
    [17] Y. L. Hao, S. J. Li, S. Y. Sun, C. Y. Zheng, R. Yang. Elastic deformation behaviour ofTi-24Nb-4Zr-7.9Sn for biomedical applications. Acta Biomaterialia,2007,3(2):277-286.
    [18] S. Nag, R. Banerjee, H. L. Fraser. Microstructural evolution and strengthening mechanisms inTi-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys. Materials Science and Engineering: C,2005,25(3):357-362.
    [19] Peterson Luiz Ferrandini, Flavia Farias Cardoso, Sandra Araujo Souza, Conrado Ramos Afonso,Rubens Caram. Aging response of the Ti–35Nb–7Zr–5Ta and Ti–35Nb–7Ta alloys. Journal of Alloysand Compounds,2007,433(1-2):207-210.
    [20]郭文源.亚稳β型Ti-Nb-Ta-Zr-O合金的组织与性能.上海交通大学博士学位论文,2008.
    [21]邢辉. β钛合金微结构的透射电子显微术研究.上海交通大学博士学位论文,2008.
    [22] W. F. Ho, C. P. Ju, J. H. Chern Lin. Structure and properties of cast binary Ti-Mo alloys.Biomaterials,1999,20(22):2115-2122.
    [23] Nilson T.C. Oliveira, Giorgia Aleixo, Rubens Caram, Antonio C. Guastaldi. Development of Ti–Moalloys for biomedical applications: Microstructure and electrochemical characterization. MaterialsScience and Engineering:A,2007,452-453(15): p727-731.
    [24]邓安华.钛合金的马氏体相变.上海有色金属,1999(04):193-199.
    [25] Yasuya Ohmori, Toshitaka Ogo, Kiyomichi Nakai, Sengo Kobayashi. Effects of ω-phaseprecipitation on β→α, α" transformations in a metastable β titanium alloy. Materials Science andEngineeringA,2001,312(1-2):182-188.
    [26]徐丽娟,陈玉勇,陈子勇,郭永良.牙科用Ti-Mo合金的研制及组织性能特点.钛工业进展,2007,24(2):23-26.
    [27]何文福,朱建平,陈瑾惠.合金元素添加对铸造Ti-15Mo合金之性质影响. Journal of Scienceand Engineering Technology, Vol.2, No.4, pp.1-6(2006).
    [28] D. J. Lin, J. H. Chern Lin, C. P. Ju. Structure and properties of Ti-7.5Mo-xFe alloys. Biomaterials,2002,23(8):1723-1730.
    [29] D. M. Gordin, T. Gloriant, Gh Nemtoi, R. Chelariu, N. Aelenei, A. Guillou, D. Ansel. Synthesis,structure and electrochemical behavior of a beta Ti-12Mo-5Ta alloy as new biomaterial. MaterialsLetters,2005,59(23):2959-2964.
    [30] L. J. Xu, Y. Y. Chen, Zh G. Liu, F. T. Kong. The microstructure and properties of Ti-Mo-Nb alloysfor biomedical application. Journal ofAlloys and Compounds,2008,453(1-2):320-324.
    [31] Y. Sutou, K. Yamauchi, T. Takagi, T. Maeshima, M. Nishida. Mechanical properties of Ti-6at.%Mo-4at.%Sn alloy wires and their application to medical guidewire. Materials Science and EngineeringA,2006,438-440(SPEC. ISS.):1097-1100.
    [32] T. Zhou L. C. Zhang, S. P. Alpay, M. Aindow, M. H. Wu. Origin of pseudoelastic behavior inTi–Mo-based alloys. Appl. Phys. Lett.,2005,87(241909).
    [33] T. Maeshima, M. Nishida. Shape memory properties of biomedical Ti-Mo-Ag and Ti-Mo-Sn alloys.MATERIALS TRANSACTIONS,2004,45(4):1096-1100.
    [34] T. Maeshima, M. Nishida. Shape memory and mechanical properties of biomedical Ti-Sc-Mo alloys.MATERIALS TRANSACTIONS,2004,45(4):1101-1105.
    [35] Hee Young Kim, Yoshinori Ohmatsu, Jae Il Kim, Hideki Hosoda, Shuichi Miyazaki. MechanicalProperties and Shape Memory Behavior of Ti-Mo-Ga Alloys. MATERIALS TRANSACTIONS,2004,4(4):1090-1095.
    [36] T. Zhou, M. Aindow, S. P. Alpay, M. J. Blackburn, M. H. Wu. Pseudo-elastic deformation behaviorin a Ti/Mo-based alloy. Scripta Materialia,2004,50(3):343-348.
    [37] M.H. Wu P.A. Russo, and J.G. Ferrero. Mechanical Properties and Microstructures of PseudoelasticBeta Ti-Mo-V-Nb-Al Alloys. Proceedings,10th World Conference on Titanium,(Ti-2003), Hamburg,Germany,2003.
    [38] P.A. Russo M.H. Wu, and J.G. Ferrero. PSEUDOELASTIC BETA Ti-Mo-V-Nb-Al ALLOYS.Proceedings, International Conference on Shape Memory and Superelastic Technologies (SMST-2003),Pacific Grove, California2003.
    [39] T. Zhou M. Aindow, S.P.Alpy, M,J.Blackburn and M.H.Wu. Phase transformations and MechanicalResponse In a Ti/Mo-based Pseudo-Elastic Alloy. Proceedings, International Conference on ShapeMemory and Superelastic Technologies (SMST-2003), Pacific Grove, California,2003.
    [40] Е. А鲍利索娃Борисова.钛合金金相学.北京:国防工业出版社,1986.
    [41] B. S. Hickman. The formation of omega phase in titanium and zirconium alloys: A review. Journalof materials science,1969,4(6):554-563.
    [42] J. C. Williams, B. S. Hickman, H. L. Marcus. The effect of omega phase on the mechanicalproperties of titanium alloys. Metallurgical Transactions,1971,2(7):1913-1919.
