用户名: 密码: 验证码:
当归抽薹的调控效应及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究通过冬季温室育苗和种子直播技术来缩短当归生长周期,避免当归抽薹;通过改变贮苗条件影响春化过程;利用对植物生长过程有调控能力的生长促进剂、生长抑制剂(或延缓剂)对当归生长进程进行调控,进而研究栽培措施和植物生长调节物质对当归抽薹的影响规律和机理。主要研究结果如下:
     1.不同浓度MH、PP333和CCC均对当归叶片数和株高的增加产生不同程度的抑制作用。PP333100mg/L和CCC500mg/L对侧根的萌发和生长具有抑制作用。MH浓度越高,对根的膨大生长抑制作用越大,CCC500mg/L抑制当归根部膨大生长。MH导致当归叶片叶绿素含量降低,且降低幅度随浓度增大而增大。PP333和CCC喷施浓度越大,叶绿素含量增加幅度越大。MH和PP333处理使当归叶片可溶性糖含量降低,CCC则浓度越大越有利于促进可溶性糖积累。MH、PP333和CCC喷施均使可溶性蛋白和游离氨基酸含量增加,且浓度越高,影响越大。抑制剂对抽薹的影响在喷施后两个月表现出来,MH、PP3331000mg/L、CCC500mg/L和CCC1000mg/L处理抽薹率显著或极显著低于对照和其他处理,三种抑制剂之间对抽薹的影响差异不显著,浓度对抽薹的影响差异显著,高浓度(1000mg/L)对降低抽薹率有利,抑制剂类型和浓度之间交互作用不显著。高浓度PP333和CCC可显著增加单根重量,降低抽薹率,增加当归产量。
     2. NAA100mg/L和GA_3100mg/L+NAA100mg/L有利于当归叶片增多,GA_3 30mg/L处理则抑制叶片增加,促进植株衰老。NAA单施或与CTK和GA_3配合喷施均促进株高增高。NAA100mg/L和CTK100mg/L+NAA100mg/L促进根的伸长生长,ABA20mg/L、GA_330mg/L、GA_350mg/L+NAA100mg/L和GA_3100mg/L+NAA 100mg/L都对根的伸长具有抑制作用。CTK100mg/L+NAA100mg/L促进侧根萌发和生长,ABA和GA_3不论单施或是配施,均抑制侧根生长。NAA有利于根膨大生长,ABA和GA_3单施或配施均抑制根的膨大生长。GA_3对当归抽薹具有促进效应,GA_3浓度越大,比例越高,其促抽薹效应越明显。NAA100mg/L和CTK50mg/L+NAA100mg/L对抽薹有微弱抑制作用。NAA单施或与CTK配施均可大幅提高当归产量,CTK100mg/L +NAA100mg/L增产效果最好。GA_330mg/L单施减产幅度最大,GA_3与NAA配施比例越大,产量降低幅度越大。NAA单施或与GA_3配施可明显提高叶片叶绿素含量,而NAA与CTK配施或ABA与GA_3配施均抑制叶绿素合成。GA_3浓度越高,比例越大,可溶性糖含量就越高。低浓度ABA、NAA单施和NAA与CTK配施都可促进可溶性蛋白和游离氨基酸含量增高,而GA_3不管浓度高低,配施单施都抑制游离氨基酸合成或积累。CAT活性在ABA20mg/L、CTK50mg/L +NAA100mg/L和NAA100mg/L处理后均较对照增高,高浓度GA_3则使其降低。POD活性在喷施ABA20mg/L和CTK50mg/L+NAA100mg/L后较对照降低,而喷施GA_350mg/L+NAA100mg/L和GA_3100mg/L+NAA100mg/L后较对照增大,说明高浓度GA_3单施或配施均可使POD活性增大。多酚氧化酶(PPO)的活性在GA_350mg/L+NAA100mg/L、GA_3100mg/L+NAA100mg/L、ABA40mg/L+GA_340mg/L和ABA40mg/L+GA_340mg/L处理之后较对照升高,ABA20mg/L和NAA100mg/L可显著降低。
     3.采用冬季温室育苗-带基质绿体移栽技术可有效抑制当归抽薹,移栽后田间抽薹率为0。育苗环境日均温14℃~18℃,日平均空气相对湿度40%~60%,≥5℃的有效积温为237.1℃~391.8℃对当归苗期生长发育最有利。但在此环境下育苗,经炼苗移栽后田间长势在后期有所减缓。日均温度8℃~15℃,≥5℃的有效积温105.2℃~240.3℃条件育苗,当归苗期生长处于劣势,但移栽后生长后期其地上地下物质积累迅速。育苗容器口径越大,出苗越慢,出苗率越低。4cm纸筒处理最有利于当归茎叶和根部物质积累,有利于提高当归根冠比。田园土与蛭石1:1混合基质最有利于温室当归出苗,田园土反之。育苗容器及育苗容器与基质之间互作效应不显著。育苗容器对当归幼苗子叶退化速度影响明显,纸筒育苗子叶退化速率较快,而基质对子叶退化速度无明显影响。苗前期侧根数纸筒优于塑料营养钵,苗后期及移栽后塑料营养钵优于纸筒。蛭石最有利于当归侧根萌发生长,田园土不利于当归侧根生长,塑料营养钵装蛭石基质最有利于当归侧根生长。苗期纸筒小空间造成种苗植株徒长,而塑料营养钵的大空间利于形成壮苗。相同基质条件下,塑料营养钵育苗根部物质积累量大于纸筒育苗;相同育苗容器下,蛭石育苗根部物质积累量最高,田园土处理当归根部物质积累量最低,因此塑料营养钵为容器,蛭石为基质最有利于当归根部物质积累。
     4.当贮苗温度高于7℃,过早萌发并不利于当归移栽后的生长。10℃贮苗和岷县传统贮苗抽薹率较高,抽薹率并未表现出与温度有显著的直线相关性。0℃~7℃的温度条件下贮藏当归苗,抽薹率相对较低。贮苗温度条件对移栽后当归根长无明显影响,根直径和侧根数均为岷县传统贮苗为高,而10℃贮苗则处于劣势。贮苗温度虽对单根产量的影响并未达到显著水平,但由于抽薹率的差异,0℃和7℃贮苗移栽后产量较传统贮苗增加。当归种苗贮藏以0℃~7℃为宜。
     5.采用种子直播技术进行当归栽培,可缩短当归栽培周期,避免抽薹发生,且早薹种子和蜡熟种子可用于直播。种子类型和密度对直播当归主根长和根粗的影响不显著,正常头穗种子以株、行距20cm×20cm直播其主根长、根粗略优于其他处理,正常头穗种子株距10cm、行距20cm播种时直播当归产量最高。与传统山荒地育苗移栽相比,直播当归根形好,侧根较少。不同类型种子直播后当归灰分和醇溶性浸出物含量均达到《中国药典》的质量标准。
Raising seedlings in greenhouse in winter and direct seeding technology were used in Angelica sinensis cultivation to shorten Angeilca sinensis growing period, so to avoid bolting. Seedlings were stored up at different conditions to affect iarovization process. The growth promoter, growth inhibitor or growth retardants were used to regulate Angelica sinensis growth process, and then to study the effect law and mechanism of cultural practices and plant growth regulator on Angelica sinensis bolting. The results were as followings:
