用户名: 密码: 验证码:
桃果实絮败和木质化两种冷害症状形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水蜜桃色泽艳丽、香味浓郁、柔软多汁、营养丰富,深受广大消费者喜爱。但水蜜桃属于典型的呼吸跃变型果实,且采收季节多集中于盛夏高温多雨季节,采后呼吸旺盛,后熟软化迅速,极易发生腐烂变质。低温可有效延缓桃果实后熟衰老,但果实在低温下较长时间贮藏时易引起冷害,出现果肉絮败或木质化异常质构,同时伴随着出汁率的减少和果肉褐变,严重影响果实品质。目前虽有研究气调、热处理、1-甲基环丙烯(1-methylcyclopropene,1-MCP)或天然物质处理等减轻桃果实采后冷害的报道,但由于絮败和木质化形成的特点和调控机理还不十分清楚,这些处理的效果不尽一致甚至完全相反。因此在生产实际中仍缺乏有效的桃果实保鲜技术,研究桃果实采后冷害机理和及其控制技术,己成为解决桃果实保鲜问题的关键。本论文以“湖景蜜露”桃果实为试材,在研究果实正常后熟过程中硬度变化和冷害温度下絮败和木质化冷害症状发生规律的基础上,系统研究了絮败和木质化形成过程中细胞壁物质代谢和亚细胞水分分布的变化,同时研究了1-MCP、外源乙烯和热处理对桃果实絮败和木质化的影响及其机理,以阐明桃果实絮败和木质化两种冷害症状的形成特点和调控机理,为桃果实保鲜技术的开发和应用提供依据。研究结果分述如下:
     (1)研究了10-30℃温度下桃果实硬度的变化规律,以此为基础建立温度对桃果实硬度影响的动力学模型。此模型包括两个动力学方程,一个是跃变前期的零级动力学方程,活化能为68.8kJ/mol,另一个为跃变期的一级动力学方程,其活化能为76.9kJ/mol。验证实验中所得的预测值及实测值之间的决定系数为0.995,回归估计标准误为0.567N。所建立的模型在10-30℃范围内对果实硬度的预测具有较高准确性。
     (2)研究了0、3、5和7℃不同贮藏温度和不同成熟度对桃果实冷害的影响。桃果实在冷害低温下贮藏表现出絮败和木质化两种不同的冷害症状。温度越低,桃果实冷害的出现时间越迟。5℃贮藏时桃冷害以絮败为主,成熟度越高,絮败发生越早越严重,0℃贮藏时冷害以木质化为主,成熟度越高,木质化的发生越迟越轻。发生絮败或木质化的果实其出汁率,TSS和TA含量显著降低,从而降低食用品质。
     (3)研究了桃果实在正常后熟软化、絮败和木质化过程中细胞壁物质代谢的变化。正常成熟过程中,果胶甲酯酶(PME)活性下降,外切多聚半乳糖醛酸酶(exo-PG)和内切半乳糖醛酸酶(endo-PG)活性上升,导致大量的Na2CO3溶解性果胶(NSF1)和CDTA溶解性果胶(CSF)降解为水溶性果胶,致使果实后熟软化。5℃贮藏15天转入20℃3d后,桃果实PME活性显著高于正常后熟果实,exo-PG与正常后熟果实相似,endo-PG活性显著低于正常后熟果实。高活性的PME和exo-PG促进果胶降解,但由于endo-PG活性较低,致使果胶降解不充分,果实中CSF显著高于正常后熟果实,从而形成絮败冷害症状。0℃贮藏35天转入20℃3d后,果实PME活性缓慢下降,exo-PG和endo-PG活性仅略微升高,果胶物质不能正常降解;而果实中的苯丙氨酸解氨酶(PAL)和过氧化物酶(POD)活性升高并保持较高水平,木质素含量增加,从而形成木质化冷害症状。这些结果表明絮败产生是由于果胶降解不平衡,而木质化的形成是由于果实丧失后熟性能及木质素的合成。
     (4)采用核磁共振(NMR)技术研究桃果实正常后熟软化、絮败和木质化过程中亚细胞水分分布的变化。桃果实NMR图谱中有4个不同横向驰豫时间T2,分别对应液泡、细胞间、细胞质和细胞壁中的水分。果实正常后熟过程中液泡中水分含量下降,而细胞间水分含量上升,果实出汁率增加。发生絮败时果实液泡中水分向细胞间的水分转移量减少,果实出汁率略微上升,但显著低于正常后熟果实;而发生木质化的果实细胞间水分和出汁率都下降。这些结果表明絮败和木质化果肉干化少汁是由于液泡间水分向细胞间的转移受阻有关,通过NMR技术可以无损检测桃果实絮败或木质化冷害。
     (5)研究了5μl/L 1-MCP和5μl/L外源乙烯处理对桃果实在5℃和0℃贮藏时絮败和木质化的影响。0℃贮藏时桃果实贮藏后期ACC含量和ACC氧化酶(ACO)活性下降,抑制乙烯的释放速率,使果实丧失后熟性能,形成木质化冷害症状;采用1-MCP处理显著抑制了内源乙烯释放速率,加重了果实的木质化;外源乙烯处理提高内源乙烯的产生,减轻果实的木质化。5℃贮藏时ACC含量和ACO活性上升,乙烯释放速率增加,果实可以后熟软化,但形成絮败冷害症状;采用1-MCP处理显著抑制内源乙烯释放速率,减轻絮败的形成;而外源乙烯处理促进了内源乙烯的产生,加重果实的絮败。这些结果表明适量的乙烯是果实正常后熟软化所必需的,乙烯合成受抑会导致木质化发生,而过量的乙烯合成则促进絮败的形成。
     (6)研究了38℃12h热处理对0℃贮藏的桃果实冷害的影响。果实在0℃贮藏后期乙烯释放速率、exo-PG和endo-PG活性以及H2O2含量和O2-产生速率都下降,果实后熟性能丧失,形成木质化冷害症状。热处理促进果实乙烯释放,提高了PME、exo-PG、endo-PG、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性,果实能后熟软化,避免了木质化的形成,却出现了絮败的冷害症状。这些结果表明热处理可以延缓木质化的形成但会促进絮败的发生,这可能与热处理促进内源乙烯的产生和加速果实低温下后熟有关。
Peach fruit (Prunus persica) are very popular for their attractive color, appealing flavor, soft and juicy texture, and rich in nutrient. But peach fruit are very perishable after harvest due to their rapid ripening and softening for high temearature in mid summer and climacteric characteristics. Low temperature can effectively delay ripening and senescence processes, but fruit are susceptible to chilling injury with prolonged storage time. It menifested itself as mealiness, leatheriness, dry or fresh browning. At present, although many technologies such as controlled atmosphere, heat treatment、low temperature conditioning or natural volatile compounds were used to alleviate chilling injury. But for the characteristics and mechanisms of mealiness or leatheriness are unclear, the effects of these technologies are controversial. It is therefore crucial to study the mechanisms and control technologies of chilling injury. Basing on the kinetic of firmness of peach fruit in normal ripening and the effect of chilling temperatures and maturities on chilling injury. The present study was to investigate the differences between mealiness and leatheriness of cell wall metabolisms, subcellular water distribution. And effects of hot air treatment, 1-MCP, exogenous ethylene treatments on mealiness or leatheriness were also studied. The results were as follows:
     (1) Effects of various storage temperatures from 10 to 30℃(283.15 to 303.15 K) on firmness were investigated, and a model for predicting the effects of storage temperature on fruit firmness was developed. The model contained two kinetics, a zero-order kinetic in pre-climacteric stage with the energy activation of 68.8 kJ/mol, and a first-order kinetic in climacteric stage with the energy activation of 76.9 kJ/mol. In validate, the coefficient of determination (R2) and root mean squared error (RMSE) between the predicted and measured firmness were 0.995 and 0.567 N, respectively. The model gave satisfactory predictions of fruit firmness in postharvest peach fruit.
     (2) The chilling injury intensity and symptoms in peach fruit at 0,3,5 and 7℃and effect of maturity on chilling injury at 0,5℃were investigated. Leatheriness and mealiness were two different types of disorders. The lower the temperature, the lower susceptibility. At 0℃, leathereness was the main CI symptom, while at 5℃, mealiness was the main CI symptom. The higher maturity, the earlier mealiness, but the later leatheriness. Juice rate, TSS and TA signinficantly decreased after mealiness or letheriness, and the effect of leathiness was higher than that of mealiness.
     (3) The changes in cell wall pectins and lignin in normally ripening (juicy) and in mealy or leathery peach fruit was investigated. Fruit at 5℃15d plus 3d at 20℃, a higher level of PME, exo-PG and a lower level of endo-PG, and a higher level of CSF and NSF1 and a lower proportion of WSF and NSF2, inducing mealiness symptom. Fruit at 0℃35d plus 3d at 20℃, low exo-PG and endo-PG and higher level of PAL and POD, losing fruit ripening and inducing leatheriness symptoms. These results suggested that mealiness was due to the imbalance of pectin degradation, while leatheriness was due to lack of ripening ability and lignin synthesis.
     (4) Proton NMR relaxation was used to evaluate the changes of water compartments in normal ripening, chilling-injured peach fruit. Four different Proton NMR relaxation times can identify four populations of water with different relaxation characteristics. The observed relaxation times originated from particular water compartments:the vacuole, the extra cellular space, the cytoplasm and the cell wall. The relaxation time distributions during ripening showed that relative area in extra cellular space increase and in vacuole decrease during ripening. Both mealiness and leatheriness decreased water content in extracelluar space. These results suggested that the low water content in extracelluar space cause dry fresh of peach frui, NMR could be used to detect the CI.
     (5) Peach fruit were treated with 5 uL/L 1-MCP or 5 ul/L ethylene at 20℃for 12h, and then stored at 5℃or 0℃to study the effects of ethylene metabolisms on the development of mealiness or leatheriness, respectively. In the later stage at 0℃, ACC content, ACO activity and ethylene production decreased, fruit lost ripening ability and manifested as leatheriness. Exogenous ethylene alleviated leatheriness, while 1-MCP advanced it. Fruit at 0℃, ripen with increase of ethylene production, and manifested as mealiness.1-MCP alleviated mealiness, while exogenous ethylene advance it. These results suggested that endogenous was necessary to fruit ripening, but excess ethylene accelerate the development of mealiness.