    [43] A. T. Balcerzak, S. L. Sass. Formation of the omega phase in Ti-Nb alloys. Metall trans,1972,3(6):1601-1605.
    [44] M. Hida, E. Sukedai, H. Terauchi. Microscopic approaches to isothermal transformation ofincommensurate omega phase zones in Ti-20wt%Mo alloy studied by XDS, HREM and EXAFS. ActaMetallurgica,1988,36(6):1429-1441.
    [45] F. Langmayr, P. Fratzl, G. Vogl, W. Miekeley. Crossover from omega-phase to alpha-phaseprecipitation in bcc Ti-Mo. Physical Review B,1994,49(17):11759.
    [46] E. Sukedai, W. Liu, M. Awaji, T. Horiuchi. Investigation of atomic structure of [omega]-phasecrystals in Ti-Mo alloys using high-resolution electron microscopy. Ultramicroscopy,1994,54(2-4):192-200.
    [47] E. Sukedai, Y. Kitano, A. Ohnishi. Investigation of initial structures of aged ω-phase crystals inβ-titanium alloys using high resolution electron microscopy. Micron,1997,28(4):269-277.
    [48] E. Sukedai, H. Yagi, D. Yoshimitsu, H. Matsumoto, T. Ando, W. F. Xu, H. Hashimoto. Electronmicroscopy study on a new phase in [beta]-titanium alloys aged at a high temperature. Ultramicroscopy,2004,98(2-4):209-218.
    [49] H. Y. Kim, H. Satoru, J. I. Kim, H. Hosoda, S. Miyazaki. Mechanical properties and shape memorybehavior of Ti-Nb alloys. MATERIALS TRANSACTIONS,2004,45(7):2443-2448.
    [50] T. Ahmed, H.J. Rack. Martensitic transformations in Ti-(16–26at%) Nb alloys. J Mater Sci,1996,314267-4276.
    [51] H.Y. Kim, J.I. Kim, T. Inamura, H. Hosoda, S. Miyazaki. Effect of thermo-mechanical treatment onmechanical properties and shape memory behavior of Ti–(26–28) at.%Nb alloys. Materials Science andEngineering:A,2006,438-440(25):839-843.
    [52] H. Y. Kim, J. I. Kim, T. Inamura, H. Hosoda, S. Miyazaki. Effect of thermo-mechanical treatment onmechanical properties and shape memory behavior of Ti-(26-28)at.%Nb alloys. Materials Science andEngineering:A,2006,438-440839-843.
    [53] H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda, S. Miyazaki. Martensitic transformation, shape memoryeffect and superelasticity of Ti-Nb binary alloys. Acta Materialia,2006,54(9):2419-2429.
    [54] D. H. Ping, Y. Mitarai, F. X. Yin. Microstructure and shape memory behavior of a Ti-30Nb-3Pdalloy. Scripta Materialia,2005,52(12):1287-1291.
    [55] D. H. Ping, C. Y. Cui, F. X. Yin, Y. Yamabe-Mitarai. TEM investigations on martensite in aTi-Nb-based shape memory alloy. Scripta Materialia,2006,54(7):1305-1310.
    [56] D. H. Ping, Y. Yamabe-Mitarai, C. Y. Cui, F. X. Yin, M. A. Choudhry. Stress-induced α" martensitic(110) twinning in β-Ti alloys. Applied Physics Letters,2008,93(15).
    [57] V. M. Segal. Mechanics of continuous equal-channel angular extrusion. Journal of MaterialsProcessing Technology,210(3):542-549.
    [58] V. M. Segal. Materials processing by simple shear. Materials Science and Engineering A,1995,197(2):157-164.
    [59] S. L. Semiatin, V. M. Segal, R. L. Goetz, R. E. Goforth, T. Hartwig. Workability of a gammatitanium aluminide alloy during equal channel angular extrusion. Scripta Metallurgica et Materialia,1995,33(4):535-540.
    [60] V. M. Segal. Equal channel angular extrusion: from macromechanics to structure formation.Materials Science and EngineeringA,1999,271(1-2):322-333.
    [61] V. M. Segal. Severe plastic deformation: simple shear versus pure shear. Materials Science andEngineeringA,2002,338(1-2):331-344.
    [62] V. M. Segal. Slip line solutions, deformation mode and loading history during equal channel angularextrusion. Materials Science and EngineeringA,2003,345(1-2):36-46.
    [63] S. Ferrasse, V. M. Segal, F. Alford. Effect of additional processing on texture evolution of Al0.5Cualloy processed by equal channel angular extrusion (ECAE). Materials Science and Engineering A,2004,372(1-2):44-55.
    [64] S. Ferrasse, V. M. Segal, F. Alford. Texture evolution during equal channel angular extrusion(ECAE): Part II. An effect of post-deformation annealing. Materials Science and Engineering A,2004,372(1-2):235-244.
    [65] V. M. Segal. Engineering and commercialization of equal channel angular extrusion (ECAE).Materials Science and EngineeringA,2004,386(1-2):269-276.
    [66] V. M. Segal. Deformation mode and plastic flow in ultra fine grained metals. Materials Science andEngineering:A,2005,406(1-2):205-216.
    [67] Aidang Shan, In-Ge Moon, Jong-Woo Park. Estimation of friction during equal channel angular(ECA) pressing of aluminum alloys. Journal of Materials Processing Technology,2002,122(2-3):255-259.
    [68](俄)Ρ. З.瓦利耶夫И. В.亚力克山卓夫著,林柏年译,.剧烈塑性形变纳米材料.北京,科学出版社,2006.
    [69] G. I. Raab, E. P. Soshnikova, R. Z. Valiev. Influence of temperature and hydrostatic pressure duringequal-channel angular pressing on the microstructure of commercial-purity Ti. Materials Science andEngineeringA,2004,387-389674-677.
