用户名: 密码: 验证码:
黔西北铜污染草地施肥对贵州半细毛羊铜代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了评价草地铜污染对贵州半细毛羊铜代谢的影响,我们在西南喀斯特山区的威宁县铜污染草地开展施肥、矿物质元素补充研究,探讨Cu污染草地的合理利用技术和方法。
     1.施肥研究结果表明:Cu污染草地土壤和牧草的Cu含量极显著高于参考值。施氮肥极显著增加了施肥牧场牧草N的含量,但不同的施肥量处理问差异不显著。施硫肥显著增加了牧草Mn、Zn、N和S的含量,显著降低了牧草Se的含量,但施肥处理间差异不显著。施钼肥显著增加了牧草Mo和N元素的含量,施肥处理间差异不显著。硫肥和钼肥混合使用显著增加了牧草Mn、Zn、Mo、N和S的含量,显著降低了牧草Se的含量,施肥处理问差异不显著。
     2.放牧研究结果表明:在施氮肥草地放牧的贵州半细毛羊血液和肝脏Cu含量极显著高于参考值,Mo含量极显著低于参考值,其它元素无显著影响;施氮肥对血液生化酶活力无显著影响,但血液谷胱甘肽过氧化物酶(GSH-Px)、过氧化氢酶(CAT)、超氧化物歧化酶(SOD)的活力极显著低于参考值,血液苯二醛(MDA)和铜蓝蛋白(Cp)含量显著高于参考值;施氮肥对血液指标无显著影响,但血红蛋白(Hb)的含量、红细胞(RBC)、平均血细胞体积(MCV)和平均血红蛋白浓度(MCHC)极显著低于参考值,在试验结束时,试验动物出现溶血性贫血。在施硫肥草地放牧的贵州半细毛羊血液和肝脏Cu含量显著极显著低于未施肥对照;血液和肝脏Mn和Zn含量极显著高于参考值和未施肥对照;血液和肝脏Se和Mo含量极显著低于参考值和未施肥对照;血液SOD、CAT和GSH-Px的活力显著高于参考值和未施肥对照;血液Cp和MDA的含量极显著低于未施肥对照;血液肌酸磷酸激酶(CPK)和谷草转氨酶(GOT)的活力极显著低于参考值和未施肥对照,不同施肥量间差异不显著;Hb含量和红细胞比积(PCV)极显著高于未施肥对照;MCV、平均红细胞血红蛋白量(MCH)和MCHC均显著低于参考值,试验结束时,未施肥牧场贵州半细毛羊存在溶血性贫血。在钼肥草地放牧的贵州半细毛羊血液和肝脏Cu含量极显著低于未施肥对照。血液和肝脏Mo元素的含量极显著高于未施肥对照;血液SOD、CAT和GSH-Px活力均极显著高于未施肥对照;血液Cp和MDA的含量极显著低于未施肥对照;血液CPK和GOT活力极显著低于未施肥对照;Hb含量极显著高于未施肥对照;在试验结束时,未施肥牧场贵州半细毛羊存在溶血性贫血。在硫和钼混合施肥草地放牧的贵州半细毛羊血液和肝脏Cu含量极显著低于未施肥对照;血液和肝脏Mn、Zn、Mo含量极显著高于参考值和未施肥对照;血液和肝脏Se含量极显著低于参考值和未施肥对照;血液SOD、GSH-Px和CAT活力极显著高于未施肥对照;血液CPK和GOT活力极显著低于未施肥对照;血液Cp、MDA含量极显著低于未施肥对照;Hb含量和PCV极显著高于未施肥对照;在试验结束时,未施肥牧场贵州半细毛羊存在溶血性贫血。。
     3.矿物质元素补充实验结果表明:补充S元素和Mo元素极显著降低了贵州半细毛羊血液和肝脏Cu元素的含量,但S元素和Mo元素联合应用效果显著好于单独应用。
     结论:S和Mo能显著影响贵州半细毛羊的Cu代谢,通过施肥和矿物质元素补充等手段能显著改变土壤和牧草中其他矿物质元素的含量,减轻铜污染草地对贵州半细毛羊的影响。
To assess the impact of fertilization treatment on copper element metabolism in Guizhou semi-fine wool sheep, and find an action plan to solve copper pollution, three studies(the fertilizing study、grazing study、the supplementing mineral study) were conducted on copper pollution pasture area in Weining County during the summer grazing season.