     (6) Effect of hot air threatment (HAT) on leateriness of peach fruit stored at 0℃was investigated. The higher PME but low level of exo-PG and endo-PG in the later stage at 0℃, fruit lost ripening ability and manifested as leatheriness. A higher ethylene production, PME, exo-PG and endo-PG activities increased in heat-treated fruit, restored the ripening ability. Exo-PG activities increased but endo-PG decreased, inducing the developmnet of mealiness. These results suggested it may be related with the increase of ethylene after HAT, which have different effects on the development of mealiness or leatheriness.
引文
[1]Adams DO, Yang SF. Ethylne biosynthesis:identification of 1-aminocyclopropane-l-carboxylic acid as an intermediate in the conversion of methionine to ethylene [J]. Proc Natl Acad Sci USA,1979, 76:170-174.
    [2]Antunes MDC, Sfakiotakis, EM. Effect of high temperature stress on ethylene biosynthesis, respiration and ripening of 'Hayward' kiwifruit [J]. Postharvest. Biol Technol.,2000,20:251-259.
    [3]Assis JS, Maldonado R, Munoz T, et al. Effect of high carbon dioxide concentration on PAL activity and phenolic contents in ripening cherimoya fruit [J]. Postharvest Biol Techno.,2001,23:33-39.
    [4]Atta-Aly MA. Effect of high temperature on ethylene biosynthesis by tomato fruit [J]. Postharvest Biol Technol.,1992,2:19-24.
    [5]Barreiro P, Ortiz C, Ruiz-Altisent, M, Ruiz-Cabello J, et al. Mealiness assessment in apples and peaches using MRI techniques [J]. Magnetic Resonance Imaging,2000,18:1175-1181.
    [6]Baucher M, Halpin C, Petit-Conil M, et al. Lignin:genetic engineering and impact on pulping [J]. Crit Rev Biochem Mol Biol.2003,38(4):305-350.
    [7]Bellon V, Cho SI, Krutz GW, et al. Ripeness sensor development based on nuclear magnetic resonance [J]. Food Control,1992,2:45-48.
    [8]Ben-Arie R, Lavee R. Pectin changes occurring in'Elberta'peaches suffering from woolly breakdown [J]. Phytochemistry,1971,10:531-538.
    [9]Biggs MS, Woodson WR, Handa AK. Biochemical basis of high temperature inhibition of ethylene biosynthesis in ripening tomato fruits. Physiol. Plant,1988,72:57-578.
    [10]Blum A. Plant breeding for stress environment [M]. Boca Roton, Florida:CRC Press, Inc,1988, 99-132.
    [11]Blumenkrantz N, Asboe-Hanson G. New method for quantitative determination of uronic acids [J]. Anal. Biochem.1973,17:484-489.
    [12]Boerjan W, Ralph J, Baucher M. Lignin biosynthesis [J]. Annu Rev Plant Biol.2003,54:519-546.
    [13]Bourne MC. Effect of temperature on firmness of raw fruits and vegetables [J]. J. Food Sci,1982, 47:440-444.
    [14]Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem,1976,72:248-254.
    [15]Brodl MR. Regulation of the synthesis of normal cellular proteins during heat shock [J]. Physiol Plant.1989,75:439-443.
    [16]Brovelli EA, Brecht JK, Sherman WB, et al. Anatomical and physiological responses of melting-and nonmelting-flesh peaches to postharvest chilling [J]. Journal of the American Society for Horticultural Science,1998,123:668-674.
    [17]Brummell DA, Harpster MH. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants [J]. Plant Mol. Biol.,2001,47:311-340.
    [18]Cai C, Xu CJ, Li X, Ferguson I, et al. Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest [J]. Postharvest Biology and Technology, 2006,40:163-169.
    [19]Candan AP, Graell J, Larrigudiere C. Roles of climacteric ethylene in the development of chilling injury in plums [J]. Postharvest Biology and Technology,2008,47:107-112.
    [20]Cao SF, Zheng YH, Wang KT, et al. Effect of methyl jasmonate on cell wall modification of loquat fruit in relation to chilling injury after harvest [J]. Food Chemistry.2010,118,641-647.
    [21]Cervilla LM, Rosales MA, Rubio-Wilhelmi MM, et al. Involvement of lignification and membrane permeability in the tomato root response to boron toxicity [J]. Plant Science,2009,176:545-552.
    [22]Cramer CL, Edwards K, Dron M, et al. Phenylalanine ammonia-lyase gene organization and structure [J]. Plant Mol Biol.1989,12:367-383.
    [23]Crisosto CH, Mitchell FG and Ju ZG. Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California [J]. Hortscience,1999,34(6):1116-1118.
    [24]Delwiche MJ, Baumgardner RA. Ground colour as a peach maturity index [J]. Journal of the American Society for Horticultural Science,1985,110,53-57.
    [25]Deytieux-belleau C, Vallet A, Doneche B, et al. Pectin methylesterase and polygalacturonase in the developing grape skin [J]. Plant Physiology and Biochemistry,2008,46:638-646.
    [26]Dhindsa RS. Drought stress, enzymes of glutathione metabolism, oxidation injury and protein synthesis in Tortula ruralis [J]. Plant Physiol,1991,95:648-651.