     1. MH, PP333 and CCC in different concentration restrain leaves and plant height increase at different degree. PP333100mg/L and CCC500mg/L restrained germination and growth of lateral root. The higher the concentration of MH, the greater the growth inhibition effect on root enlargement growth. CCC500mg/L inhibited root enlargement growth. MH decreased chlorophyll content of Angelica sinensis leaves, and the decrease extent was increased with the increase of concentration. The higher the PP333 and CCC concentration, the higher the chlorophyll content. MH and PP333 led to decrease of soluble sugar content. And high concentration CCC promoted accumulation of soluble sugar in leaves. MH, PP333 and CCC all increased soluble proteins and free amino acid content, and the higher the concentration, the greater the effect. The effect of growth inhibitor on bolting expressed two month after spraying. Bolting rate in treatments of MH, PP3331000mg/L, CCC500mg/L and CCC1000mg/L were all higher than control and the others dramatically or very dramatically. The difference of effect on bolting rate among three growth inhibitor was not significant, and the growth inhibitor concentration had significant effect on bolting rate. High concentration such as 1000mg/L was beneficial to decrease bolting rate. Interaction between growth inhibitor and concentration on bolting was not significant. High concentration PP333 and CCC increased root weight and decreased bolting rate, and then increased yield of Angelica sinensis.
     2. NAA100mg/L and GA_3100mg/L+NAA100mg/L were beneficial to increase Angelica sinensis leaves, but GA_330mg/L restrained leaves increase and accelerated plant senescence. NAA sprayed singly, or combined with CTK, or combined with GA_3 all accelerated plant height. NAA100mg/L and CTK100mg/L+NAA100mg/L accelerated elongation growth of root. ABA20mg/L, GA_330mg/L, GA_350mg/L+NAA100mg/L and GA_3100mg/L+NAA100mg/L all held up elongation growth of root. CTK100mg/L+ NAA100mg/L motivated germination and growth of lateral root. On the contrary, whether sprayed singly or matched with the other exogenous hormones, ABA and GA_3 all restrained growth of lateral root. NAA was beneficial to root enlargement growth. ABA and GA_3 sprayed singly or cooperated with the others were all restrained root enlargement growth. GA_3 had accelerated influence on bolting, and the higher the GA_3 concentration and proportion, the more obvious influence on bolting acceleration. NAA100mg/L and CTK50mg/L+NAA100mg/L had slight restrain influence on bolting. NAA sprayed singly or it matched with CTK all promoted Angelica sinensis yield remarkably, and the influence of CTK100mg/L+NAA100mg/L on yield promotion was the best. GA_330mg/L had the maximal extent of yield reducing. The greater the GA_3 and NAA proportion, the greater the yield reducing extent. NAA sprayed singly or it matched with GA_3 increased chlorophyll content in leaves, however, NAA cooperated with CTK and ABA cooperated with GA_3 all restrained composition of chlorophyll. GA_3 led soluble sugar content to rise, and the higher the concentration and proportion were, the higher the soluble sugar content. ABA in low concentration, or NAA sprayed singly, or NAA matched with CTK all motivated soluble proteins and free amino acid content. Whether in high or low concentration, and whether sprayed singly or matched with the other exogenous hormones, GA_3 restrained composition and accumulation of free amino acid. CAT activity was motivated by ABA20mg/L, CTK50mg/L+NAA100mg/L and NAA 100mg/L, but GA_3 in high concentration decreased CAT activity. POD activity decreased after spraying of ABA20mg/L and CTK50mg/L+NAA100mg/L, on the contrary, GA_350mg/L+NAA100mg/L and GA_3100mg/L+NAA100mg/L decreased POD activity after spraying. It made out that GA_3 in high concentration sprayed singly or matched with the other exogenous hormones all could promote POD activity. PPO activity was higher than control after spraying of GA_350mg/L+NAA100mg/L, GA_3100mg/L+NAA 100mg/L, ABA40mg/L+GA_340mg/L and ABA40mg/L+GA_340mg/L. ABA20mg/L and NAA100mg/L decreased PPO activity on the contrary.