     1. In the fertilizing studies, the results showed that N concentrations in forage greatly increase in pastures with N fertilizer. There were not great differences among N fertilization treatment.
     Concentrations of Mn element, Zn element, N element and S elements in forage greatly increase in pastures with S fertilizer, concentrations of Se elements in forage greatly decrease in pastures with S fertilizer. There were not great differences among S fertilization treatment.
     Concentrations of Mo element and N element in forage greatly increase in pastures with Mo fertilizer. There were not great differences among Mo fertilization treatment. Mo element, S element and N element in forage greatly increase in pastures with Mo fertilizer and S fertilizer.
     Contents of Se element in forage greatly decrease in pastures with Mo and S fertilizer. There were not great differences among Mo and S treatment. Nomonal increases in forage IVOMD were realized by fertilization. Contents Cu element in soil and forage in Cu pollution meadow are greatly hight than reference value.
     2. In grazing studies:from pastures with N fertilizer, contents Cu elements in blood and liver of Guizhou semi-fine wool sheep are greatly higher than reference value. Contents of Mo elements in blood and liver of Guizhou semi-fine wool sheep are greatly lower than reference value. There were not great differences among other element. SOD, GSH-Px and CAT activitiy in blood of Guizhou semi-fine wool sheep are greatly lower than reference value. Cp and MDA contents in blood of Guizhou semi-fine wool sheep are greatly lower than reference value. Hb content, RBC, MCV and MCHC in Guizhou semi-fine wool sheep are greatly lower than reference value. Hemolytic anemia is seen in Guizhou semi-fine wool sheep from experimental pasture in the end of studies.
     From pastures with S fertilizer, contents of Cu element in blood and liver of Guizhou semi-fine wool sheep are greatly lower than not fertilized control (NFC). Contents of Mn element and Zn element in blood and liver of Guizhou semi-fine wool sheep are greatly higher than NFC and reference value. Contents of Se and Mo element in blood and liver of Guizhou semi-fine wool sheep are greatly lower than NFC and reference value. SOD, GSH-Px and CAT activity in blood of Guizhou semi-fine wool sheep are greatly higher than NFC. Cp and MDA contents in blood of Guizhou semi-fine wool sheep are greatly lower than NFC. CPK and GOT activity in blood of Guizhou semi-fine wool sheep are greatly lower than NFC. Hb content and PCV from Guizhou semi-fine wool sheep are greatly higher than NFC. Hemolytic anemia is seen in Guizhou semi-fine wool sheep from treatment IV pasture in the end of studies.
     From pastures with Mo fertilizer, contents of Cu elements in blood and liver of Guizhou semi-fine wool sheep are greatly lower than NFC. Contents Mo element in blood and liver of Guizhou semi-fine wool sheep are greatly lower than NFC. Contents of Mo elements in liver of Guizhou semi-fine wool sheep are greatly higher than NFC and reference value. SOD, GSH-Px and CAT activity in blood of Guizhou semi-fine wool sheep are greatly higher than NFC. Cp and MDA contents in blood of Guizhou semi-fine wool sheep are greatly lower than NFC. CPK and GOT activity in blood of Guizhou semi-fine wool sheep are greatly lower than NFC. Hb content from Guizhou semi-fine wool sheep are greatly higher than NFC. PCV from Guizhou semi-fine wool sheep are greatly higher than NFC. Hemolytic anemia is seen in Guizhou semi-fine wool sheep from NFC pasture in the end of studies.
     From pastures with S and Mo fertilizer, contents of Cu elements in blood and liver of Guizhou semi-fine wool sheep are greatly lower than NFC. Contents Mn, Zn and Mo elements in blood and liver of Guizhou semi-fine wool sheep are greatly higher than NFC and reference value. Contents of Se element in blood and liver of Guizhou semi-fine wool sheep are greatly lower than NFC and reference value. SOD, GSH-Px and CAT activity in blood of Guizhou semi-fine wool sheep are greatly higher than NFC. CPK and GOT activity in blood of Guizhou semi-fine wool sheep are greatly lower than NFC. Cp and MDA contents of Guizhou semi-fine wool sheep are greatly lower than NFC. Hb content and PCV are greatly higher than NFC. Hemolytic anemia is seen in Guizhou semi-fine wool sheep from NFC pasture in the end of studies.
