用户名: 密码: 验证码:
荷斯坦牛生长与营养代谢相关基因表达及INSR基因遗传变异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究包括以下两方面内容:
     1营养水平对荷斯坦犊牛骨骼肌中mTOR、IGF和胰岛素信号通路相关基因表达的影响
     本研究中以荷斯坦公犊牛为研究对象,通过考察两种蛋白水平日粮的采食量对犊牛生长、血液代谢指标和半腱肌中mTOR(Mammalian Target of Rapamycin)、IGF(Insulin-like Growth Factor)和胰岛素信号通路中15个与生长和细胞代谢相关基因mRNA表达的影响,以期更好地从分子水平理解营养水平对断奶前后犊牛肌肉生长和营养代谢调控机制。研究中对20头犊牛(2-3日龄)按照初始体重分为两组,并随机接受两种等能日粮处理:(1)CON:对照日粮组,传统代乳粉(20%粗蛋白,20%粗脂肪,4.90Mcal/kg ME;1.25%BW;干物质基础)+传统开食料(20%粗蛋白,3.16Mcal/kg ME;干物质基础);(2)HIPRO:高蛋白日粮组,高蛋白代乳粉(28%粗蛋白,16%粗脂肪,4.84Mcal/kg ME;2%BW;干物质基础)+高蛋白开食料(25%粗蛋白,3.20Mcal/kg ME;干物质基础)。最后的分析结果比较两种日粮采食量对断奶前(0-5周龄)与断奶后(6-10周龄)生长、营养代谢与基因表达的不同影响。研究获得以下研究结果:
     1.1营养水平对犊牛生长性能的影响
     日粮与时间的交互作用不影响犊牛活体重、胴体重和胴体组成(蛋白质、脂肪和灰分)及总内脏重量和肝脏重。除胴体脂肪重(P=0.10)外,高蛋白组较对照组显著提高了犊牛活体重、胴体重和胴体蛋白质、灰分重及总内脏重量和肝脏重(P=0.01)。犊牛10周龄时的活体重、胴体重和胴体组成重(蛋白质、脂肪和灰分)及总内脏重和肝脏重均较5周龄时的犊牛有显著提高(P=0.01)。
     1.2营养水平对犊牛营养代谢的影响
     日粮与时间的交互作用显著影响犊牛血液葡萄糖浓度(P=0.01)。在犊牛5周龄时,血液葡萄糖浓度随日粮营养水平提高而显著上升(P=0.04)。而在10周龄时,日粮营养水平不影响犊牛血液葡萄糖浓度。此外,采食高蛋白组日粮的犊牛在10周龄时的血液葡萄糖浓度显著低于在5周龄时的血液葡萄糖浓度(P=0.01)。随着日粮营养水平提高,犊牛血液尿素浓度显著上升(P=0.01)。犊牛10周龄时的血液尿素浓度(P=0.01)和BHBA(β-hydroxybutyric acid,β-羟基丁酸,P=0.01)浓度均明显高于5周龄时的浓度。犊牛10周龄时的血液总蛋白浓度明显低于5周龄时的浓度(P=0.01)。日粮与时间的交互作用显著影响犊牛血液中NEFA(nonesterified fatty acid,非酯化脂肪酸)的浓度(P=0.01)。在犊牛5周龄时,随着日粮营养水平提高,NEFA浓度显著升高(P=0.01)。犊牛10周龄时的NEFA浓度显著低于5周龄时的浓度(P=0.01)。犊牛10周龄时的血液胰岛素浓度显著高于5周龄时的浓度(P=0.01),而且随着日粮营养水平提高,胰岛素浓度有上升的趋势(P=0.09)。
     1.3营养水平对犊牛骨骼肌中mTOR、IGF和胰岛素信号通路中相关基因表达的影响
     日粮与时间的交互作用显著影响犊牛肌肉中IGF1R基因的表达(P=0.04)。在5周龄时,犊牛肌肉中IGF1R的表达量随日粮营养水平提高而下调。日粮与时间的交互作用也对TSC2基因的表达有显著影响(P=0.02)。在5周龄时,日粮处理不影响犊牛肌肉中TSC2基因的表达,但在犊牛10周龄时,提高日粮营养水平能明显增加TSC2基因的表达。而且,仅在采食高蛋白日粮时,犊牛10周龄时TSC2基因的表达量才明显高于5周龄时的表达量。本研究中虽未观察到TSC1基因表达量的显著改变,但一直与TSC2基因表达量呈现相反的变化趋势。与采食低蛋白日粮的犊牛相比,采食高蛋白日粮的犊牛肌肉中RPS6KB1基因的表达在5周龄和10周龄时均明显下调(P=0.03),IRS1基因的表达明显上调(P=0.02),INSR基因的表达呈现下调趋势(P=0.10),PDPK1基因的表达呈现上调趋势(P=0.10)。与5周龄时犊牛肌肉中基因表达相比,10周龄时犊牛肌肉中FOXO1(P=0.04)和INSR基因(P=0.05)表达明显下调,TSC2基因表达明显增加(P=0.01)。与5周龄时犊牛肌肉中基因表达相比,10周龄时犊牛肌肉中FOXO1(P=0.04)和INSR(P=0.05)基因表达明显下调,TSC2基因表达明显增加(P=0.01),而RICTOR(P=0.07)、RPTOR(P=0.10)和TSC1(P=0.06)基因均呈下调趋势。
     2中国荷斯坦牛INSR基因遗传变异分析
     本研究基于营养生理学与遗传学的综合考虑,以INSR基因为候选基因,筛选通过影响奶牛正常采食信号接收、转导而影响奶牛产奶性能的分子标记。试验中以205头中国荷斯坦奶牛为研究对象,应用DNA测序、DNA序列分析和PCR-RFLP技术,分析牛INSR基因的遗传变异。此外,还分析了牛INSR基因的多态性与中国荷斯坦奶牛产奶性能(乳脂率、乳蛋白率、乳脂产量、乳蛋白产量和产奶量)的关系,期望为未来集约化生产条件下奶牛的生产和分子标记辅助选育提供有益的参考。研究得出以下结果:
     2.1牛INSR基因SNPs的检测
     试验中共设计27对引物,对牛INSR基因的所有CDS(Coding Sequence,编码序列)区共22个外显子进行双向测序和SNP(Single Nucleotide Polymorphism,单核苷酸多态性)扫描分析。利用DNA测序技术、DNA序列分析和PCR-RFLP技术在牛INSR基因上共发现13个突变位点,其中7个SNPs发生于编码区,并导致氨基酸发生改变,6个SNPs发生于非编码区。这些突变分别位于第8内含子、第11外显子、第16内含子、第20内含子和第21外显子。
     (1)突变nt12689G>A发生于第8内含子,表现出Hinf I酶切多态性,本试验研究群体在该基因座的Hinf I PCR-RFLP分析中表现出三种基因型,分别为GG型(315bp+149bp+34bp+5bp)、GA型(315bp+218bp+149bp+97bp+34bp+5bp)和AA型(218bp+149bp+97bp+34bp+5bp)。
     (2)突变nt26301G>A、nt26334G>C、nt26496A>G、nt26504C>T和nt26526A>G均发生于第11外显子,导致氨基酸的改变依次为Arg509His、Arg520Pro、Gln574Arg、Arg577Trp、His584Arg。测序结果显示这5个SNPs不连锁。
     (3)突变nt44018G>A、nt44024A>G和nt44067C>T均发生于第16内含子,测序结果显示这3个SNPs连锁,并表现出Hha I酶切多态性。本试验研究群体在该基因座的Hha I PCR-RFLP分析中表现出三种基因型,分别为GG型(526bp+345bp)、GA型(871bp+526bp+345bp)和AA型(871bp)。
     (4)突变nt121892A>G和nt121877A>G发生于第20内含子;突变nt122326T>C和nt122362T>C均发生于第21外显子,导致氨基酸发生的改变依次为Val1231Ala和Leu1243Pro。测序结果显示,突变nt121877A>G、nt122326T>C和nt122362T>C这3个SNPs连锁,并且表现出Hha I酶切多态性,本试验研究群体在该基因座的HhaIPCR-RFLP分析中表现出三种基因型,分别为GG型(621bp)、 GA型(621bp+517bp+104bp)和AA型(517bp+104bp)。突变nt121877A>G引起的多态性通过引入酶切位点后,在Pvu IIPCR-RFLP分析中表现出三种基因型,分别为AA型(577bp)、AG型(577bp+542bp+35bp)和GG型(542bp+35bp)。
     2.2牛INSR基因的群体遗传结构分析
     (1)牛INSR基因所有基因座均检测到三种不同基因型。由He(Heterozygosity,杂合度)和PIC(Polymorphism Information Content,多态信息含量)数据可见,INSR基因的所有基因座在本试验研究群体内的多态性不是很丰富。与He(0.4085-0.4971)的数据一致,基因座GT2、GT4、GT5和GT9的PIC值较高(0.3250-0.3735),具有较高的遗传多态性。
     (2)经群体平衡性检验,在本试验研究群体内,牛INSR基因的所有基因座均处于Hardy-Weinberg非平衡状态(P<0.05)。
     (3)在本研究奶牛群体中,INSR基因不同基因座间的D’值均大于0,表明各不同基因座之间存在着不同程度的连锁不平衡关系(0     2.3牛INSR基因多态性对中国荷斯坦奶牛产奶性能的影响
     将牛INSR基因的9个多态性基因座与205头中国荷斯坦奶牛的产奶性能进行相关分析后发现:
     (1)基因座GT1、GT3、GT5、GT7和GT8对各生产指标均无影响(P>0.05)。
     (2)基因座GT2可能是影响中国荷斯坦奶牛乳脂率、乳蛋白产量和产奶量的重要基因座。基因座GT2中AA型个体的乳脂率显著高于GG型和GA型个体(P=0.022),分别高出3.7%(GG型)和3.9%(GA型),GG型个体与GA型个体间的乳脂率无显著差异。胎次与GT2间的交互作用显著影响乳蛋白产量(P=0.015)和产奶量(P=0.008),第一胎的GG型个体明显比AA型个体生产更多的奶和乳蛋白质。胎次与GT2间的交互作用也有影响乳脂产量的趋势(P=0.078)。
     (3)基因座GT4可能是影响乳脂率、乳脂产量、乳蛋白产量和产奶量的重要基因座。基因座GT4中GG型个体的乳脂率比AG型个体高出3.7%;产犊季节与GT4间的交互作用显著影响乳脂率(P=0.018),对于AG型个体,6-8月产犊的个体比9-11月和12-2月产犊的个体乳脂率要低。基因座GT4中AA型个体乳脂产量明显比GG型个体高出11.58%。基因座GT4的不同基因型有影响乳蛋白产量(P=0.081)和产奶量的趋势(P=0.053)。
     (4)基因座GT6可能是影响乳脂率和乳蛋白率的重要基因座。基因座GT6中GG型个体的乳脂率比AG型个体高出4.7%。GG型个体的乳蛋白率比AG型个体高出0.6%。
     (5)基因座GT9的不同基因型不会影响乳脂率、乳脂产量、乳蛋白产量和产奶量,但是有影响乳蛋白率的趋势(P=0.085)。这个结果提示,GT9可能是影响中国荷斯坦奶牛乳蛋白率的重要基因座之一。
