用户名: 密码: 验证码:
高温后钢筋混凝土梁性能退化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济高速发展和城市化步伐的加快,意外引起的火灾导致建筑物破坏和人员伤亡时有发生。建筑物发生火灾后,结构的力学性能如何变化一直是研究人员普遍关注的热点问题。近年来,国内外发表了许多有关高温下的混凝土与钢筋混凝土结构的研究成果,主要集中于建筑物在大火侵袭下,结构内部温度和结构挠度、内力等随时间的变化,并获得了很多有价值的研究结论。但由于火灾对建筑物的影响因素十分复杂,这些问题至今还没有得到很好的解决。
     本文主要做了以下的研究工作:
     一、通过高温后混凝土试块的抗压试验研究,得出了高温后混凝土抗压强度与受火温度、受火时间、冷却方式等影响因素的关系,并依此给出了火灾强度损失标准。
     二、通过高温后混凝土试块的碳化性能试验研究,得出了高温后混凝土碳化性能与受火温度、受火时间、冷却方式等影响因素的关系,为火灾后混凝土结构进行耐久性能的评估提供了指导依据。
     三、通过高温后RC梁的抗弯性能试验,研究了各高温影响因素对梁抗弯承载力的影响,归纳了温度裂缝和荷载裂缝的发展规律及相互关系,并验证了平截面假定的适用性。
     四、运用ANSYS有限元分析软件分析了不同高温工况下的温度场分布,采用等效截面缩减法计算了高温后RC梁的剩余承载力,与试验结果吻合良好。
With fast economic development and rapid city growth, fire accidents may take place which results in building destruction and personal casualties. It is a topic of general interest that how the mechanic performance of the structure has changed after the building fire. Many investigations on the high temperature behavior of concrete have been reported and a lot of valuable research findings is received, which focused on the continual changes of structural temperature, deflection and interior force after exposure to fire. However, the effects of fire on building are rather complicated and still unsolved so far.
     In this paper, the following research works are done:
     (1) The relationship between compressive strength of concrete and the influence factors such as different temperature, different time and refrigeration mode is obtained based on the experiment of concrete block, and classification standards of fire is proposed.
     (2) The carbonation depth of concrete after high temperature is studied based on the experiment of concrete block, and the relationship between carbonation depth and the influence factors such as different temperature, different time and refrigeration mode is obtained, and the guidance to the assessment of the durability of concrete structures after fire is provided.
     (3) The residual load-carrying capacity of RC beams after high temperature is studied based on the experiment. The effects of influence factors to residual load-carrying capacity is researched, and the relationship and development law of temperature crack and load crack is summarized. In addition, applicability of the plane section assumption is verified.
     (4) The temperature field of different temperature condition is obtained based on ANSYS, a finite element analysis software. And the residual load-carrying capacity of RC beams after high temperature is calculated by equivalent cross-section reduced method, which is well coincided with the experimental results.
引文
[1]Lea FC. The effect of temperature on some of the properties of materials[J]. Engineering,1920, Aug:293~298.
    [2]Mohamedbhai, G.T.G. Effect of exposure time and rates of heating and cooling on residual strength of heated concrete[J]. Magazine of Concrete Research,1986, 38(9):151~158.
    [3]Sullivan, P.J.E, Khoury, G.A. and Grainger, B.N. Apparatus for measuring the transient thermal strain behavior of unsealed concrete under constant load for temperatures up to 700℃[J]. Magazine of concrete Research,1983,35(125): 229~236.
    [4]Khoury, G.A., Grainger, B.N. and Sullivan, P.J.E. Strain of concrete during first heating to 600℃ under load[J]. Magazine of concrete Research,1985,37(133): 195~215.
    [5]Cabriel A. Khoury Brain N. Grainger and Patrick J.E.Sullivan. Strain of concrete during first cooling from 600℃ under load[J]. Magazine of concrete Research, 1986,38, No.134:3~12.