    [70] Vladimir V. Stolyarov, Y. Theodore Zhu, Igor V. Alexandrov, Terry C. Lowe, Ruslan Z. Valiev.Influence of ECAP routes on the microstructure and properties of pure Ti. Materials Science andEngineeringA,2001,299(1-2):59-67.
    [71] G. I. Raab, E. P. Soshnikova, R. Z. Valiev. Influence of temperature and hydrostatic pressure duringequal-channel angular pressing on the microstructure of commercial-purity Ti. Materials Science andEngineeringA,2004,387-389(1-2SPEC. ISS.):674-677.
    [72] V. V. Stolyarov, Y. Theodore Zhu, I. V. Alexandrov, T. C. Lowe, R. Z. Valiev. Influence of ECAProutes on the microstructure and properties of pure Ti. Materials Science and Engineering A,2001,299(1-2):59-67.
    [73] V. V. Stolyarov, Y. T. Zhu, T. C. Lowe, R. Z. Valiev. Microstructure and properties of pure Tiprocessed by ECAP and cold extrusion. Materials Science and EngineeringA,2001,303(1-2):82-89.
    [74] V. V. Stolyarov, Y. T. Zhu, I. V. Alexandrov, T. C. Lowe, R. Z. Valiev. Grain refinement andproperties of pure Ti processed by warm ECAP and cold rolling. Materials Science and Engineering A,2003,343(1-2):43-50.
    [75] R. Z. Valiev, A. V. Sergueeva, A. K. Mukherjee. The effect of annealing on tensile deformationbehavior of nanostructured SPD titanium. Scripta Materialia,2003,49(7):669-674.
    [76] I. P. Semenova, R. Z. Valiev, E. B. Yakushina, G. H. Salimgareeva, T. C. Lowe. Strength and fatigueproperties enhancement in ultrafine-grained Ti produced by severe plastic deformation. JOURNAL OFMATERIALS SCIENCE,2008,43(23-24):7354-7359.
    [77] D. H. Shin, I. Kim, J. Kim, Y. S. Kim, S. L. Semiatin. Microstructure development duringequal-channel angular pressing of titanium. Acta Materialia,2003,51(4):983-996.
    [78] R. K. Islamgaliev, N. F. Yunusova, R. Z. Valiev, N. K. Tsenev, V. N. Perevezentsev, T. G. Langdon.Characteristics of superplasticity in an ultrafine-grained aluminum alloy processed by ECA pressing.Scripta Materialia,2003,49(5):467-472.
    [79] G. V. Nurislamova, R. K. Islamgaliev, R. Z. Valiev. Microstructure and mechanical properties ofpure nickel processed by severe plastic deformation. Materials Science Forum,2006; Vol.503-504,579-584.
    [80] Y. Zhao, Y. Li, T. D. Topping, X. Liao, Y. Zhu, R. Z. Valiev, E. J. Lavernia. Ductility ofultrafine-grained copper processed by equal-channel angular pressing. International Journal of MaterialsResearch,2009,100(12):1647-1652.
    [81] V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, T. C. Lowe, Y. T. Zhu. Nanostructured TiNi-based shapememory alloys processed by severe plastic deformation. Materials Science and Engineering A,2005,410-411386-389.
    [82] V. G. Pushin, R. Z. Valiev, Y. T. Zhu, D. V. Gunderov, N. I. Kourov, T. E. Kuntsevich, A. N.Uksusnikov, L. I. Yurchenko. Effect of severe plastic deformation on the behavior of Ti-Ni shapememory alloys. MATERIALS TRANSACTIONS,2006,47(3):694-697.
    [83] J. Burow, E. Prokofiev, C. Somsen, J. Frenzel, R. Z. Valiev, G. Eggeler. Martensitic transformationsand functional stability in ultra-fine grained NiTi shape memory alloys. Materials Science Forum,2008;Vol.584-586PART2,852-857.
    [84] I. P. Semenova, L. R. Saitova, G. I. Raab, A. I. Korshunov, Y. T. Zhu, T. C. Lowe, R. Z. Valiev.Microstructural features and mechanical properties of the Ti-6Al-4V ELI alloy processed by severeplastic deformation. In Materials Science Forum,2006; Vol.503-504,757-762.
    [85] I. P. Semenova, L. R. Saitova, G. I. Raab, Y. T. Zhu, T. C. Lowe, R. Z. Valiev. Superplastic behaviourof ultrafine-grained Ti-6Al-4V ELI processed by severe plastic deformation. In TMS Annual Meeting[C],2006;433-438.
    [86] E. D. Tabachnikova, V. Z. Bengus, A. V. Podolskiy, S. N. Smirnov, K. Csach, J. Miskuf, L. R.Saitova, I. P. Semenova, R. Z. Valiev. Low temperature mechanical properties and failure peculiarities ofthe Ti-6Al-4V ELI ultra-fine grained alloy. Reviews on Advanced Materials Science,2008,18(7):604-607.
    [87] E. D. Tabachnikova, V. Z. Bengus, A. V. Podolskiy, S. N. Smirnov, K. Csach, J. Miskuf, L. R.Saitova, I. P. Semenova, R. Z. Valiev. Microstructure features of failure and mechanical properties ofultra-fine grained Ti-6AL-4V ELI alloy at300-77K. International Journal of Mechanics and Materials inDesign,2008,4(2):189-195.
    [88] S. M. L. Sastry, R. N. Mahapatra, D. F. Hasson. Microstructural refinement of Ti-44Al-11Nb bysevere plastic deformation. Scripta Materialia,2000,42(7):731-736.
    [89] G. G. Yapici, I. Karaman, Z. P. Luo, H. Rack. Microstructure and mechanical properties of severelydeformed powder processed Ti-6Al-4V using equal channel angular extrusion. Scripta Materialia,2003,49(10):1021-1027.