     3. Cultivation techniques of raising seedlings in greenhouse in winter and transplanting green plant with substrate could restrain Angelica sinensis bolting effectively, and the bolting rate in field was o after it was transplanted. When the average day temperature was 14℃~18℃, average day relative air humidity was 40%~60%, effective accumulated temperature≥5℃was 237.1℃~391.8℃, were beneficial to Angelica sinensis seedlings growth. However, later growth vigour of the seedlings raised in that conditions slowed down after it was transplanted in field. If raising seedlings in condition where average day temperature was 8℃~15℃and effective accumulated temperature≥5℃was 105.2℃~240.3℃, the seedlings growth was at a disadvantage, but the material accumulated quickly in later growth period after it’s transplanted in field. The bigger the container caliber was, the slower the emergence speed was, and the lower the emergence rate was. 4cm paper barrel was beneficial to material accumulation of leaves and root, and was beneficial to increase of RSR. Gardenmould and vermiculite mixed in 1:1 was the most beneficial to Angelica sinensis seedlings emergence, gardenmould was on the contrary. Between the different containers, the difference was not significant, and interaction between container and substrate was not significant, neither. Container for seedling rising had significant effect on cotyledon degradation speed. cotyledon degradation speed of seedlings raised in paper containers was quick, and substrate had no effect on cotyledon degradation speed. Lateral root of Angelica sinensis seedlings in paper containers were superior to those raised in plastic containers at early seedling stage, and on the contrary at later seedling period. Vermiculite was beneficial to germination and growth of lateral root, otherwise, Gardenmould was not beneficial to lateral root. So, plastic container with vermiculite was the best for germination and growth of lateral root. Small space of paper containers caused excessive growth of seedlings. Otherwise, the big space of plastic containers was beneficial to get strong seedlings. In same substrate conditions, plastic container was superior to paper containers in material accumulation, and in same containers conditions, material accumulation was the highest, and its’the lowest in treatment of gardenmould. So plastic containers and vermiculite used in seedlings raise was the best conditions for material accumulation of Angelica sinensis root.
     4. When Angelica sinensis seedlings saved in temperature that was higher than 7℃, was inbeneficial to growth after transplant because of too early germination. Bolting rate was higher than the other conditions when seedlings were stored in 10℃or stored in Min county as traditional. Bolting rate did not show a marked linear correlation with the temperature. Seedlings stored in 0℃~7℃, bolting rate was relatively lower than the other temperature. Seedlings storage temperature had no significant effect on length of Angelica sinensis root. Root diameter and lateral root were all the highest in treatment of stored seedlings in Min County as traditional, and 10℃treatment was in inferior. Though seedling storage temperature didn’t affect single root yield at significant level, the difference of bolting rate led to yield raising in treatments 0℃and 7℃than storaged in Ming County as traditional. Therefore, Angelica sinensis seedlings was fit to stored in 0℃~7℃.
     5. Direct seeding technology was used to shorten growing period, so to avoid bolting. Seed from bolting plant and seed waxen maturity could be used in direct seeding. Seed type and density of sowing had a little influence on Angelica sinensis main root length and root diameter. Maim root length and root diameter was better than the other treatments when the seed from first ear of Angelica sinensis was sowed at 20cm×20cm planting distance×row space. The yield was the highest when the seed which was from normal first ear was sowed at planting distance 10cm and row space 20cm. Compared with traditional seedling raising at mountain waste, root shape was good and lateral root was less with direct seeding technology. Ash content and ethanol-soluble extractives content were all up to quality standard of Chinese Pharmacopoeia when the different seed sowed in direct seeding technology.