    [6]G.A.Koury,C.E.Majorana,F.Pesavento and B.A.Schrefler. Modelling of heated concrete[J].Magazine of Concrete Research,2002,54(2):77~101.
    [7]J.Papayianni, T.Valiasis. Residual mechanical properties of heated concrete incorporation different pozzolanic materials[J]. Materials and structures,1991, 24:115~121.
    [8]W.M.Lin, T.D.Lin, L.J.Powers-Couche, Microstructures of fire-damaged concrete [J]. ACI material.1996,93(3):199~205.
    [9]B.Georgali, P.E.Tsakiridis.Microstructure of fire-damaged concrete[J]. A case study. Cement & concrete Composites.2005,27:255~259.
    [10]Chih-Huang Chiang, Cho-Liang Tsai. Time-temperature analysis of bond strength of a rebar after fire exposure[J]. Cement and concrete research,2003, 33:1651~1654.
    [11]Chi-sun poon, Salman Azhar, Mike Anson, Yuk-Lung Wong. Strength and durability recovery of fire-damaged concrete after post-fire-curing[J]. Cement and Concrete Research,2001,31:1307~1318.
    [12]Jian zhuang Xiao, Gert Konig.Study on concrete at high temperature in China-an overview [J]. Fire Safety Journal.2004, (39):89~103.
    [13]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2003.
    [14]李卫,过镇海.高温下混凝土的强度和变形性能的试验研究[J].建筑结构学报,1993,14(1):8~16.
    [15]时旭东,过镇海.高温下钢筋混凝土受力性能的试验研究[J].土木工程学报,2000,33(6):6~16.
    [16]覃丽坤,宋玉普,王玉杰,张众,于长江.高温对混凝土力学性能影响的试验研究[J].混凝土,2004,(5):9~11.
    [17]王孔藩,许清风,刘挺林.高温下及高温冷却后混凝土力学性能的试验研究[J].施工技术,2005,34(8):1~3.
    [18]贾艳东,田傲霜,张斌,许传矗,李季.不同时间高温后混凝土性能的试验研究[J].辽宁工程技术大学学报,2006,25(6):864~866.
    [19]张素梅.高温冷却后混凝土材料的力学性能研究[J].商品混凝土,2009,10:40~41.
    [20]侯高峰,韦军.高温后不同强度等级混凝土力学性能的试验研究[J].研究探索,2010,28(3):68~70.
    [21]吕天启.高温后混凝土静置性能的试验研究及已有建筑物的防火安全评估[D].大连理工大学工学博士学位论文,2002,7.
    [22]余江滔.火灾后混凝土构件损伤评估的试验及理论研究[D].同济大学工学博士学位论文,2007,2.
    [23]陈磊,李彬,滕桃居,陈太林.混凝土高温力学性能分析[J].混凝土,2003(7):26~28.
    [24]阎慧群.高温(火灾)作用后混凝土材料力学性能研究[D].四川大学,2004.
    [25]阎继红.高温作用下混凝土材料性能试验研究及框架结构性能分析[D].天津大学,2000.
    [26]吕天启,赵国藩,林志伸.高温后静置混凝土力学性能试验研究[J].建筑结构学报,2004,25(1):63~70.
    [27]陈磊,李彬,滕桃居,等.混凝土高温力学性能分析[J].混凝土,2003,7(7):26-28.
    [28]安然,王清远,阎慧群,等.高温后混凝土力学性能研究[J].四川建筑,2005,26(6):69~72.
    [29]阎慧群.高温(火灾)作用后混凝土材料力学性能研究[D].四川大学,2004.
    [30]陈丽红.不同温度作用后混凝土强度变化规律的研究[J].四川建筑科学研究,2007,33(5):118~121.
    [31]阎继红,林志伸,胡云昌.高温作用后混凝土抗压强度的试验研究[J].土木工程学报,2002,35(5):17~19.
    [32]逄靖华,陆洲导,袁廷朋,王军峰.混凝土高温试验及高温后抗压残余强度研究[J].四川建筑科学研究,2007,33(3):71~73.