    [90] Y. G. Ko, W. S. Jung, D. H. Shin, C. S. Lee. Effects of temperature and initial microstructure on theequal channel angular pressing of Ti-6Al-4V alloy. Scripta Materialia,2003,48(2):197-202.
    [91] Z. Fan, C. Xie. Shape memory behavior of Ti-50.9at%Ni alloy after ECAE processes. MaterialsScience Forum,2007; Vol.561-565,2313-2316.
    [92] Zhiguo Fan, Chaoying Xie. Phase transformation behaviors of Ti-50.9at.%Ni alloy after EqualChannelAngular Extrusion. Materials Letters,2008,62(6-7):800-803.
    [93]范志国.超细晶纯Ti及TiNi合金制备及其组织与力学行为.上海交通大学博士学位论文,2009.
    [94] V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, T. C. Lowe, Y. T. Zhu. Nanostructured TiNi-based shapememory alloys processed by severe plastic deformation. Materials Science and Engineering: A,2005,410-411386-389.
    [95] W. Xu, X. Wu, M. Calin, M. Stoica, J. Eckert, K. Xia. Formation of an ultrafine-grained structureduring equal-channel angular pressing of a β-titanium alloy with low phase stability. Scripta Materialia,2009,60(11):1012-1015.
    [96] Dan-Jae Lin, Cheng-Chung Chuang, Jiin-Huey Chern Lin, Jing-Wei Lee, Chien-Ping Ju,Hsiang-Shu Yin. Bone formation at the surface of low modulus Ti-7.5Mo implants in rabbit femur.Biomaterials,2007,28(16):2582-2589.
    [1]郭文源.亚稳β型Ti-Nb-Ta-Zr-O合金的组织与性能.上海交通大学博士学位论文,2008.
    [2] Arimichi Morita, Hisao Fukui, Hideaki Tadano, Shizuo Hayashi, Jiro Hasegawa, Mitsuo Niinomi.Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace. Materials Scienceand EngineeringA,2000,280(1):208-213.
    [3] H. Fukui, W. Yang, S. Yamada, Y. Fujishiro, A. Morita, M. Niinomi. Cold Crucible LevitationMelting of Biomedical Ti-30wt%Ta Alloy. Dental Materials Journal,2001,20(2):156-163.
    [4] V. V. Stolyarov, Y. Theodore Zhu, I. V. Alexandrov, T. C. Lowe, R. Z. Valiev. Influence of ECAProutes on the microstructure and properties of pure Ti. Materials Science and Engineering A,2001,299(1-2):59-67.
    [1] T. Zhou M. Aindow, S.P.Alpy, M,J.Blackburn and M.H.Wu. Phase transformations and MechanicalResponse In a Ti/Mo-based Pseudo-Elastic Alloy. Proceedings, International Conference on ShapeMemory and Superelastic Technologies (SMST-2003), Pacific Grove, California,2003.
    [2] P.A. Russo M.H. Wu, and J.G. Ferrero. PSEUDOELASTIC BETA Ti-Mo-V-Nb-Al ALLOYS.Proceedings, International Conference on Shape Memory and Superelastic Technologies (SMST-2003),Pacific Grove, California2003.
    [3] M.H. Wu P.A. Russo, and J.G. Ferrero. Mechanical Properties and Microstructures of PseudoelasticBeta Ti-Mo-V-Nb-Al Alloys. Proceedings,10th World Conference on Titanium,(Ti-2003), Hamburg,Germany,2003.
    [4] T. Zhou L. C. Zhang, S. P. Alpay, M. Aindow, M. H. Wu. Origin of pseudoelastic behavior inTi–Mo-based alloys. Appl. Phys. Lett.,2005,87(241909).
    [5] T. Zhou, M. Aindow, S. P. Alpay, M. J. Blackburn, M. H. Wu. Pseudo-elastic deformation behavior ina Ti/Mo-based alloy. Scripta Materialia,2004,50(3):343-348.
    [6]赵永庆,张喜燕,白晨光.钛合金及应用.北京:化学工业出版社,2005.
    [7]张廷杰.钛合金相变的电子显微镜研究(Ⅳ)——钛合金中的ω相变.稀有金属材料与工程,1989,5(77-82).
    [8] Frederic Prima, Philippe Vermaut, Denis Ansel, Jean Debuigne. ω precipitation in a beta metastabletitanium alloy, resistometric study. Materials Transactions, JIM,2000,41(8):1092-1097.
    [9] D. H. Ping, C. Y. Cui, F. X. Yin, Y. Yamabe-Mitarai. TEM investigations on martensite in aTi-Nb-based shape memory alloy. Scripta Materialia,2006,54(7):1305-1310.
    [10] F. Langmayr, P. Fratzl, G. Vogl, W. Miekeley. Crossover from omega-phase to alpha-phaseprecipitation in bcc Ti-Mo. Physical Review B,1994,49(17):11759.
    [11] W. F. Ho, C. P. Ju, J. H. Chern Lin. Structure and properties of cast binary Ti-Mo alloys.Biomaterials,1999,20(22):2115-2122.
    [12] Nilson T.C. Oliveira, Giorgia Aleixo, Rubens Caram, Antonio C. Guastaldi. Development of Ti–Moalloys for biomedical applications: Microstructure and electrochemical characterization. MaterialsScience and Engineering:A,2007,452-453(15): p727-731.
    [13] D. H. Ping, Y. Yamabe-Mitarai, C. Y. Cui, F. X. Yin, M. A. Choudhry. Stress-induced α"martensitic(110) twinning in β-Ti alloys. Applied Physics Letters,2008,93(15).
    [14] D. H. Ping, Y. Mitarai, F. X. Yin. Microstructure and shape memory behavior of a Ti-30Nb-3Pdalloy. Scripta Materialia,2005,52(12):1287-1291.