     3. In the supplementing mineral studies, supplementing S element, Mo element and Cu element from blood and liver of Guizhou semi-fine wool sheep greatly decrease but Contents Cu elements in blood and liver from Guizhou semi-fine wool sheep supplementing S element and Mo element are greatly higher than those from animals supplementing S element or Mo element.
     Conclusion: S element and Mo element in forage can greatly affect copper element metabolism in Guizhou semi-fine wool sheep. We are able to rational utilization of copper pollution pastures by change of S element and Mo element contents in soil and forage and grazing Guizhou semi-fine wool sheep.
引文
[1]Abrhams, M. V., Dill, L. M. A determination of the energetic equivalence of the risk of predation [J]. Ecology.1989,70:999-1007.
    [2]Arthington, J D., Rechcigl J E, Yost G P, McDowell L R, Fanning M D. Effect of ammonium sulfate fertilization on bahiagrass quality and copper metabolism in grazing beef cattle [J]. Journal of Animal Science.2002,80:2507-2512.
    [3]Arthur, J. R. Effects of selenium and Vitamin E status on plasma creatine kinase activity in calves. [J] Journal of Nutrition.1998,118:747-755.
    [4]Barton, J., Hurtig, M., and Green. S. The role of copper in developmental orthopaedic disease in foals. Highlights of Agricultural and Food Research in ontaria. University of Guelph, Guecph.1991,3:14-18.
    [5]Batzli, G. O., Ptelka, F. A. Condition and diet of cycling populations of the California vole (Microtus califirbucys) [J]. Journal of Mammalogy.1971,52:141-163.
    [6]Bazely, D. K., Jeffries, R. C. Changes in composition and standing crops of salt marsh communities in response to removal of a grazer[J]. Journal of Ecology.1986,74:631-736.
    [7]Belovsky, G. F. Optimel foraging and community structure implications for a guild of generalist grassland herbivore [J]. Oecologia.1981,70:35-52.
    [8]Berger, P. J. Phenolic plant compounds functioning as reproductive inhibitor in Microtus montanus [J]. Science.1977,195:575-577.
    [9]Besnard E, Chenu C, Robert M. Influence of organic amendments on copper distribution among particle-size and density fractions in Champagne vineyard soils [J] Environmental Pollution.2001,132:329-337.
    [10]Bramley, R. G. V. Cadmium in New Zealand agriculture [J]. New Zealand Journal of Agricultural Research.1990,33:505-519.
    [11]Bremner, I., Humphries, W. R., Phillippo, M., Walker, M. J., Morrice, P. C. Iron-induced copper deficiency in calves [J]. Animal Production.1987,45:403-414.
    [12]Brewe, N.R. Comparative metabolism of Cu [J]. Journal of the American Veterinary Medical Association.1987,190:654-658.
    [13]Brown, J. H. Granivory in desert ecosystem [J]. Annals Reviews Ecology Systematics.1979, 10:201-207
    [14]Bruce, D. E. Stephen, H. J. Food selection by ground squirrels in relation to plant nutritional features [J]. Journal of Mammalogy.1989,70:846-852.
    [15]Brun L A, Maillet J, Hinsinger P, et al. Evaluation of copper availability to plants in copper-contaminated vineyard soils[J]. Environmental Pollution.2001,111:293-302.
    [16]Bryant, J. P., Kuropat, P. J. Selection of winter forage by subarctic browsing vertebrates: Role of plant chemistry[J]. Annals Reviews Ecology Systematics.1980,11:261-285.
    [17]Burdon, R.H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation [J]. Free Radical Biology Medine.1995,18 (4):775-794.
    [18]Burridge, J.C., Reith, J.W.S., and Berrow, M.L. Soil factors and treatments affecting trace elements in crops and herbage. In:Suttle, N.F., Gunn, R.G., Allen, W.M., Linklater. K.A., and Wiener, G.. (eds). Trace Elements in Animal Production and Veterinary Practice [M]. British society of Animal production Occasional publication NO.7, Edinbargh.1983. pp 77-86.