    [33]徐或,徐志胜.高温作用后混凝土强度试验研究[J].混凝土,2000(2):44~45.
    [34]朱玛,徐志胜,徐或.高温作用后混凝土强度试验研究[J].湘潭矿业学院学报,2000,15(6):70~72.
    [35]贾福萍,吕恒林,崔艳莉,渠艳艳,王永春.不同冷却方式对高温后混凝土性能退化研究[J].中国矿业大学学报,2009,38(1):25~29.
    [36]余志刚,韩西,钟厉,杨明理.混凝土的温度时效研究[J].重庆交通大学学报,2008,27(1):77~79.
    [37]马保国,穆松,张风臣,王信刚,高英力,王耀城.高温下高强高性能混凝土性能劣化的表征方法[J].铁道科学与工程学报,2007,4(5):40~44.
    [38]阎继红.高温作用下混凝土材料性能试验研究及框架结构性能分析[D].天津大学博士学位论文,2000.12.
    [39]陆洲导.钢筋混凝土梁对火灾反应的研究[D].清华大学博士学位论文,1989.6.
    [40]杨建平.高温下钢筋砼压弯构件的试验研究和理论分析及实用计算[D].清华大学博士学位论文,2000.6.
    [41]金祖权,孙伟,侯保荣,蒋金洋.混凝土的高温变形与微结构演化[J].东南大学学报,2010,40(3):619~623.
    [42]李卫,过镇海.混凝土在高温和应力先后作用下的性能试验[C]//蔡绍怀.混凝土结构基本理论及应用—第二届学术讨论会论文集.北京:清华大学出版社,1990:139~146.
    [43]吕天启,赵国藩,林志伸,岳清瑞.高温后静置混凝土的微观分析[J].建筑材料学报,2003,6(2):135~141.
    [44]谢狄敏,金贤玉.高温作用后混凝土抗拉强度与粘结强度的试验研究[J].浙江大学学报,1998.8.
    [45]谢狄敏,钱在兹.高温(明火)作用后混凝土强度和变形试验研究[J].《工程力学》增刊,1996.
    [46]李卫,过镇海.高温下混凝土的强度和变形性能试验研究[J].建筑结构学报,1993.2.
    [47]金贤玉,钱在兹.混凝士受高温作用的破坏机理,第三届全国结构工程学术会议论文集,1994.
    [48]金贤玉,钱在兹,金南国.混凝土受火时温度分布的试验研究[J].浙江大学学报,1996,30(3):286~293.
    [49]韩玉来,王振清,王永军,白丽丽.火灾场钢筋混凝土简支梁抗弯性能分析[J].海军工程大学学报,2007,19(1):76~80.
    [50]张焱,徐志胜.CFRP加固火灾损伤后钢筋混凝土梁抗弯性能试验研究[J].西安建筑科技大学学报,2008,40(1):40~45.
    [51]陆洲导,朱伯龙,周跃华.钢筋混凝土简支梁对火灾反应的试验研究[J].土木工程学报,1993,26(3):47~53.
    [52]陆洲导,朱伯龙.用有限元法分析预测混凝土梁的耐火性能[J].工程力学,1996,(A02):19~23.
    [53]贺军利.钢筋混凝土简支梁耐火数值计算的新方法[J].哈尔滨建筑大学学报,2009,38(1):25~29.
    [54]贾福萍,吕恒林等.不同冷却方式对高温后混凝土性能退化研究[J].中国矿业大学学报,2003.
    [55]牛荻涛等.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.
    [56]中华人民共和国国家标准.《普通混凝土长期性能和耐久性能试验方法》(GBJ82—85).北京:中国建筑工业出版社,198.
    [57]姜封国,陈辉,白丽丽.火灾后钢筋混凝土梁剩余承载力的分析与计算[J].混凝土,2008(2):57~59.
    [58]江见鲸,徐至胜等.防灾减灾工程学[M].北京:机械工业出版社2005(1):75~80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700