    [15] J. I. Qazi, B. Marquardt, L. F. Allard, H. J. Rack. Phase transformations inTi-35Nb-7Zr-5Ta-(0.06-0.68)O alloys. Materials Science and Engineering: C,2005,25(3):389-397.
    [16]介稳定β型钛合金TB2的研制[J].冶金部有色金属研究院,第一届钛及钛合金会议论文集(第一册),1975,上海:上海科学技术情报研究所.
    [17] Xu Bin Shen Guiqin, Peng Yiqun Tuo, Xiangming. Phase Transformation in Ti-15Mo-2.7Nb-3Al-0.2Si High Strength Titanium Alloy. Journal of Materials Engineering (In China),31999.
    [18] Е. А..鲍利索娃等著.钛合金金相学.北京:国防工业出版社,1986
    [19] H.Y. Kim, J.I. Kim, T. Inamura, H. Hosoda, S. Miyazaki. Effect of thermo-mechanical treatment onmechanical properties and shape memory behavior of Ti–(26–28) at.%Nb alloys. Materials Science andEngineering:A,2006,438-440(25):839-843.
    [20] S. Nag, R. Banerjee, H. L. Fraser. Microstructural evolution and strengthening mechanisms inTi-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys. Materials Science and Engineering: C,2005,25(3):357-362.
    [21] L. M. Hsiung, D. H. Lassila. Shock-induced deformation twinning and omega transformation intantalum and tantalum-tungsten alloys. Acta Materialia,2000,48(20):4851-4865.
    [22] J. C. Ho, E. W. Collings. Anomalous electrical resistivity in titanium-molybdenum alloys. PhysicalReview B,1972,6(10):3727-3738.
    [23] T. Gloriant, G. Texier, F. Sun, I. Thibon, F. Prima, J. L. Soubeyroux. Characterization of nanophaseprecipitation in a metastable β titanium-based alloy by electrical resistivity, dilatometry and neutrondiffraction. Scripta Materialia,2008,58(4):271-274.
    [24] C. H. Chun, D. H. Polonis. Effects of ageing on the temperature coefficient of resistivity of a βtitanium alloy. Journal of materials science,1993,28(15):4134-4142.
    [25] H. Matsumoto, E. Sukedai, H. Hashimoto. Growth behaviour of athermal ω-phase crystals in aTi-15mass%Mo alloy studied by in-situ dark field and high resolution electron microscopy. MaterialsTransactions, JIM,1999,40(12):1436-1443.
    [26] Hajime Matsumoto, Eiichi Sukedai, Hatsujiro Hashimoto. Electron microscope observations ofathermal ω-phase crystal formation and growth behaviors in a β-Ti alloy cooled to77K. NipponKinzoku Gakkaishi/Journal of the Japan Institute of Metals,1999,63(6):806-807.
    [27] Hajime Matsumoto, Eiichi Sukedai, Hatsujiro Hashimoto. Electron microscopy investigation intothe Mo content dependence of the formation of athermal ω-phase crystals in β-type Ti-Mo alloys cooledto131K. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals,2000,64(6):481-482.
    [28] Masahiko Ikeda, Shin-Ya Komatsu, Isao Sowa, Mitsuo Niinomi. Aging behavior of theTi-29Nb-13Ta-4.6Zr new beta alloy for medical implants. METALLURGICAL AND MATERIALSTRANSACTIONS A,2002,33(3):487-493.
    [29] T. Grosdidier, M. J. Philippe. Deformation induced martensite and superelasticity in a β-metastabletitanium alloy. Materials Science and EngineeringA,2000,291(1-2):218-223.
    [30] J. P. Cui, Y. L. Hao, S. J. Li, M. L. Sui, D. X. Li, R. Yang. Reversible movement of homogenouslynucleated dislocations in a β-titanium alloy. Physical Review Letters,2009,102(4).
    [31]徐祖耀等.形状记忆材料.上海:上海交通大学出版社,2000
    [32] H. Y. Kim, H. Satoru, J. I. Kim, H. Hosoda, S. Miyazaki. Mechanical properties and shape memorybehavior of Ti-Nb alloys. MATERIALS TRANSACTIONS,2004,45(7):2443-2448.
    [33] J. I. Kim, H. Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki. Shape memory characteristics ofTi-22Nb-(2-8)Zr(at.%) biomedical alloys. Materials Science and Engineering: A,2005,403(1-2):334-339.
    [34] H. Warlimont, L. Delaey, R. V. Krishnan, H. Tas. Thermoelasticity, pseudoelasticity and the memoryeffects associated with martensitic transformations-Part3Thermodynamics and kinetics[J]. JOURNALOF MATERIALS SCIENCE,1974,9(9):1545-1555.
    [35] K. Otsuka, H. Sakamoto, K. Shimizu. Successive stress-induced martensitic transformations andassociated transformation pseudoelasticity in Cu-Al-Ni alloys. Acta Metallurgica,1979,27(4):585-601.
    [36] S. Miyazaki, K. Otsuka. DEFORMATION AND TRANSITION BEHAVIOR ASSOCIATED WITHTHE R-PHASE IN Ti-Ni ALLOYS. Metallurgical transactions. A, Physical metallurgy and materialsscience,1986,17A(1):53-63.
    [1] S. Nag, R. Banerjee, H. L. Fraser. Microstructural evolution and strengthening mechanisms inTi-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys. Materials Science and Engineering: C,2005,25(3):357-362.
    [2] T. Maeshima, M. Nishida. Shape memory properties of biomedical Ti-Mo-Ag and Ti-Mo-Sn alloys.Materials transactions,2004,45(4):1096-1100.
    [3] Hee Young Kim, Yoshinori Ohmatsu, Jae Il Kim, Hideki Hosoda, Shuichi Miyazaki. MechanicalProperties and Shape Memory Behavior of Ti-Mo-Ga Alloys. MATERIALS TRANSACTIONS,2004,4(4):1090-1095.