    [19]Cao Z H, Hu Z Y, Wong M H. Copper contamination in paddy soils irrigated with wastewater, Special issue of Environmental contamination, toxicology and health [J]. Chemosphere.2000,41:3-6.
    [20]Coley, D. D. Resource availability and plant apt herbivores defense [J]. Science.1985,230: 895-899.
    [21]Cooper S. M, Owen-Smith N. Condensed tannins deter feeding by browsing ruminant a South African Savanna [J]. Oecologia.1985,67:142-146.
    [22]Coppock, D. L. Plant-herbivore interaction in North American mixed-grass prairie II Responses of bison to modification of vegetation by prairie dog [J]. Oecologia.1983,56: 10-15.
    [23]Dhillon, K. S. Dhillon, S. K. Accumulation of selenium in sugarcane in seleniferous areas of Punjab, India [J]. Environmental Geochemistry and Heath.2011,13:165-170.
    [24]Freeland W. J, Janzen, D. H. Strategy in herbivory by mammals:The role of plant secondary compounds [J]. American Naturalist.1974,108:269-289.
    [25]Grace N. D, Rounce J. R., Lee J. Effect of soil ingestion on the storage of Se, Vitamin B12, Cu, Cd, Fe, Mn, and Zn in the liver of sheep [J]. New Zealand Journal of Agricultural Research.1996,39:325-331.
    [26]Grant W. W. Structure and productivity of grassland small mammal communities related to grazing reduced change in vegetative cover[J]. Journal of Mammalogy.1982,63:248-260.
    [27]Hall, A. T. Population dynamics the meadow vole (Microtus pennsylvanicas) in nutrient enriched old Held communities [J]. Journal of Mammalogy.1991,72:332-342.
    [28]Hardt, P.F., Greene, L.W. Forage mineral concentration, animal performance, and mineral status of heifiers grazing cereal pastures fertilized with sulfur[J]. Journal of Animal Science. 1991,69:2310-2320.
    [29]Haukioja, F. On the role of plant defenses in fluctuation of herbivore population [J]. Oikos. 1980,35:202-213.
    [30]Haynes, R. J. Micronutrient status of a group of soils in Canterbury, New Zealand, as measured by extraction with EDTA, DTPA and HC1, and its relationship with plant response to applied Cu and Zn[J]. Journal of Agricultural Science.1999,129:35-333.
    [31]Helan, B. R., Barrow, N. J, Peter, D. W. Selenium fertilizers for pastures grazed by sheep[J], Australian Journal of Agricultural Research.1994,45:863-875.
    [32]Herrera, E. A., Detling, D.W. Resource utilization and territoriality in group living capybaras (Hydrochrus hydrocharris) [J]. Journal of Animal Ecology.1989,58:667-679.
    [33]Hidiroglou, M., Proulx, J., Jolette, J. Intraruminal selenium for control of nutritional muscular dystrophy in the dairy cow[J]. Journal of Dairy Science.1985,68:57-66.
    [34]Holland, E. A., Detling, J. K. Plant response to herbivory and below ground nitrogen cycling[J]. Ecology.1990,71:1040-1049.
    [35]Holt, R. D. Spatial heterogeneity indirect interactions and the coexistence of prey species [J]. Journal of American Nutrition.1984,24:377-406.
    [36]Hopkins. A., Adamson, A.H., and Bowling P.J. Response of permanent and reseeded grassland to fertilizer nitrogen[J]. Grass and Forage Science.1994,49:9-20.
    [37]Huntly, N., lnouye, R. Pocket gophers in ecosystems:Patterns and mechanisms [J]. Biology Science.1988,38:786-793.
    [38]Iason, G. R., Mantecon, A. R., Sim, D. A. Can grazing sheep compensate for a daily foraging time constraint[J]. Journal of Animal Ecology.1999,68:87-93.
    [39]Jiang, Z., Hudson, R. J. Optimal grazing of wapiti (Cervus elaphus) on grassland: patch and feeding station departure rules[J]. Evolutionary Ecology.1993,7:488-498.
    [40]Jiang, Z., Li, D., Wang, Z. Proximate factor accounting for the population declining in the Przewalski's gazelle in Qinhai Lake region[J]. Oryx.1999,34(2):129-135.