引文
[1]汤飞宇,郭玉海,马永良,等.药用动植物种养加工技术—当归[M].北京:中国中医药出版社,2001
    [2]国家中医药管理局《中华本草》编辑委员会.中华本草[M].上海:上海科学技术出版社,2002
    [3]邱黛玉,蔺海明,刘学周.当归成药期生长动态及其早期抽薹规律研究[J].甘肃农业科技,2008,(6):15~18
    [4]徐继振,刘效瑞,荆彦民,等.当归早薹与主要因子的灰色关联度分析[J].中药材,1999,22(11):549~552
    [5]王琼,席峙凌.当归提前抽薹的原因及防治[J].中药材,2002,(2):38
    [6]陈瑛,明图林.当归提早抽薹问题的调查[J].植物生理学通讯,1966(1):9~11
    [7]王文杰,张正民.当归的抽薹特性和控制途径[J].西北植物研究,1982,2(2):95~104
    [8]李明世.当归及其防治早期抽薹的研究[J].中草药通讯,1977,(12):34~38
    [9]王冯爱.浅析2007年岷县当归早期抽薹率上升原因[J].中药材,2008,(7):52
    [10]郭巧生.药用植物栽培学[M].北京:高等教育出版社,2004
    [11]蔺海明,邱黛玉,陈垣.当归苗根直径大小对提前抽薹率及产量的影响[J].中草药,2007,38(9):1386~1389
    [12]覃绍龙.利用当归二年生子实在耕地上育苗试验结果初报[J].甘肃农业科技,1998,(4):13~14
    [13]邱黛玉.当归早期抽薹机理研究[D].甘肃农业大学,2005
    [14]王兴政.当归生长发育动态对栽培因子的响应[D].甘肃农业大学,2007
    [15]王兴政,蔺海明,刘学周.种苗大小对当归综合农艺性状及抽苔率的影响[J].甘肃农业大学学报,2007, 42(5): 59~63
    [16]张廷红,郭永杰.当归种苗繁殖技术[J].甘肃农业科技,1997,(8):14~15
    [17]张恩和,黄鹏.春化处理对当归苗生理活性的影响[J].甘肃农业大学学报,1998,33(3):240~243
    [18]李明世,郝玉蓉,张治国,等.海拔高度对当归产量和挥发油主要成分的影响[J].西北植物学报,1985, (2): 34~36
    [19]李成东,黄葵,陈正权.当归抽薹调查报告[J].中草药,1994,25(8):445
    [20]王文杰.当归冷冻贮苗技术和原理[J].中药材科技,1979,3:1
    [21]姚兰.当归育苗期遮光对成药期抽薹率及经济性状的影响[J].甘肃农业科技.2005(10):54
    [22]刘效瑞,荆彦民.遮光对当归早薹效应[J].中药材,2003,26(12):854
    [23]武延安,蔺海明,赵贵宾,等.遮光对当归栽培的效应[J].中药材,2008,31(3):334~336
    [24]蔺海明,武延安,曹占凤,等.网棚全覆盖遮阳栽培对当归抽薹及环境温湿因子的效应.中国实验方剂学杂志.2010,16(4):79~83
    [25]武延安,刘效瑞,曹占凤,等.日光温室冬季育苗抑制当归早期抽薹的效应研究[J].中国中药杂志,2010,(3):283~287
    [26]马占川,张恩和,张金文,等.氮磷配施对当归产量及品质的影响[J].耕作与栽培,1997,4:32~34,39
    [27]漆琚涛,蔺海明,刘学周.氮磷肥对当归抽薹率的影响试验初报[J].中药材,2004,(2):82~83
    [28]刘学周,蔺海明,漆琚涛.养分对当归干物质积累及其产量的影响[J].中国农学通报,2004,(4):188~190
    [29]刘学周.当归成药期生长发育规律及质量控制技术研究[D].甘肃农业大学,2006
    [30]刘效瑞,刘荣清,伍克俊,等.植物生长调节剂在当归上的应用效果[J].甘肃农业科技,1994,(5):13~14
    [31]张恩和.生长抑制剂当归早期抽苔阻抑效应研究[J].中国中药杂志,1999,24(1):18~20
    [32]田长恩,刘金龙,周光来.PP333在一年生当归上应用的初步研究[J].中草药,1996,(11):684~685
    [33]徐继振,刘效瑞,荆彦民,等.甘肃当归提前抽苔的防治研究[J].中国中药杂志,1999,(11):20~22
    [34]盛丽.甘肃省当归资源的RAPD分析[D].甘肃农业大学,2005
    [35]颉红梅,刘效瑞,李文建,等.甘肃当归新品系DGA2000-02的选育研究[J].原子核物理评论,2008,(2): 196~200
    [36]刘敬,颉红梅,刘效瑞,等.当归新品系“DGA2000-02”与对照品种的遗传差异分析[J].原子核物理评论,2008,(2):213~215
    [37]梁守翠,漆燕玲,李玉萍,等.当归开花授粉特性和繁育系统的研究[J].农业科技通讯,2010,(8):80~84
    [38]燔瑞炽.植物生理学(第五版)[M].北京:高等教育出版社,2006
    [39]严春国,周绿江.早熟春甘蓝“未熟抽薹”发生特点及原因分析[J].安徽农业,2004 (8):10~11
    [40]张丽辉,吴永英,张喜林,等.甜菜当年抽薹的原因及抗抽薹措施[J].中国甜菜糖业,2002,3,32~33
    [41]曾群,赵仲华,赵淑清.植物开花时间调控的信号途径[J].遗传,2006,28(8):1031~1036
    [42]Mouradov A,Cremer F,Coupland G. Control of flowering time: interacting pathways as a basis for diversity[J]. Plant Cell,2002,14(Suppl.):111~130
    [43]Yanovsky MJ, Kay SA. Living by the calendar: how plants know when to flower[J]. Nat Rev Mol Cell Biol,2003,4(4):265~276
    [44]李柱刚,崔崇士,马荣才,等.芸薹属作物重要农艺性状分子标记研究进展[J].黑龙江农业科学,2005, (1): 42~45
    [45]原玉香.白菜类作物抽薹开花的分子遗传分析[D].中国农业科学院,2008
    [46]张鲁刚,王鸣,陈杭,等.中国白菜RAPD分子遗传图谱的构建[J].植物学报, 2000,42(5):485~489