    [27]Dong L, Lurie S, Zhou, H. Effect of 1-methylcyclopropene on ripening of'Canino'apricots and 'Royal Zee'plums [J]. Postharvest Biol. Technol.,2002,24:135-145.
    [28]Dong L, Zhou HW, Sonego L, et al. Ethylene involvement in the cold storage disorder of'Flavorop' nectarine [J]. Postharvest Biol Technol.,2001,23:105-115.
    [29]Ekstein GJ.1984. A summary of recent research results on woolliness in local nectarines [J]. Decid. Fruit Grower,1984,34:389-392.
    [30]Fan GQ, Zha JW, Du R, et al. Determination of soluble solids and firmness of apples by Vis/NIR transmittance [J]. Journal of Food Engineering,2009,93:416-420.
    [31]Fan X, Argenta L, Mattheis JP. Interactive effective of 1-MCP and temperature on "Elberta" peach quality [J]. HortScience,2002,37:134-138.
    [32]Feng L, Zheng YH, Wang F, et al. Methyl jasmonate reduces chilling injury and maintains postharvest quality in peaches [J]. Agricultural Science in China,2003,2 (11):1246-1252.
    [33]Fernandez-Maculet JC, Yang SF. Extraction and partial characterization of the ethylene-forming enzyme from apple fruit [J]. Plant Physiol,1992,99:751-754.
    [34]Fernandez-Trujillo JP, Artes, F. Keeping quality of cold stored peaches using intermittent warming [J]. Food Research International,1997,30(6):441-450.
    [35]Fernandez-Trujillo JP, Cano A, Artes F. Physiological changes in peaches related to chilling injury and ripening [J]. Postharvest Biol. Technol.,1998,13:109-119.
    [36]Fischer RL, Bennett, AB. Role of cell wall hydrolases in fruit ripening [J]. Ann. Rev. Plant Physiol., 1991,42:675-703.
    [37]Fobel M, Lynch DV, Thompson JE. Membrane deterioration in senescing carnation flowers [J]. Plant Physiol.,1987,85:204-211.
    [38]Fraeye I, Colle I, Vandevenne E, et al. Influence of pectin structure on texture of pectin-calicium gels [J]. Innovative Food Science and Emerging Technologies.2010,11:401-409.
    [39]Gil AM, Belton PS, Hills BP. Applications of NMR to food science [J]. Annuual Reports on NMR Spectroscopy,1996,32:1-49.
    [40]Girardi CL, Corrent AR, Lucchetta L, et al. Effect of ethylene, intermittent warming and controlled atmosphere on postharvest quality and the occurrence of woolliness in peach (Prunus persica cv. Chiripa) during cold storage [J]. Postharvest Biol. Technol.,2005,38:25-33.
    [41]Grabber JH, Ralph J, Lapierre C, et al. Genetic and molecular basis of grass cell-wall degradability. I. Lignin-cell wall matrix interactions [J]. C R Biol.2004,327:455-465.
    [42]Gross KC. A rapid and sensitive spectrophotometric method for assaying polygalacturonase using 2-cyanoacetamide [J]. HortScience,1982,17:933-934.
    [43]Hagerman AE, Austin PJ. Continuous spectrophotometric assay for plant pectin methyl esterase [J]. J Agric.Food Chem,1986,34(3):440-444.
    [44]Haji T, Yaegaki H, Yamaguchi M. Varietal differences in the relationship between maturation characteristics, storage life and ethylene prodution in peach fruit [J]. J. Jpn. Soc. Hortic. Sci.2004, 73:97-104.
    [45]Harding PL, Haller MH. Peach storage with special reference to breakdown [J]. Proc. Am. Soc. Hort. Sci.,1934,32:160-163.
    [46]Harman D. Aging:a theory based on free radical and radiation chemistry [J]. Journal of Gerontology,1956,2:289-300.
    [47]Harker FR, Redgwell RJ, Hallett IC, et al. Texture of fresh fruit. Hort. Rev,1997,20:121-224.
    [48]Hills, BP, Remigereau B. NMR studies of changes in subcellular water compartmentation in parenchyma apple tissue during drying and freezing [J]. International Journal of Food Science and Technology,1997,32:51-61.
    [49]Hoeberichts FA, Van Der Plas LHW, Woltering EJ. Ethylene perception is required for the expression of tomato ripening-related genes and associated physiological changes even at advanced stages of ripening [J]. Postharvest Biology and Technology,2002,26:125-133.
    [50]Hoffman NE, Liu Y, Yang SF. Changes in 1-(malonylamino)cyclopropane-l-carboxylic acid in germinating peanut seeds. Plant Physiol.,1983,71:197-199.
    [51]Hoffman NE, Yang SF, McKeon T. Identification of.1-(malonylamino) cyclopropane-1-carboxylic acid as a major conjugate of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor in higher plants [J]. Biochem Biophys Res Commun,1982,104:765-770.
    [52]Jiang YM. Role of anthocyanins, polyphenol oxidase and phenols in lychee pericarp browning. J Sci Food Agric,2000,80:305-310.
    [53]Jiao XZ, Philosoph-Hadas S, Su SY, et al. The conversion of 1-(malonylamino) cycloprone-1-carboxylic acid to 1-aminocyclopropane-1-carboxylic acid in plant tissues. Plant Physiol,1986,81:637-641.