    [41]Julien-Laferriere, D. Foraging strategies and food partitioning in the neotropical frugivorous mammals caluromys philander and potosflavus [J]. Journal of Zoology.1999,247:71-80.
    [42]Kandolpoh, J. C. Dietary choice of a generalist grassland gerbivore Sigmodan hipidus [J]. Journal of Mammalogy.1991,72:300-313.
    [43]kandylis K. Toxicology of sulfur in ruminants; A review. Journal of Dairy Science.1984, 67:2179-2187.
    [44]Klein, D. R. Winter food preferred learning of snowshoe hares in interior Alaska [J]. Journal Wildlife Management.1977,13:266-275.
    [45]Lawler, I. R., Stapley, J., Foley, W. J. Ecological example of conditioned flavor aversion in plant-herbivore interactions:Effects of terpenes of Eucalyptus leaves on feeding by common ringtail and brushtail possums [J]. Journal of Chemical Ecology.1998,25:401-415.
    [46]Lei, X. G, Dann, H. M., Ross, D. A., Cheng, W. S. Dietary selenium supplementa is required to support full expression of three selenium dependent glutathione peroxidases in various tissues of weanling pigs [J]. Journal of Nutrition.1998,128:130-135.
    [47]McNorghton, S. J. Ecology of a gazing ecosystem [J]. Ecology Monographs,1985,55:259-294.
    [48]McNorghton, S. J. Grazing lawns:animals in herds, plant form, and evolution [J]. American Naturalist.1984,124:863-886.
    [49]McNorghton, S. J. Serengeti grassland ecology:the role of composite environmental factor and contingency in community organization [J]. Ecological Monographs.1983,53:291-320.
    [50]McNorghton, S. J. Serengeti ungulates:feeding selectivity influences the effect of plant defense guilds [J]. Science.1979,199:806-807.
    [51]Minson, D.J. Copper. In; Forage in Ruminal Nutrition [M]. Academic Press, syney.1990. pp316-324.
    [52]Nagy, K. A. Bio-energy of mammals:What does determined field metabolic rates [J]? Australian Journal of Zoology.2003,42:43-53.
    [53]Nolan, M. R., kennedy, S. B., Lanchflower, W. J., kennedy, D. G. Lipid peroxidation prostcylin and thromboxane in pigs depleted of vitamin E and selenium and supplemented with linseed oil[J]. British Journal of Nutrition.1995,74:369-380.
    [54]Nolte, I. D., Provenza, F. D. Food preferences in lambs after exposure to flavors in solid [J]. Animal Behavioral Science.1992,32:337-347.
    [55]Noymeir, I. Dominant grasses replaced by forbs in a vole year in grazed Mediterranea grassland [J]. Journal of Biology geographer.1998,15:579-587.
    [56]Owens, I. P. F. Where is behavioral ecology going [J]. Trends in Ecology & Evolution.2006, 21 (7):356-361.
    [57]Paster, J. Moose microbes and the boreal forest [J]. Biology Science.1988,38:707-777.
    [58]Pehrson, A. Winter food consumption and digestibility in caged mountain hares [J]. Journal of Mammalogy.1984,65:231-239.
    [59]Perry, G, Pianka, E. R. Animal foraging: past, present and future [J]. Trends in Ecology & Evolution.1997,12(9):360-364.
    [60]Phillippo, M. The role of dose-response trials in predicting trace element disorder. In: Suttle, N.F. et al (eds). Trace Elements in Animal production [M]. British Society of Animal Production Special Publication. pp51-56.
    [61]Plant, T. A., Stevenson, A. G. Regional geochemistry and its role in epilemiological studies. In:Mills, C. F. (eds) proceedings of the 5th International Symposium on Trace Elements in Man and Animals [M]. Commonwealth Agricultural Bureau. Farnham Royal. UK. Pp 900-906.
    [62]Provenza, F. D. Acquired aversions as the basis for varied diets of food preference and intake in ruminants [J]. Journal of Animal Science.1996,74:2010-2020.
    [63]Ralph, M. H. Persistence of aversions to larkspur in native cattle [J]. Journal of Range Management.1997,50:367-370.
    [64]Rechcigl, J.E. Sulphur fertilization improves bahiagrass pasture [J]. Better Crops Plant Food. 1991,75:22-24.