    [4] T. Zhou, M. Aindow, S. P. Alpay, M. J. Blackburn, M. H. Wu. Pseudo-elastic deformation behavior ina Ti/Mo-based alloy. Scripta Materialia,2004,50(3):343-348.
    [5] T. Zhou L. C. Zhang, S. P. Alpay, M. Aindow, M. H. Wu. Origin of pseudoelastic behavior inTi–Mo-based alloys. Appl. Phys. Lett.,2005,87(241909).
    [6] J. P. Cui, Y. L. Hao, S. J. Li, M. L. Sui, D. X. Li, R. Yang. Reversible movement of homogenouslynucleated dislocations in a β-titanium alloy. Physical Review Letters,2009,102(4).
    [7] T. Grosdidier, Y. Combres, E. Gautier, M. J. Philippe. Effect of microstructure variations on theformation of deformation-induced martensite and associated tensile properties in a β metastable Ti alloy.Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,2000,31(4):1095-1106.
    [8] T. Grosdidier, M. J. Philippe. Deformation induced martensite and superelasticity in a β-metastabletitanium alloy. Materials Science and EngineeringA,2000,291(1-2):218-223.
    [9] H. Y. Kim, H. Satoru, J. I. Kim, H. Hosoda, S. Miyazaki. Mechanical properties and shape memorybehavior of Ti-Nb alloys. MATERIALS TRANSACTIONS,2004,45(7):2443-2448.
    [10] Y. Mantani, Y. Takemoto, M. Hida, A. Sakakibara, M. Tajima. Phase transformation of α" martensitestructure by aging in Ti-8mass%Mo alloy. MATERIALS TRANSACTIONS,2004,45(5):1629-1634.
    [11] D. H. Ping, Y. Mitarai, F. X. Yin. Microstructure and shape memory behavior of a Ti-30Nb-3Pdalloy[J]. Scripta Materialia,2005,52(12):1287-1291.
    [12] Y. Mantani, Y. Takemoto, M. Hida, A. Sakakibara, K. Takayama, H. Yasuda. Deformation inducedstructural change of quenched ω phase in Ti-20mass%Mo alloy[J]. Nippon Kinzoku Gakkaishi/Journalof the Japan Institute of Metals,2000,64(10):934-939.
    [13] J. C. Ho, E. W. Collings. Anomalous electrical resistivity in titanium-molybdenum alloys. PhysicalReview B,1972,6(10):3727-3738.
    [14]张廷杰.钛合金相变的电子显微镜研究(Ⅲ)——钛合金中的马氏体相变.稀有金属材料与工程,1989,471-78.
    [15] T. Gloriant, G. Texier, F. Sun, I. Thibon, F. Prima, J. L. Soubeyroux. Characterization of nanophaseprecipitation in a metastable β titanium-based alloy by electrical resistivity, dilatometry and neutrondiffraction. Scripta Materialia,2008,58(4):271-274.
    [16] T. Maeshima, M. Nishida. Shape memory and mechanical properties of biomedical Ti-Sc-Moalloys[J]. MATERIALS TRANSACTIONS,2004,45(4):1101-1105.
    [17] T. Maeshima, S. Ushimaru, K. Yamauchi, M. Nishida. Effects of Sn content and aging conditions onsuperelasticity in biomedical Ti-Mo-Sn alloys. MATERIALS TRANSACTIONS,2006,47(3):513-517.
    [18] T. Maeshima, S. Ushimaru, K. Yamauchi, M. Nishida. Effect of heat treatment on shape memoryeffect and superelasticity in Ti-Mo-Sn alloys. Materials Science and Engineering: A,2006,438-440844-847.
    [19] Y. Sutou, K. Yamauchi, T. Takagi, T. Maeshima, M. Nishida. Mechanical properties of Ti-6at.%Mo-4at.%Sn alloy wires and their application to medical guidewire. Materials Science and EngineeringA,2006,438-440(SPEC. ISS.):1097-1100.
    [20] Y. Mantani, M. Tajima. Phase transformation of quenched α" martensite by aging in Ti-Nb alloys.Materials Science and Engineering: A,2006,438-440315-319.
    [21] D. H. Ping, C. Y. Cui, F. X. Yin, Y. Yamabe-Mitarai. TEM investigations on martensite in aTi-Nb-based shape memory alloy. Scripta Materialia,2006,54(7):1305-1310.
    [22] D. H. Ping, Y. Yamabe-Mitarai, C. Y. Cui, F. X. Yin, M. A. Choudhry. Stress-induced α"martensitic(110) twinning in β-Ti alloys. Applied Physics Letters,2008,93(15).
    [23] S. Nag, R. Banerjee, R. Srinivasan, J. Y. Hwang, M. Harper, H. L. Fraser. ω Assisted nucleation andgrowth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy. Acta Materialia,2009,57(7):2136-2147.
    [24] Frederic Prima, Philippe Vermaut, Denis Ansel, Jean Debuigne. ω precipitation in a beta metastabletitanium alloy, resistometric study. Materials Transactions, JIM,2000,41(8):1092-1097.
    [25] H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda, S. Miyazaki. Martensitic transformation, shape memoryeffect and superelasticity of Ti-Nb binary alloys. Acta Materialia,2006,54(9):2419-2429.
    [26] H.Y. Kim, J.I. Kim, T. Inamura, H. Hosoda, S. Miyazaki. Effect of thermo-mechanical treatment onmechanical properties and shape memory behavior of Ti–(26–28) at.%Nb alloys. Materials Science andEngineering:A,2006,438-440(25):839-843.
    [27] J. I. Kim, H. Y. Kim, H. Hosoda, S. Miyazaki. Shape memory behavior of Ti-22Nb-0.5-2.0O(at%)biomedical alloys. MATERIALS TRANSACTIONS,2005,46(4):852-857.