    [47]曹维荣,王超.甘蓝迟抽薹基因的RAPD标记[J].生物技术通报,2007,(5):167~169
    [48]张慧蓉.萝卜抽薹生理特性与相关基因的差异表达研究[D].南京农业大学,2006
    [49]赵丽萍.萝卜抽薹性遗传分析与春萝卜种质标记鉴定[D].南京农业大学,2007
    [50]徐文玲,王淑芬,牟晋华,等.萝卜抽薹基因连锁的AFLP和SCAR分子标记鉴定[J].分子植物育种, 2009, 7(4):743~749
    [51]Hidetoshia, Yasuhisa K, Susumuy, et al. Identification and mapping of aquantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica rapaL. ssp.pekinensissyn campestris L.) using bulked segregant analysis[J]. Euphytica,2001,118:75~81
    [52]闻凤英,张斌,刘晓晖,等.大白菜种质资源抽薹性及其遗传性的研究[J].华北农学报,2006,21(5):68~71
    [53]卓祖闯,万恩梅,张鲁刚,等.大白菜抽薹性状的主基因+多基因遗传分析[J].西北植物学报,2009,29(5): 0867~0873
    [54]邹艳敏,于拴仓,张凤兰,等.白菜抽薹性状相关基因的cDNA-AFLP分析[J].遗传,2009,31(7):755~762
    [55]张韬,王超.春甘蓝抽薹特性的研究(Ⅱ)—遗传特性分析[J].东北农业大学学报,2003,34(4):368~371
    [56]杜辉,潘俊松,何欢乐,等.甘蓝抽薹性状基因的分子标记定位[J].分子植物育种,2007,5(5):673~676
    [57]原玉香,孙日飞,张晓伟,等.芸薹种作物抽薹相关基因BrFLC1的CAPS标记[J].园艺学报,2008,35(11):1635~1640
    [58]冒维维,高红胜,薄天岳,等.菜薹抽薹性状的ISSR和SRAP分析[J].江苏农业学报,2009,25(4):829~833
    [59]赵香梅,孙守如,张晓伟,等.大白菜春化与抽薹特性的研究进展[J].中国蔬菜,2005,(1):33~35
    [60]张广学,李静华,等.当归[M].北京,农业出版社,1989
    [61]种康,雍伟东,谭克辉.高等植物春化作用研究进展[J].植物学通报,1999,16 (5):481~487
    [62]孙昌辉,邓晓建,等.高等植物开花诱导研究进展[J].遗传,2007,29(10):1182~1190
    [63]汤青林,宋明,王小佳,等.温光诱导芥菜和甘蓝抽薹的生化变化研究[J].西南大学学报(自然科学版), 2009,31(4):52~57
    [64]彭凌涛.控制拟南芥和水稻开花时间光周期途径的分子机制[J].植物生理学通讯, 2006, 42(6): 1020~1031
    [65]汤青林,王小佳,宋明,等.与拟南芥春化作用相关的基因及其春化记忆模型[J].植物生理学通讯, 2007, 43(5):805~810
    [66]Wellensiek S J. Dividing Cells as the Prerequisite for Vernalization [J]. Plant Physiol, 2001, 39: 832~835
    [67]Boss P K. Multiple Pathways in the Decision to Flower: Enabling, Promoting, and Resetting [J]. Plant Cell,2004,(16):18~31
    [68]陈源闽,张颖力,王勇,等.影响胡萝卜花芽分化与抽薹的主要因素分析及调控[J].内蒙古农业科技,2002,(6):45
    [69]山东农学院.蔬菜栽培学各论[M].北京,农业出版社,1979,37~41
    [70]罗钰林,魏宽让,张耀,等.反季节萝卜未熟抽薹开花原因及防治对策[J].西北园艺,2006,(1),12~13
    [71]J.G.Atherton, E.A.Basher, B.Cutting. Control of Bolting and Flowering in Carrot.ISHS Acta Horticulturae 134: Regulation of Growth and Endogenous Hormones[J]. XXI IHC.1983,1(4):22
    [72]王忠.植物生理学[M].北京,中国农业出版社,2000
    [73] Kingsley R. Stern. Introductory Plant Biology[M].Times Mirror Higher Education Group,Inc.1997,197
    [74]张恩和.北方特用经济作物栽培学[M].北京,中国科学文化出版社,2002
    [75]程大友,徐德昌,夏红梅.甜菜抽薹及成花过程中春化相关基因的表达和研究[J].中国甜菜糖业,2002,3,23~25
    [76]汪炳良,邓俭英,曾广文.萝卜花芽分化过程中茎尖和叶片碳水化合物含量的变化[J].园艺学报,2004,31(3):375~377
    [77]Tzay Fa S. Effect of day and night temperature variation and of high temperature on devernalization in radish[J]. Acta Hortic.,2000,514:157~162
    [78]丰亚南,郑国生,王宗正,等.牡丹开花前后碳水化合物的分配与光合速率的关系[J].园艺学报,2007, (1): 153~156
    [79]王桂兰,陈超,李艳梅.蝴蝶兰催花及开花过程中可溶性糖含量变化的研究[J].北方园艺,2010, (10):151~154
    [80]刘磊,刘世琦,许莉,等.洋葱抽薹与未抽薹植株生理生化特性对比研究[J].中国农学通报,2006,22(1): 149~152
    [81]赵闽家,刘娟,张跃华,等.防风抽薹期生理生化指标分析[J].黑龙江医药科学,2008,31(6):8~9
    [82]涂淑萍,穆鼎,刘春.不同百合品种花芽分化期的生理生化变化[J].中国农学通报,2005,21(7):207~209