    [54]Ju ZG, Duan YS, Ju ZQ, et al. Different response of 'Snow Giant' and 'Elegant Lady' peaches to fruit maturity and storage temperature [J]. Journal of Horticultural Science & Biotechnology,2001, 76(5):575-580.
    [55]Ju ZG, Duan YS, Ju ZQ. Leatheriness and mealiness of peaches in relation to fruit maturity and storage temperature [J]. Journal of Horticultural Science & Biotechnology,2000,75(1):86-91.
    [56]Kailasapathy K, Melton LD. Woolliness in stonefruit [J]. Asian Food J.,1992,7:13-16.
    [57]Ketsa S, Chidtragool S, Lurie S. Prestorage heat treatment and poststorage quality of mango fruit [J]. HortScience,2000,35 (2):247-249.
    [58]King GA, Henderson KG, Lill, RE. Ultra structural changes in the nectarine cell wall accompanying ripening and storage in a chilling-resistant and chilling-sensitive cultivar [J]. New Zealand Joural of Crop and Horticultura Science,1989,17,337-344.
    [59]Klein JD, Lurie S. Prestorage heat treatment as a means of impoving poststorage quality of apples [J]. J.Amer.Soc.Hort.Sci,1990,115:165-169.
    [60]Koukol J, Conn EE. The metabolism of aromatic compounds in higher plants. Ⅳ. Purification and properties of the phenylalanine deaminase of Hordeum vulgare [J]. J. Biol. Chem.,1961,236: 2692-2698.
    [61]Lana MM, Tijskens LMM, Kooten OV. Effects of storage temperature and fruit ripening on firmness of fresh cut tomatoes [J]. Postharvest Biol. Technol.2005,35:87-95.
    [62]Lewis NG, Yamamoto E. Lignin:occurrence, biogenesis and biodegradation [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1990,41:455-496.
    [63]Liang XW, Dron M, Cramer CL, et al. Differential regulation of phenylalanine ammonia-lyase genes during plant development and by environmental cues [J]. J Biol chem.,1989,264: 14486-14492.
    [64]Lizada MCC, Yang SF. A simple and sensitive assay for 1-amino-cyclopropane-1-carboxylic acid [J].Anal Biochem.,1979,100:140-145.
    [65]Lleo L, Barreiro P, Ruiz-Altisent M, et al. Multispectral images of peach related to firmness and maturity at harvest [J]. Journal of Food Engineering,2009,93:229-235.
    [66]Logermann E, Parniske M, Hablbrock K. Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley [J]. Pro Nat Acad Sci USA., 1995,92:5905-5909.
    [67]Lois R, Dietrich A, Hahlbrock K, et al. A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cis-acting elements [J]. EMBO J.,1989,8:1641-1648.
    [68]Luo Z. Effect of 1-methylcyclopropene on ripening of postharvest persimmon (Diospyros kaki L.) fruit [J]. LWT-Food Sci. Technol.,2007,40:285-291.
    [69]Luo ZS, Xu XL, Yan BF. Accumulation of lignin and involvement of enzymes in bamboo shoot during storage [J]. Eur Food Res Technol.,2008,226,635-640.
    [70]Lurie S, Crisosto CH. Chilling injury in peach and nectarine [J]. Postharvest Biology and Technology,2005,37:195-208.
    [71]Lurie S, Handros A, Fallik E, et al. Reversible inhibition of tomato fruit gene expression at high temperature effets on tomato fruit ripening [J]. Plant Physiol,1996,110:1207-1214.
    [72]Lurie S, Levin A, Greve C, et al. Pectin polymer changes in nectarines during normal and abnormal ripening [J]. Phytochemistry,1994,36:11-17.
    [83]Lurie S, Klein JD. Acquisition of low temperature tolerance in tomatoes by exposure to high temperature stress [J]. J. Am. Soc. Hortic. Sci.,1991,116:1007-1012.
    [74]Lurie S. Postharvest heat treatments [J]. Postharvest Biology and Technology,1998,14:257-269.
    [75]Luza JG, Van Gorsel R, Polito VS, et al. Chilling injury in peaches:A cytochemical and ultrastructural cell wall study [J]. J. Amer. Soc. Hort. Sci.,1992,117(1):114-118.
    [76]Lyons JM, Chapman EA. Low temperature stress in crop plants:the role of the membrane [M].New York:Academic Press,1979:17-32.
    [77]Lyons JM. Chilling injury in plants [J]. Ann. Rev. Plant Physiol.,1973,20:423-446.
    [78]Manganaris GA. Cell wall physicochemical aspects of peach fruit related to internal breakdown symptoms [J]. Postharvest Biology and Technology,2006,39:69-74.
    [79]Manganaris GA, Vicente AR, Crisosto CH, et al. Effect of delayed storage and continuous ethylene exposure on flesh reddening of 'Royal Diamond' plums [J].2008,88:2180-2185.
    [80]Marigheto NA, Moates GK, Furfaro ME, et al. Characterisation of ripening and pressure-induced changes in tomato pericarp using NMR relaxometry [J]. Applied Magnetic Resonance,2009, 36:35-47.