    [65]Rosenzweig, M. L., Winakur, J. Population ecology of desert rodent communities:Habitats and environmental complex [J]. Ecology.2009,50:558-572.
    [66]Rotruck,J. T. Pope, A. L., Ganther, H. E., et al. Selenium:biochemical rals as a component of glutathione peroxidase [J]. Science. USA.179:588-590.
    [67]Schoener, T. W. Resource partitioning in ecological community [J]. Science.1974,185: 27-39.
    [68]Schramel O, Michalke B, Kettrup A. Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures[J]. The Science of the Total Environment,2000,263:11-22.
    [69]Shen xiao yun, Du Guo Zhen, Chen Ya ming. Copper deficiency in yak on pasture in western China [J].The Canadian Veterinary Journal.2006,47:902-906.
    [70]Shen xiao yun, Du Guo zhen. Studies of a naturally occurring molybdenum-induced copper deficiency in the yak [J]. The Veterinary Journal.2006,171(2):352-357.
    [71]Shen xiao yun, Jiang zhi gang. Serum biochemical values and mineral contents of tissues in Przewalski's and Tibetan gazelles [J]. African Journal of Biotechnology.2012, 11(3):718-723.
    [72]Shen xiao yun, Li xia, Zhang ren duo. Studies on unsteady gait disease of the Tibetan Gazelles [J].The Journal of Wildlife disease.2010,46(2):560-563.
    [73]Shen xiao yun, Li xia. Studies of emaciation ailmenf' in the Bactrian camel [J]. African Journal of Biotechnology.2010,9(49):8492-8497.
    [74]Shen xiao yun. Effect of nitrogenous fertilizer treatment on mineral metabolism in grazing yaks [J]. Agricultural Sciences in China.2009,8(3):361-368.
    [75]Shen xiao yun. Studies of wool-eating ailment in Guizhou semi-fine wool sheep [J]. Agricultural Sciences in China.2011,10(10):168-1623.
    [76]Sinclari, A. R. E., Smith, J. N. Do plant secondary compounds determine feeding preferences of snowshoe hares [J]. Oecologia.1984,61:403-410.
    [77]Suttle, N. F. Effects of organic and inorganic sulphur on the availability of dietary copper to sheep [J]. British Journal Nutrition.1977,11:121-140.
    [78]Tamara, C. G. Alternative forms of competition and predation dramatically affect habitat selection under foraging predation risk trade-offs [J]. Behavioral Ecology.2002,13:280-290.
    [79]Thompson, S. D. Structure and species composition of desert heterolysis rodent species assemblage effects of a simple habitat population [J]. Ecology.1982,63:1313-1321
    [80]Tiffany, M E, Me Dowell L R, O'connor G A, et al. Effects of residual and reapplied biosolids on performance and mineral status of grazing beef steers [J]. Journal of Animal Science.2002,80:260-266.
    [81]Vessey-Fitzgerald, D. F. Grazing succession among East African game animals [J] Journal of Mammalogy.1960,41:161-172.
    [82]Yuan rong, Li li juan, Wang qi wen and Du Guo zhen. Copper deficiency in Guizhou semi-fine wool sheep on pasture in south west China karst mountain area. African Journal of Biotechnology.2010,10(74):17043-17048.
    [83]陈国树.微量元素导论[M].上海:同济大学出版社.1992.pp 324.
    [84]陈骏,王鹤年.地球化学[M].北京.科学出版社.2004.pp390-395.
    [85]陈学敏,余曰安.硒对镉诱导大鼠离体于细胞DNA损失的作用[J].中华预防医学杂志.2004,1:72-76.
    [86]陈越,金久善.自由基的生物学效应[J].中国兽医杂志.1996,22:48-51.
    [87]崔恒敏,徐之勇,彭西,朱奎成,邓俊良.高铜对雏鸡淋巴细胞凋亡影响的研究[J].畜牧兽医学报.2007,4:236-239.
    [88]丁君宝,王金达,刘景双.典型黑土pH值变化对微量元素有效态含量的影响研究[J].水土保持学报.2002,16(2):93-96.
    [89]樊邦棠.环境化学[M].杭州.浙江大学出版社.1991.ppl352-356.