    [83]路苹,郭蕊,于同泉,等.切花百合鳞茎花芽形态分化期碳水化合物代谢变化[J].北京农学院学报,2003, 22(18):259~261
    [84]陈竹君,陈迪锋,汪炳良,等.榨菜花芽分化早期的生化特性研究[J].浙江农业学报,2000,12(4):187~190
    [85]刘莎莎,魏佑营,王军伟,等.光周期对菠菜抽薹特性及可溶性糖和可溶性蛋白含量的影响[J].山东农业科学,2009,10:29~31,34
    [86]杨勇.不同耐抽薹性大白菜春化及抽薹前后生理特性的变化[D].天津大学,2007
    [87]李兴军,李三玉,汪国云,等.杨梅花芽孕育期间叶片酸性蔗糖酶活性及糖类含量的变化[J].四川农业大学学报,2000,18(2):164~166
    [88]朱治强.香蕉植株的养分吸收积累与花芽分化的关系研究[D].华南热带农业大学,2003
    [89]张云,刘青林.植物花发育的分子机理研究进展[J].植物学通报,2003,20(5):589~601
    [90]魏小红,王静,马向丽,等.高寒地区牧草碳水化合物及氨基酸含量季节动态研究[J].草业学报,2005, 14(3):94~99
    [91]孙宗玖,李培英,阿不来提,等.干旱复水后4份偃麦草渗透调节物质的响应[J].草业学报,2009,18(5): 52~57
    [92] Guo Fengxia, Chen Yuan, Li Xinrong, et al Enhancement of low-temperature tolerance in watermelon (Citrullus lanatus) seed-lings by cool-hardening germination[J]. Aust J Exp Agr,2007,47(6):749
    [93]李秀珍,郝遒斌,谭克辉.冬小麦春化过程中可溶性蛋白质组成的变化与形态发生的关系[J].植物学报,1987,29:492~498
    [94]逯斌,谭克辉,林兵,等.冬小麦春化过程中低温诱导的与花芽分化相关的mRNA和蛋白质的合成[J].植物生理学报,1992,18(2):113~120
    [95]奥岩松,李式军.大白菜发育过程中可溶性蛋白质的变化[J].中国蔬菜,1997,(2):19~21
    [96]吴月燕,李培民,吴秋峰.葡萄叶片内碳水化合物及蛋白质代谢对花芽分化的影响[J].浙江万里学院学报,2002,15(4):54~57
    [97]樊卫国,刘国琴,安华明,等.刺梨花芽分化期芽中内源激素和碳、氮营养的含量动态[J].园艺学报,2003,20(1):40~43
    [98]李梅兰,曾广文,朱祝军.菜心茎尖DNA甲基化水平及GA、蛋白质含量的变化与花芽分化[J].浙江大学学报(农业与生命科学版),2002,28(2):161~164
    [99]李梅兰,汪俏梅,朱祝军,等.春化对白菜DNA甲基化、GA含量及蛋白质的影响[J].园艺学报,2002, 29(4): 353~357
    [100]杨小明,李成琼,宋洪元,等.春甘蓝花芽分化至抽薹过程中生理生化指标的变化[J].中国蔬菜,2009, (24):19~23
    [101]常缨,戴建军,马凤鸣.甜菜当年抽薹过程中呼吸酶活性的变化[J].东北农业大学学报,2002,33(2): 160~164
    [102]Van Huystee RB., Cairns WL. Progress and prospects in the use of peroxidase to study cell development [J]. Phytochemistry,1982,(21):1843~1847
    [103]杨肇驯,王文宏,谭克辉.冬小麦幼苗春华期间过氧化物酶的变化[J].植物生理学报,1981,7(4):311~316
    [104]邓俭英.萝卜花芽分化形态发育及其生理生化的研究[D].浙江大学.2003
    [105]吴彩娥,寇晓虹,王文生.果实成熟衰老与保护酶系统的关系[J].中国果菜,2002,(6):23~24
    [106]沈成国.植物衰老生理与分子生物学[M].北京:中国农业出版社,2001,355~359
    [107]Cchang S T, Chen W S, Koshiokn M, et al. Gibberellins in relation to flowering in Polianthens tuberosa[J]. Physiol Plant,2001,(112):429~432
    [108]任红旭,陈雄,王亚馥.低氮营养与激动素对离体黄瓜子叶花芽分化的影响[J].兰州大学学报(自然科学版),1999,35(2):124~129
    [109]周阮宝,郑相穆,茆敦俊等.青萍的氮素营养及成花过程中的几种酶活性变化[J].植物生理学通讯,1993,29:257~259
    [110]Beth M, Nelson Schweitzer L E. Limitations on leaf nitrate reductase activity during flowering and pod fill in soybean[J]. p1antPhysiol.1986,(80):454~458
    [111]杨遥,关佩聪,陈玉娣.氮钾营养与花椰菜氮素代谢和产量的初步研究[J].华南农业大学学报,1994, 15(1): 85~90
    [112]周厚高,宁云芬,张施君,等.新铁炮百合生长发育过程的一些生理生化变化[J].广西植物,2003, 23(4): 357~361
    [113]Peter Hedden.Gibberellin Metabolism and its regulation[J].Plant Growth Regu1,2002,(20):317~318
    [114] Nakayama M, Yamane H, Nojiri H, et al. Qualitative and quantitative analysis ofendogenous gibberel1in in Raphanus sativus L. during cold treatment and the subsequent growth[J]. Biosci Biotech Biochem.1995.59:1121~1125