    [81]Marigheto N, Venturi L, Hills B. Two-dimensional NMR relaxation studies of apple quality. Postharvest Biology and Technology,2008,48:331-340.
    [82]Martinez MV, Whitaker JR. The biochemistry and control of enzymatic browning [J]. Trends in Food Science & Technology,1995,6:195-200.
    [83]Mccord JM, Fridorich I. The utility of superoxide dismutase in studying free radical reaction [J]. Journal of Biological Chemistry,1969,24:6049-6055.
    [84]Miller AR, Kelley TJ. Mechanical stress stimulates peroxidase activity in cucumber fruit [J]. Hortscience,1989,24:650-652.
    [85]Mitchell FG. Influence of cooling and temperature maintenance on the quality of California grown stone fruit [J]. Intern. J. Refrig.1987,10:77-81.
    [86]Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends Plant Sci,2002,7:405-410.
    [87]Murray R, Lucangeli C, Budde GPC. Combined pre-storage heat treatment and controlled atmosphere storage reduced internal breakdown of'Flavorcrest' peach [J]. Postharvest Biology and Technology,44,116-121.
    [88]Musse M, Quellec S, Cambert M, et al. Monitoring the postharvest ripening of tomoto fruit using quantitative MRI and NMR relxometry [J]. Postharvest Biology and Technology,2009,53:22-35.
    [89]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascrobate specific peroxidase in spinach chloroplasts [J]. Plant Cell Physiol.,1989,22:867-880.
    [90]Obenland DM, Carroll TR. Mealiness and pectolytic activity in peaches and nectarines in response to heat treatment and cold storage [J]. J. AMER. SOC. HORT. SCI,125(6):723-728.
    [91]Palou L, Crisosto CH, Garner D, et al. Effect of continuous exposure to exogenous ethylene during cold storage on postharvest decay development and quality attributes of stone fruits and table grapes [J]. Postharvest Biology and Technology,2003,27(3):243-254.
    [92]Pandey S, Tiwari SB, Upadhyaya KC, et al. Calcium signaling linking environmental signal to cellular functions [J]. Critical reviews in Plant Scientists,2000,19 (4):291-318.
    [93]Paull RE, Chen NJ. Heat treatment and fruit ripening [J]. Postharvest Biology and Technology, 2000,21:21-37.
    [94]Pressey R, Avants JK. Separation and characterization of endopolygalacturonase and exopolygalacturonase from peaches [J]. Plant Physiol,1973,52:252-256.
    [95]Purvis AC, Shewfelt RL, Gegogeine JW. Superoxide production by mitochondria isolated from green bell pepper fruit [J]. Physiologia Plantarum.1995,94(4):743-749.
    [96]Raes J, Rohde A, Christensen JH, et al. Genome-wide characterization of the lignification toolbox in Arabidopsis [J]. Plant Physiol.,2003,133:1051-1071.
    [97]Raffo A, Giaferri R, Barbieri R, et al. Ripening of banana fruit monitored by water relaxation and diffusion H-NMR measurements [J]. Food Chemistry,2005,89:149-158.
    [98]Rao MV, Paliyath G, Ormrod DP. Ultraviolet-B- and zone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana [J]. Plant Physiology,1996,110:125-136.
    [99]Rizzolo A, Vanoli M, Eccher ZP, et al. Prediction ability of firmness decay models of nectarines based on the biological shift factor measured by time-resolved reflectance spectroscopy [J]. Postharvest Biol. Technol.,2009,54:131-140.
    [100]Rogers LA, Campbell MM. The genetic control of lignin deposition during plant growth and development [J]. New Phytologist.2004,164:17-30.
    [101]Sabehat A, Lurie S, Weiss D. Expression of small shock proteins at low temperature:a possible role in protecting against chilling injuries [J]. Plant Physiol.1988,117:651-658.
    [102]Saltveit ME, Ochoa O, Campos-Vargas R, et al. Lines of lettuce selected for ethylene insensitivity at the seedling stage displayed variable responses to ethylene or wounding as mature heads [J]. Postharvest Biol Techno.,2003,27:277-283.
    [103]Salveit M, Morris LL. Overview on chilling injury of horticultural crops [M]. In:Wang CY Chilling injury of horticultural crops. USA:CRC press.1990:4-13.
    [104]Schotte S, De Belie N, De Baerdemaeker J. Acoustic impulse-response technique for evaluation and modelling of firmness of tomato fruit [J]. Postharvest Biol. Technol.,1999,17:105-115.
    [105]Shang HT, Cao SF, Yang ZF, et al. Effect of exogenous γ-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. Agricultural and Food Chemistry,2011,59:1264-1268.
    [106]Snaar JEM, Van As H. Probing water compartments and membrane permeability in plant cell by 1H NMR relaxation measurements. Biophysical Society,1992,63:1654-1658.
    [107]Sonego L, Ben-Arie R, Raynal J, et al. Biochemical and physical evaluation of textural characteristics of nectarines exhibiting woolly breakdown:NMR imaging, X-ray, computed tomography and pectin composition [J]. Postharest biology and Technology.1995,5(3):187-198.
    [108]Theologis A. One rotten apple spoils the whole bushel:The role of ethylene in fruit ripening [J]. Cell 1992,70:181-184.