    [90]方充中,杨胜,伍国耀.自由基、抗氧化剂、营养素与健康的关系[J].营养学报.2003,25(4):337-342.
    [91]冯亚平.化学铀质对人类生殖的危害[M].成都.四川科学技术出版社.1986.pp95-100.
    [92]傅林谦,白静仁,余亚军.亚热带黑麦草白三叶草地土壤-牧草-家畜中微量元素循环规律[J].草地学报,1995,3(3):198-205.
    [93]甘居利,林钦,贾晓平,等.红海湾底质重金属分布与背景值探讨[J].热带海洋学报.1999,18(2):64-71.
    [94]高渐飞,苏孝良,熊康宁等.贵州岩溶地区的草地生态环境与草地畜牧业发展[J].草业学报.2011,20(4):279-286.
    [95]关肃林,高水平.维生素E对大鼠血脂、肝脂质过氧化的作用[J].营养学报.1989,11(6):126-133.
    [96]郭孝,介晓磊,李明.硒以及硒钴配合施用对紫花苜蓿生长的调控效应[J].中国草地学报.2008,30(6):22-25.
    [97]韩爱云,谷子林,黄仁录.家兔微量元素铜的研究进展[J].中国养兔杂志.2005,4:28-30.
    [98]韩博,康世良,史言.自由基与动物氟中毒[J].动物医学进展.1997,18:1-4.
    [99]韩永达.血清酶在缺硒酶诊断方面的应用[J].东北农学院科技参考资料硒专刊.1980,1:35-39.
    [100]胡晴晖.湄洲湾海域底质的重金属元素背景值研究[J].中国环境监测.2001,17(3):19-21.
    [101]黄焕深,曾宪昌.贵州省半细毛羊生产与育种[J].贵州畜牧兽医.1991,1(1):12-16.
    [102]黄克和,陈万芳.自由基与肿瘤的关系[J].中国兽医杂志.1995,21:42-45.
    [103]黄有德,刘宗平.中毒和营养代谢病学[M].兰州.甘肃科技出版社.2001.pp218-220.
    [104]姜厚波,蔡原,张颖花,万伯建,马建飞.铅对大鼠肾脏的脂质过氧化作用[J].中国医科大学学报.1994,6:98-103.
    [105]蒋志刚,夏武平.高原鼠兔食物资源利用研究[J].兽类学报,1985,5(4):251-262
    [106]况琪军.重金属对藻类的致毒效应[J],水生生物学报.1996,20(3):277-283
    [107]李淑媛,刘国贤,苗丰民.渤海沉积物中重金属分布及环境背景值[J].中国环境科学.1994,14(5):370-376.
    [108]李文盛.畜禽硒-VE缺乏症[J].畜牧兽医简迅.1980,1:42-53.
    [109]林治庆.木本植物对土壤汞污染防治功能的研究[M].中国环境科学.1988,8(3):35-40
    [110]刘春阳,张玉峰,滕洁.土壤中重金属污染的研究进展[J].污染防治技术.2006,8(4):132-139.
    [111]刘静.微量元素的农业化学[M].北京.农业出版社.1991.ppl94-232.
    [112]刘世亮,张炳运,介晓磊.锌、铁和钼配施对紫花苜蓿矿物质元素吸收的影响[J].中国草地学报.2008,30(2):54-58.
    [113]刘武定.微量元素营养与微肥施用[M].北京.中国农业出版社.1995.pp 89-111.
    [114]刘铮.中国土壤微量元素[M].南京:江苏科学技术出版社.1997.pp177-342.
    [115]刘宗平.现代动物营养代谢病学[M].北京.化学工业出版社.2003.ppl32-139.
    [116]卢忠,李术.自由基-微量元素与动物健康[J].饲料博览.1997,9:30-31.
    [117]马涛,武高林,何彦龙等.青藏高原东部高寒草甸群落生物量和补偿能力对施肥与刈割的响应[J].生态学报.2007,27:2289-2293.
    [118]孟凡乔,史雅娟,吴文良.我国无污染农产品重(类)金属元素土壤环境质量标准的制定与研究进展[J].农业环境保护.2000,19(6):356-359.
    [119]倪才英,陈英旭,骆永明.土壤-植物系统铜污染与修复的研究进展[J].浙江大学学报.2003,29(3):237-243.