    [115]Razerm F A, Baron K, Hill R D. Turning on gibberellin andabscisic acid signaling [J]. Current Opinion in Plant Biology,2006,9:454~459
    [116]胡巍.洋葱春化及其生化特性的研究[D].南京农业大学.2003
    [117]张崇浩.开花的激素调控[J].生物学通报,1997,32(7):19~21
    [118]柴振林.雷竹花期激素和营养动态及其成花机理研究[D].浙江大学,2005
    [119]梁艳.白桦花发育不同时期内源激素及蛋白质变化分析[D].东北林业大学,2003
    [120]宋贤勇,柳李旺,龚义勤,等.春萝卜抽薹过程中内源激素含量变化分析[J].植物研究,2007,27(2): 182~185
    [121]朱玉野.防风抽薹期激素变化规律的研究[D].吉林农业大学,2007
    [122]李梅兰,曾广文,朱祝军.冬性与春性白菜品种花芽分化前后生理代谢的比较[J].中国农业科学, 2003, 36(11):1414~1418
    [123]赵晓菊.植物内源激素在长春花不同生活史型中生理生态学特征[D].东北林业大学,2006
    [124]闫敏,张英俊,历卫红,等.水分对白三叶开花前后茎叶中营养物质及激素含量的影响[J].草业科学,2007,24(5):48~52
    [125]王利琳,梁海曼.激动素在黄瓜子叶器官分化中的作用[J].云南植物研究,2000,22(2):175~180
    [126]王淑芬,徐文玲,何启伟,等.春化深度对萝卜抽薹的影响及抽薹过程中GA3和IAA含量的变化[J].山东农业科学,2003,6:20~21
    [127]柴振林,何建荣.雷竹花期激素组成的初步研究[J].浙江林业科技,2001,21(3):36~37
    [128]夏广清,何启伟,王翠花,等.不同生态型大白菜抽薹时内源激素含量比较[J].中国蔬菜,2005,(2):21~22
    [129]马秀峰,王丽华,陈志英,等.甜菜当年抽薹株与不抽薹株内源激量及平衡状况的动态变化[J].中国糖料,1997,(1):1~4
    [130]谷本静史,石冈奈穗子.花成诱导物质—植物化学调节[J].1992,27(1):44~55
    [131]Tsao T H,Zhong H W,Jiao S P etal. Changes in endogenous ABA and GA contents during floral induction of Lemna aequinoctialis[J]. Acta Bot Neerl,1986,35(4):443~448
    [132]VENGLATSP, SAWFINEYVK. Cytokin in influence flower development in the wildtype and homotic floral mutants Arabidopsis[J]. Plant Physiol,1995,595:108~118
    [133]程斐,张曙宁,孙朝晖,等.春大白菜品种选育的形态与生理指标[J].园艺学报,1999,26(2):120~122
    [134]李娅莉.不同光周期对山茶花成花形响的研究[D].四川农业大学,2005
    [135]李宪利,袁志友,高东升,等.高等植物成花分子机理研究现状及展望[J].西北植物学报,2002,22(1): 173~183
    [136]Candice C.Sheldon, Dean T.Rouse, E.Jean Finnegan,et al. The molecular basis of vernalization: The central role of FLOWERING LOCUS C (FLC)[J]. PNAS,2000,97:3753~3758
    [137]石海燕,郭靖,周颖,等.赤霉素和脱落酸在植物生长发育中相互关系的研究进展[J].华中师范大学研究生学报,2007,14(1):138~142
    [138]王利琳,庞基,朱睦元,等.黄瓜去顶苗花分化临界期的确定及内源激素的动态变化[J].浙江大学学报(理学版),2004,31(2):202~206
    [139]黄作喜,沈惠娟,谢寅峰.西葫芦子叶花芽分化时内源激素、多胺含量的变化[J].南京师大学报(自然科学版),2002,25(2):28~31
    [140]丁兴萃.早竹衰老开花生理学基础研究[D].南京林业大学,2006
    [141]雍伟东,种康,许智宏,等.高等植物开花时间决定的基因调控研究[J].科学通报,2000,45(5):455~466
    [142]He Y,Amasino RM.Role of Chromatin modification in flowering time control[J].Trends Plant Sci,2005,10(l):30~35
    [143]Sung S,Amasino RM.Vernalization and epigeneties:how plants remember winter[J].Curr opin in Plant Biol,2004,7(1):4~10
    [144]Sung S,Alnkasimo RM.Vernalization in Arabidopsis thaliana is mediated by the PHD finger Protein VIN3[J].Nature,2004,427(6970):159~164
    [145] Sung S,and Amasino RM. Remembering winter: toward a molecular understanding of vernalization [J]. Annu Rev Plant Biol,2005,56:491~508
    [146]Tamaki S, Matsuo S, Wong HL,Yokoi S, Shimamoto K.Hd3a protein is a mobile flowering signal in rice[J].Science,2007,316(5827):1033~1036
    [147]夏广清,朱俊义,何启伟,等.利用RNA干扰技术获得晚抽薹开花转基因大白菜[J].植物生理与分子生物学学报,2007,33(5):411~416