    [109]Tijskens LMM. Texture of Golden Delicious apples during storage[J]. Leb.Wis.-Technol.,1979, 12,138-142.
    [110]Tijskens LMM, VAN Schaik ACR, Hertog MLAT, et al. Modelling the firmness of'Elstar' apples during storage and transport. Acta Hort,1999,485:363-372.
    [112]Tijskens LMM, Venltman RH, Heuvelink E, et al. Modelling postharvest quality behaviour as affected by preharvest conditions. Acta Hort,2002,599:469-477.
    [113]Van Dijk C, Boeriu C, Peter F, et al. The firmness of stored tomatoes (cv. Tradiro).1. Kinetic and near infrared models to describe firmness and moisture loss [J]. Journal of Food Engineering.2006, 77:575-584
    [114]Van Dijk C, Boeriu C, Stolle-Smits T, et al. The firmness of stored tomatoes (cv. Tradiro).2. Kinetic and Near Infrared models to describe pectin degrading enzymes and firmness loss [J]. Journal of Food Engineering,2006,77:585-593.
    [115]Vaughn KC, Lax AR, Duke SO. Polyphenol oxidase:the chloroplast oxidase with no established function [J]. Physiologia Plantarum,1988,72(3):659-665.
    [116]Vicente AR, Costa LM, Martinez GA. Effect of heat treatments on cell wall degradation and softening in strawberry fruit [J]. Postharvest Biol. Techol.,2005,38:213-222.
    [117]Von Mollendorff LJ, De Villiers OT. Role of pectolytic enrymes in the development of wooliness in peaches [J]. Horticultural Science,1988,63 (1):53-58.
    [118]Wang CY. Approaches to reduce chilling injury of fruits and vegetables. Hort. REV.,1993,15: 63-95.
    [119]Wang CY. Approaches to reduce chilling injury of fruits and vegetables [J]. Horticulture Review, 1993,15:63-95.
    [120]Wang CY. Physiological and biochemical response of plant to chilling stress [J]. Hortscience,1982, 17:173-187.
    [121]Wang LJ. Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage [J]. Postharvest Biology and Technology, 2006,41:244-251.
    [122]Wanner LA, Li G, Ware D, et al. The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana [J]. Plant Mol Biol.,1995,27:327-338.
    [123]Wang YS, Tian SP, Xu Y, et al. Changes in the activities of pro-and anti-oxidant enzymes in peach fruit inoculated with Cryptococcus laurentu or Penicillium expansum at 0 or 20 ℃ [J]. Postharvest Biology and Technology,2004,34(4):21-28.
    [124]Wen PF, Chen JY, Kong WF, et al. Salicylic acid induced the expression of phenylalanine ammonia-lyase gene in grape berry [J]. Plant Sci.2005,169:928-934.
    [125]Werner RA, Frenkel C. Rapid changes in the firmness of peaches as influenced by temperature. HortiScience,1978,13(4):470-471.
    [126]Whetten R, SederoffR. Lignin Biosynthesis [J]. Plant Cell.1995,7(7):1001-1013.
    [127]Woolf AB, Watkins CB, Bowen JH, et al. Reducing external chilling injury in stored'Hass' avocados with dry heat treatments [J]. Journal of the American Society for Horticultural Science, 1995,120(6):1050-1056.
    [128]Yahia EM, Soto-zamora G, Brecht JK, et al. Postharvest hot air treatment effects on the antioxidant system in stored mature-green tomatoes. Postharvest Biology and Technology,2007,44:107-115.
    [129]Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants [J]. Annu Rev Plant Physiol,1984,35:155-189.
    [130]Yang SF. Regulation of ethylene biosynthesis [J]. Hortscience,1980,15:238-243.
    [131]Yoshioka H. Hayama H, Tatsuki M, et al. Cell wall modification during development of mealy texture in the stony-hard peach "Odoroki" treated with propylene [J]. Postharvest Biology and Technology,2000,55:1-7.
    [132]Zheng XL, Tian SP, Meng XH, et al. Physiological and biochemical responses in peach fruit to oxalic acid treatment during storage at room temperature [J]. Food Chem.,2007,104:156-162.
    [133]Zheng YH, Li SY, Xi YF. Changes of cell wall substances in relation to flesh woodiness in cold-stored loquat fruits [J]. Acta Phytophysiol Sin,2000,26:306-310.
    [134]Zhou HW, Ben-Arie R, Lurie S. Pectin esterase, polygalacturonase and gel formation in peach pectin fractions. Phytochemistry,2000,55:191-195.
    [135]Zhou HW, Dong L, Ben Arie R, et al. The role of ethylene in the prevention of chilling injury in nectarines [J]. Plant Physiol.,2001,158:55-61.
    [136]Zhou HW, Lurie S, Ler A, et al. Delayed storage and controlled atmosphere storage of nectarines: two strategies to prevent woolliness [J]. Postharvest Biology and Technology,2000,18(2): 133-141.
    [137]曹锡清.膜脂过氧化对细胞与机体的作用[J].生物化学与生物物理进展,1986,2.
    [138]常军,张平,王莉,等.1-MCP对青州蜜桃冷藏期间某些生理指标的影响[J].植物生理学通讯,2003,39:613-615.