    [28] J. I. Kim, H. Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki. Shape memory characteristics ofTi-22Nb-(2-8)Zr(at.%) biomedical alloys. Materials Science and Engineering: A,2005,403(1-2):334-339.
    [29] S. Miyazaki, H. Y. Kim, H. Hosoda. Development and characterization of Ni-free Ti-base shapememory and superelastic alloys. Materials Science and Engineering: A,2006,438-44018-24.
    [1] Zhiguo Fan, Hong Jiang, Xiaogang Sun, Jie Song, Xiaoning Zhang, Chaoying Xie. Microstructuresand mechanical deformation behaviors of ultrafine-grained commercial pure (grade3) Ti processed bytwo-step severe plastic deformation. Materials Science and Engineering:A,2009,527(1-2):45-51.
    [2] L. B. Tong, M. Y. Zheng, X. S. Hu, K. Wu, S. W. Xu, S. Kamado, Y. Kojima. Influence of ECAProutes on microstructure and mechanical properties of Mg-Zn-Ca alloy. Materials Science andEngineeringA,527(16-17):4250-4256.
    [3] H. Matsumoto, E. Sukedai, H. Hashimoto. Growth behaviour of athermal ω-phase crystals in aTi-15mass%Mo alloy studied by in-situ dark field and high resolution electron microscopy. MaterialsTransactions, JIM,1999,40(12):1436-1443.
    [4] Hajime Matsumoto, Eiichi Sukedai, Hatsujiro Hashimoto. Electron microscopy investigation into theMo content dependence of the formation of athermal ω-phase crystals in β-type Ti-Mo alloys cooled to131K. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals,2000,64(6):481-482.
    [5] Vladimir V. Stolyarov, Y. Theodore Zhu, Igor V. Alexandrov, Terry C. Lowe, Ruslan Z. Valiev.Influence of ECAP routes on the microstructure and properties of pure Ti. Materials Science andEngineeringA,2001,299(1-2):59-67.
    [6] E. Sukedai, D. Yoshimitsu, H. Matsumoto, H. Hashimoto, Kiritani. β to ω phase transformation dueto aging in a Ti–Mo alloy deformed in impact compression. Materials Science and Engineering A,2003,350(1-2):133-138.
    [7] E. Sukedai, T. Yukihiro, D. Miyaji, H. Matsumoto, H. Nishizawa, H. Hashimoto. Aging behavior ofTi-Mo alloys heavily compressed in ultra-high strain rate mode. Materials Science and Engineering A,2004,387-389249-253.
    [8] F. Sun, F. Prima, T. Gloriant. High-strength nanostructured Ti-12Mo alloy from ductile metastablebeta state precursor. Materials Science and Engineering:A,527(16-17):4262-4269.
    [9] S. Nag, R. Banerjee, R. Srinivasan, J. Y. Hwang, M. Harper, H. L. Fraser. ω Assisted nucleation andgrowth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy. Acta Materialia,2009,57(7):2136-2147.
    [10] D. De Fontaine. Mechanical instabilities in the b.c.c. lattice and the beta to omega phasetransformation[J]. Acta Metallurgica,1970,18(2):275-279.
    [11] Xu Bin Shen Guiqin, Peng Yiqun Tuo, Xiangming. Phase Transformation in Ti-15Mo-2.7Nb-3Al-0.2Si High Strength Titanium Alloy. Journal of Materials Engineering (In China),1999319-23
    [12](俄)Ρ. З.瓦利耶夫И. В.亚力克山卓夫著,林柏年译,.剧烈塑性形变纳米材料.北京,科学出版社,2006
    [13]赵永庆,张喜燕,白晨光.钛合金及应用.北京:化学工业出版社,2005.
    [14] T. Zhou, M. Aindow, S. P. Alpay, M. J. Blackburn, M. H. Wu. Pseudo-elastic deformation behaviorin a Ti/Mo-based alloy[J]. Scripta Materialia,2004,50(3):343-348.
    [1] H.Y. Kim, J.I. Kim, T. Inamura, H. Hosoda, S. Miyazaki. Effect of thermo-mechanical treatment onmechanical properties and shape memory behavior of Ti–(26–28) at.%Nb alloys. Materials Science andEngineering:A,2006,438-440(25):839-843.
    [2] H. Hosoda, Y. Kinoshita, Y. Fukui, T. Inamura, K. Wakashima, H. Y. Kim, S. Miyazaki. Effects ofshort time heat treatment on superelastic properties of a Ti-Nb-Al biomedical shape memory alloy.Materials Science and Engineering: A,2006,438-440870-874.
    [3] J. I. Kim, H. Y. Kim, T. Inamura, H. Hosoda, S. Miyazaki. Shape memory characteristics ofTi-22Nb-(2-8)Zr(at.%) biomedical alloys. Materials Science and Engineering: A,2005,403(1-2):334-339.
    [4] H. Y. Kim, S. Hashimoto, J. I. Kim, T. Inamura, H. Hosoda, S. Miyazaki. Effect of Ta addition onshape memory behavior of Ti-22Nb alloy. Materials Science and Engineering: A,2006,417(1-2):120-128.
    [5] H. Y. Kim, T. Sasaki, K. Okutsu, J. I. Kim, T. Inamura, H. Hosoda, S. Miyazaki. Texture and shapememory behavior of Ti-22Nb-6Ta alloy. Acta Materialia,2006,54(2):423-433.
    [6] SATOSHI SEMBOSHI, TAKAHIRO SHIRAI, TOYOHIKO J. KONNO, SHUJI HANADA. In-SituTransmission Electron Microscopy Observation on the Phase Transformation of Ti-Nb-Sn ShapeMemoryAlloys. METALLURGICALAND MATERIALS TRANSACTIONS A,2008,392820.
    [7] H. Hosoda, Y. Kinoshita, Y. Fukui, T. Inamura, K. Wakashima, H.Y. Kim, S. Miyazaki. Effects ofshort time heat treatment on superelastic properties of a Ti–Nb–Al biomedical shape memory alloy.Materials Science and Engineering: A,2006,438-440(25):870-874.