    [120]齐长明.绵羊慢性铜中毒[J].中国兽医杂志.2000,26(9):163-168.
    [121]任继周.草地农业生态学[M].北京.农业出版社.1995.pp21-216.
    [122]申小云,杜国祯,甘玉伟,陈灼.锗、硒对欧拉羊抗脂质过氧化作用的影响[J].兰州大学学报.2003,39:395-397.
    [123]申小云,蒋志刚.黄河首曲草地牧草矿物质元素含量的变法规律[J].中国草地学报.2008,30(4):118-120.
    [124]申小云.硒胁迫下普氏原羚的采食对策[J].生态学报.2009,29(6):2775-2781
    [125]孙存普,张建中,段绍瑾等.自由基生物学导论[M].合肥.中国科学技术大学出版 社.1990.ppl-3.
    [126]孙儒泳.动物生态原理[M].北京.北京师范大学出版社.2001.pp475-480.
    [127]王宝山,赵思齐.干旱对膜脂过氧化及保护酶的影响[J].山东师范大学学报.1987,2(1):29-39.
    [128]王保军.微生物与重金属的相互作用[J].重庆环境科学.1996,18(1):35-38.
    [129]王挂明,周庆强,钟文勤.达乌尔鼠兔的食性及其与食物可利用性的关系.草原生态系统研究[M].北京:科学出版社.1992.pp127-131.
    [130]王菊英,德毅,鲍永恩,等.黄海和东海海域沉积物的环境质量评价[J].海洋环境科学.2003,22(4):21-24.
    [131]王宗元,曹光辛,胡在朝等.动物矿物质营养代谢与疾病.上海.上海科学技术出版社.1988.pp118-144.
    [132]夏武平,钟文勤.内蒙古查干敖包荒漠草原地鼠和植物群落的演替趋势及相互作用.动物学报,1966,18(3):199-207
    [133]徐尚平,徐福留,曹军.内蒙土壤微量元素含量的各种结构特征[J].地理学报.2000,55(3):337-345.
    [134]徐震,于应文,常生华.放牧强度对黑麦草/白三叶混播草地种群牧草量构成与年生产力的影响[J].草业学报.2003,12(5):31-69.
    [135]许嘉林.陆地生态系统中的重金属[M].北京.中国环境科学出版社.1995.pp1157-168
    [136]杨允菲,傅林谦,朱琳.亚热带中山黑麦草与白三叶混播草地种群数量消长及相互作用的分析[J].草地学报.1995,3(2):103-111
    [137]曾宪昌,李超俊,杨光逵等.培育贵州半细毛羊试验 [J].贵州畜牧兽医.1980,1(2):1-16.
    [138]张亨山.不同形式金属硫蛋白异构体对小鼠免疫效果的观察[J].中国免疫学杂志.1994,10(4):235.
    [139]张树清,王艳玲.氮素形态对蔬菜营养液pH及磷锌铁吸收的研究[J].甘肃农业科技.2001,33(7):33-35.
    [140]张新英,宋巧书.重金属环境背景值研究[J].广西师院学报.1999,16(4):98-101.
    [141]张亚丽,沈其荣,姜洋.有机肥料对镉污染土壤的改良效应[J].土壤学报.2001,2:132-137.
    [142]赵保路.氧自由基和天然抗氧化剂[M].北京.科学出版社.1998.ppl-17.
    [143]赵贵海,樊自立,季芳.塔克拉玛干沙漠地区土壤元素背景值研究[J].干旱区研究.1994,11(2):35-40.
    [144]赵丽,崔恒敏,杨帆等.日粮中添加高水平铜对雏鸭血液指标的影响[J].中国家禽.2008,5:213-219.
    [145]郑荣梁和黄中洋.自由基医学与农学基础[M].北京.高等教育出版社.2001.pp56-58.
    [146]郑荣泉和鲍毅新.有蹄类食性研究方法及研究进展.生态学报.2004,24(7):1532-1539.
    [147]钟文勤,周庆强,孙崇潞.布氏田鼠生存选择与植被条件[J].草原生态系统研究.1985,3:147-154
    [148]邹春琴,杨志福.石灰性土壤上不同形态氮素对春小麦利用氮、磷的影响[J].土壤通报.1993,4:169-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700