    [139]陈发河,张唯一,吴光斌.变温处理后甜椒果实对低温胁迫的生理反应[J].园艺学报,1994,21(4):351-356.
    [140]窦世娟,陈昆松,吕均良,等.采后黄花梨果实中丙二烯氧合酶的生理功能[J].植物生理与分子生物学学报,2002,28(2):105-110.
    [141]冯磊,郑永华,汪峰,等.茉莉酸甲酯处理对冷藏水蜜桃品质的影响[J].食品科学,2003,9:135-139.
    [142]宫明波.寒露蜜桃采后呼吸变化规律[J].北方园艺,2000,(1):29-30.
    [143]关军锋.采后鸭梨果肉和果心中氧化酶活性与过氧化物含量的变化[J].植物生理学通讯,1994,30(2):91-93.
    [144]关军锋.苹果果实衰老与活性氧代谢的关系[J].园艺学报.,1996,23(4):326-329.
    [145]黄持都,陈计峦,胡小松,等.光对采后果蔬叶绿素降解动力学研究[J].农业工程学报,2008,24(10):233-238.
    [146]黄晓钰,康德妹,季作梁.荔枝果实的冷藏适温与冷害[J].华南农业大学学报,1990,11(3):13-18.
    [147]胡小松.桃采后呼吸和乙烯释放规律及多效唑的影响[J].北京农业大学学报,1993,19(1):53-59.
    [148]李丽萍,韩涛,常宁.热击处理对桃贮藏中硬度、果胶及果胶酶的影响[J]。西北农业学报,1996,6(1):96
    [149]李丽萍,韩涛.热处理条件对番茄采后冷害的影响[J].农业工程学报,1996,12(004):189-193.
    [150]林植芳,李双顺,林桂珠,等.衰老叶片和叶绿体中H202的累积与膜脂过氧化的关系[J].植物生理学报,1988,14(1):16-22.
    [151]吕昌文,修德仁,齐灵.桃的采后生理研究及其探讨[J].天津农业科学,1993,2:14-16.
    [152]罗云波.脂氧合酶与番茄采后成熟的关系[J].园艺学报,1994,21(4):357-360.
    [153]宫明波.寒露蜜桃采后呼吸变化规律[J].北方园艺,2000,(1):29-30.
    [154]茅林春,张上隆.果胶酶与桃果实冷害的关系[J].植物生理学通讯,2000,36(3):266-271.
    [155]茅林春,张上隆.果胶酶和纤维素酶在桃果实成熟和絮败中的作用[J].园艺学报,2001,28(2):107-111.
    [156]孟雪雁,岑涛.桃低温贮藏中生理变化与冷害发生的关系[J].山西农业大学学报.2001,21(3):268-270.
    [157]潘永贵,李正国.变温处理对黄瓜果实生物膜保护系统的影响[J].热带作物学报,2003,24(2):30-33.
    [158]乔勇进,冯双庆,赵玉梅.热处理对黄瓜贮藏冷害及生理生化的影响[J].中国农业大学学报,2003,8(001):71-74.
    [159]邵兴锋,屠康,赵艺泽,等.中途加温和延期贮藏对“白凤2号”桃冷藏效果的影响.吉林农业大学学报,2006,28(1):98-102.
    [160]沈成国,植物衰老生理与分子生物学[M],北京:中国农业出版之社,2002,8-15.
    [161]田世平,徐勇,姜爱丽.冬雪蜜桃在气调冷藏期间品质及相关酶活性的变化[J].中国农业科学,2001,34:656-661.
    [162]肖红梅,王薛修.钙处理对桃采后生理和贮藏品质的影响[J].南京农业大学学报,1996,19:122-129.
    [163]王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系[J].植物生理学通迅,1990,6:55-57.
    [164]王爱国,邵从华,罗广华.丙二苯醛作为植物脂质过氧化指标的探讨[J].植物生理学通讯,1986,2:55-57.
    [165]王贵禧,王友升,梁丽松.不同贮藏温度模式下大久保桃果实冷害及其品质劣变研究[J].林业科学研究,2005,18(2):114-119.
    [166]王洪春.植物抗逆性与生物膜结构功能研究进展[J].植物生理学通讯,1985,(1):60-66.
    [167]汪琳,应铁进.番茄果实采后贮藏过程中的颜色动力学模型及其应用[J].2001,17(3):118-119.
    [168]王阳光,陆胜明,茅林春,热处理对冷藏桃果实的贮藏效果和生理作用[J].福建果树.2002,117(3):1-4
    [169]魏建华,宋艳茹.木质素生物合成途径及调控的研究进展.植物学报.2001,43(8):771-779.
    [170]杨剑平,郝玉兰,韩涛.钙和热加钙处理对桃冷藏期间过氧化氢清除系统的作用[J].北京农学院学报,1996,11:34-39.
    [171]于建娜,任小林,张少颖.1-MCP处理对桃冷藏期品质和生理特性的影响[J].西北农林科技大学学报2003,31:101-104.
    [172]周涛,许时婴,王璋等.热激处理及贮藏温度对水蜜桃果实生理生化变化的影响[J].中国南方果树,2003,32:39-44.
    [173]周培根,罗祖友.桃成熟期间果实软化与果胶及其有关酶的关系[J].南京农业大学学报,1991,14(2):33-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700