    [8] D. H. Ping, Y. Mitarai, F. X. Yin. Microstructure and shape memory behavior of a Ti-30Nb-3Pd alloy.Scripta Materialia,2005,52(12):1287-1291.
    [9] J. I. Kim, H. Y. Kim, H. Hosoda, S. Miyazaki. Shape memory behavior of Ti-22Nb-0.5-2.0O(at%)biomedical alloys. MATERIALS TRANSACTIONS,2005,46(4):852-857.
    [10] Tomonari Inamuraa, Yusuke Fukuib, Hideki Hosodaa, Kenji Wakashimaa, Shuichi Miyazaki.Mechanical properties of Ti–Nb biomedical shape memory alloys containing Ge or Ga. MaterialsScience and Engineering C2005,25425-432.
    [11] Won-Yong Kim, Han-Sol Kim. Microstructure and texture evolution of Ti-Nb-Si based alloys forbiomedical applications. Rare Metals,2006,25(6, Supplement2):163-167.
    [12] S. J. Li, R. Yang, M. Niinomi, Y. L. Hao, Y. Y. Cui, Z. X. Guo. Phase transformation during agingand resulting mechanical properties of two Ti-Nb-Ta-Zr alloys. Materials Science and Technology,2005,21(6):678-686.
    [13] J. I. Qazi, B. Marquardt, L. F. Allard, H. J. Rack. Phase transformations inTi-35Nb-7Zr-5Ta-(0.06-0.68)O alloys. Materials Science and Engineering: C,2005,25(3):389-397.
    [14] T. Furuta, S. Kuramoto, J. Hwang, K. Nishino, T. Saito, M. Niinomi. Mechanical properties andphase stability of Ti-Nb-Ta-Zr-O alloys. MATERIALS TRANSACTIONS,2007,48(5):1124-1130.
    [15] M. Hara, Y. Shimizu, T. Yano, N. Takesue, T. Furuta, S. Kuramoto. Mechanical anisotropy and idealstrength in a multifunctional Ti-Nb-Ta-Zr-O alloy (Gum Metal). International Journal of MaterialsResearch,2009,100(3):345-348.
    [16] S. J. Li, Y. W. Zhang, B. B. Sun, Y. L. Hao, R. Yang. Thermal stability and mechanical properties ofnanostructured Ti-24Nb-4Zr-7.9Sn alloy. Materials Science and Engineering A,2008,480(1-2):101-108.
    [17] V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, T. C. Lowe, Y. T. Zhu. Nanostructured TiNi-based shapememory alloys processed by severe plastic deformation. Materials Science and Engineering: A,2005,410-411386-389.
    [18] J. Burow, E. Prokofiev, C. Somsen, J. Frenzel, R. Z. Valiev, G. Eggeler. Martensitic transformationsand functional stability in ultra-fine grained NiTi shape memory alloys. In Materials Science Forum,2008; Vol.584-586PART2,852-857.
    [19] R. Z. Valiev, T. G. Langdon. Developments in the use of ECAP processing for grain refinement.Reviews on Advanced Materials Science,2006,13(1):15-26.
    [20] C. Y. Xie, Z. G. Fan, Z. H. Li, G. Q. Xiang, X. H. Cheng. Effects of high temperature ECAE processon microstructures and martensitic transformation of TiNi shape memory alloy. In Materials ScienceForum,2006; Vol.503-504,1013-1018.
    [21] Z. Fan, C. Xie. Shape memory behavior of Ti-50.9at%Ni alloy after ECAE processes. In MaterialsScience Forum,2007; Vol.561-565,2313-2316.
    [22] A. V. Sergueeva, C. Song, R. Z. Valiev, A. K. Mukherjee. Structure and properties of amorphous andnanocrystalline NiTi prepared by severe plastic deformation and annealing. Materials Science andEngineeringA,2003,339(1-2):159-165.
    [23] W. Xu, X. Wu, M. Calin, M. Stoica, J. Eckert, K. Xia. Formation of an ultrafine-grained structureduring equal-channel angular pressing of a β-titanium alloy with low phase stability. Scripta Materialia,2009,60(11):1012-1015.
    [24] Hong Jiang, Zhiguo Fan, Chaoying Xie.3D finite element simulation of deformation behavior ofCP-Ti and working load during multi-pass equal channel angular extrusion. Materials Science andEngineering:A,2008,485(1-2):409-414.
    [25](俄)Ρ. З.瓦利耶夫И. В.亚力克山卓夫著,林柏年译,.剧烈塑性形变纳米材料.北京:科学出版社,2006
    [26] V. V. Stolyarov, Y. T. Zhu, T. C. Lowe, R. Z. Valiev. Microstructure and properties of pure Tiprocessed by ECAP and cold extrusion. Materials Science and EngineeringA,2001,303(1-2):82-89.
    [27] G. I. Raab, E. P. Soshnikova, R. Z. Valiev. Influence of temperature and hydrostatic pressure duringequal-channel angular pressing on the microstructure of commercial-purity Ti. Materials Science andEngineeringA,2004,387-389(1-2SPEC. ISS.):674-677.
    [28] H. Y. Kim, H. Satoru, J. I. Kim, H. Hosoda, S. Miyazaki. Mechanical properties and shape memorybehavior of Ti-Nb alloys. MATERIALS TRANSACTIONS,2004,45(7):2443-2448.
    [29](日)舟久保熙康编千东范译.形状记忆合金.北京:机械工业出版社,1992
    [30] H. Y. Kim, Y. Ikehara, J. I. Kim, H. Hosoda, S. Miyazaki. Martensitic transformation, shape memoryeffect and superelasticity of Ti-Nb binary alloys. Acta Materialia,2006,54(9):2419-2429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700