    [148]Liu J,Yu J, McIntosh L, Kende H, Zeevaart JAD. Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering[J]. Plant Physiol,2001,125(4):1821~1830
    [149]Lifschitz E,Eviatar T,Rozman A,Shalit A,Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli[J].Proc Natl Acad Sci USA,2006,103(16):6398~6403
    [150]毛忠良,潘耀平,戴忠良,等.花椰菜的花蕾异常及防止[J].江西园艺,2001,(6):26~27
    [151]惠麦侠,张鲁刚,巩振辉,等.春化温度对大白菜花芽分化和抽薹的影响[J].西北植物学报2004,24(12):2359~2361
    [152] Vincent Dielena,Christine Notté,et al..Bolting Control by Low Temperatures in Root Chicory[J]. Field Crops Research.2005,94(1):76~85
    [153]杨遏,杨运英.苗期温度对芥蓝花芽分化、产量与品质形成的影响[[J].华南农业大学学报(自然科学版),2002,23(2):5~7
    [154]李新成,宋学文,黄广强.华北地区夏秋蔬菜淡季形成原因及解决途径[J].北方园艺,1998,(5):25~27
    [155]汪炳良,邓俭英,曾广文.萌动种子低温处理对萝卜花芽分化及植株生长影响[[J].浙江大学学报,2003,29(5):504~508
    [156]张志焱,刘长庆.春化条件对大白菜花芽分化及种株发育的影响[J].中国蔬菜,1995,(5): 35~36
    [157]张丽,宫国义.两种春化方式对不同萝卜品种抽薹开花的影响[J].北方园艺,2006,(2):35~36
    [158]杉山直仪.蔬菜的发育生理和栽培技术[M].北京:农业出版社,1981
    [159]尹守恒,刘宏敏,李纪军,陈中府.延长光照时间对韭菜抽薹开花结实的影响[J].河南农业科学,2004, (1):41~43
    [160]张凤兰,徐家炳,赵帕云,等.苗期遮光对易抽薹型大白菜抽薹开花的影响[J].中国蔬菜,1996,(3):22~25
    [161]奥岩松,李式军,陈广富,等.种子春化与光周期处理对大白菜花芽分化和抽薹的影响[J].东北农业大学学报, 1996,27(3):250~252
    [162]余阳俊,张凤兰,赵岫云,等.光周期与夜间补光光强对芸薹种抽薹开花的影响.华北农学报,2007, 22(6):114~118
    [163]Pressman E, Shaked R. Bolting and flowering of Chinese cabbage as affected by the intensity and source of supplementary light[J].Scientia Horticulturae, 1988,34(4):177~187
    [164]常缨,马凤鸣,李彩凤.温光诱导甜菜当年抽薹的数学模型建立及应用分析[J].东北农业大学学报, 2001, 32(4):313~319
    [165]王玉波,李彩凤,马凤鸣.外源激素促控甜菜抽薹过程中淀粉酶活性的研究[J].东北农业大学学报.2005,36(4):426~429
    [166]刘丹.外源激素对油菜光合特性及产量构成因素的影响[D].中国农业科学院,2008
    [167]吴俊英,张晓明.多效唑对大白菜抽薹特性和产量的影响[J].北方园艺,2010,(6):37~40
    [168]王淑芬,徐文玲,郎丰庆,等.赤霉素对耐抽薹萝卜抽薹开花的影响[J].山东农业科学,2002,(6):14~16
    [169]汤青林,胡瑶,宋明,等.赤霉素及脱落酸诱导芥菜抽薹的效果[J].中国蔬菜,2008,(12):18~20
    [170]胡瑶.植物生长调节剂对芥菜的抽薹效应研究[D].西南大学,2008
    [171]陈瑛,张才喜,陈云鹏,等.CPPU对春季大棚萝卜糠心、抽薹和产量的影响[J].上海农学院学报,1999, 17(1): 48~51
    [172]魏良民,冯建忠.甜菜当年抽薹研究概况[J].中国甜菜糖业,1999,3:19~22
    [173]孟祥才,曹玲,娄志红.防风抽苔规律调查及抑制初步研究[J].特产研究2004,26(4):18~20
    [174]孙晖,孙小兰,孟祥才,等.防风抽薹对药材质量和产量的影响[J].世界科学技术一中医药现代化,2008,10(2):101~108
    [175]武延安.冬季育苗与光肥调控对当归抽薹及生长发育的效应研究[D].甘肃农业大学.2008
    [176]武延安,蔺海明,刘效瑞,等.冬季基质育苗抑制当归早期抽薹的效应研究[J].中草药2009,40(3): 456~462
    [177]武延安,陈垣,蔺海明.当归早期抽薹研究进展[J].甘肃农业科技.2007,(3):20~22
    [178]闻凤英,张斌,刘晓晖,等.耐抽薹大白菜种质资源生殖期调控技术研究[J].天津农业科学,2008, 14(1):3~5
    [179]杨琴.王继涛,王玉萍.防风抽苔原因及防治[J].中国林副特产,2004,6:23
    [180]邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1995.129~130
    [181]郝再彬,苍晶,徐仲.植物生理实验[M].北京:中国农业出版社,1998.210~211
    [182]国家药典委员会.中国药典(一部)[S].北京:化学工业出版社,2010
    [183]邹琇莹,Fountain DW,Morgan E R.赤霉素及机械处理的相互作用对破除Sandersonia aurantiaca种子休眠的研究[J].草业学报,2003,12(5):70~76.
    [184]王兆龙,殷朝珍,李旻,等.植物生长调节剂对马尼拉结缕草地下休眠茎萌发的调控效应[J].草业学报,2004,13(8):95~98
    [185]张继澍.植物生理学[M].高等教育出版社,2006,231-232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700