In present study, two parts were included:
     1The effects of level of nutrition on expression of genes involved in pathways of mTOR,IGF and insulin signaling in skeletal muscle of Holstein calf
     In present study, we explored the molecular mechanism,by which level of nutritionaffected growth of skeletal muscle and nutrition metabolism of calf by measuring calfperformance, blood metabolites and the expression of15genes in volved inpathways ofmTOR, IGF and insulin signaling in semitendinosus tissue of Holstein calves via quantitativePCR. Twenty calves were assigned randomly to two diets based on block-design by bodyweight:(1) CON: a control diet, constituted by conventional milk replacer (20%CP,20%fat,4.90Mcal/kg ME;1.25%BW; DM basis) and conventional starter (20%CP,3.16Mcal/kg ME,DM basis);(2)HIPRO: a high-protein diet, constituted by high-protein milk replacer (28%CP,16%fat,4.84Mcal/kg ME;2%BW; DM basis) and high-protein starter (25%CP,3.20Mcal/kgME, DM basis). The final results were focused to compare the dietary differences duringpreweaning (0-5wk) and postweaning (5-10wk), respectively. The results were in thefollowings:
     1.1The effects of level of nutrition on calf performance
     Interaction of diet and time did not significantly affect calf live BW, carcass weight,carcass composition (including protein, fat, and ash), total viscera weight, and liver weight.Except for fat weight, significant increases (P=0.01) were observed for final live BW, carcassweight, carcass composition (including protein and ash), total viscera weight and liver weightin calves fed high-protein diet vs. control diet. Greater live BW, carcass weight, carcasscomposition (including protein, fat and ash), and total viscera weight and liver weight wereobserved for calves at10wk vs.5wk.
     1.2The effects of level of nutrition on nutrition metabolism of calf
     Interaction of diet and time (P=0.01) significantly affect blood glucose concentration ofcalves (P=0.01). Rise in blood glucose concentration were observed as nutrition levelincreased for calves at5wk (P=0.04). But no alteration was found for blood glucoseconcentration as nutrition level increased for calves at10wk. In addition, decreasedconcentration of blood glucose was demonstrated for calves fed high-protein diet at10wk vs. 5wk (P=0.01).Blood urea concentration was significantly higher for calves fed high-proteindiet compared to that of calves fed control diet (P=0.01). Urea concentration (P=0.01) andBHBA (β-hydroxybutyric acid, P=0.01) concentration for calves at10wk were significantlyhigher than those for calves at5wk. Total protein concentrationfor calves at10wk weresignificantly lower than that for calves at5wk (P=0.01). Interaction of diet and time (P=0.01)had significant effects on blood NEFA (nonesterified fatty acid) concentration of calves(P=0.01).NEFA concentration increased markedly as nutrition level elevated (P=0.01). Calvesat10wk possessed lower NEFA concentration compared calves at5wk (P=0.01). There wasan overall increase between wk5and wk10for blood insulin concentration (P <0.01), andthere was an increased tendency of insulin by elevated nutrion level (P=0.09).
     1.3The effects of nutrion level on expression of genes involved in pathways of mTOR,IGF and insulin signaling in skeletal muscle of calf
     The interaction of diet and time had significant effects on expression of IGF1R(P=0.04)in semitendinosus tissue of calf. For calves at5wk, expression of IGF1R decreased withelevated nutrition level. The interaction of diet and time also affected expression of TSC2(P=0.02). No change of expression of TSC2by nutrition level was observed for calves at5wk.But for calves at10wk, expression of TSC2was greater for calves fed high-protein dietcompared to that for calves fed control diet. Moreover, higher expression of TSC2for calvesat10wk than that for calves at5wk only occurred for calves fed high-protein diet. Nosignificant changes were found for expression of TSC1, which displayed opposite tendency tothe changes of expression of TSC2. Compared to the gene expression of calves fed controldiet, expression of RPS6KB1for calves fed high-protein diet was markedly downregulatedboth at5wk and10wk (P=0.03), that of IRS1was upregulated (P=0.02), that of INSR tendedto be downregulated (P=0.10), and that of PDPK1tended to be upregulated (P=0.10).Compared to the gene expression of calves at5wk, expression of FOXO1(P=0.04) and INSR(P=0.05) significantly downregulated, that of TSC2was significantly upregulated (P=0.01),and expression of RICTOR (P=0.07), RPTOR (P=0.10) and TSC1(P=0.06) tended to bedownregulated.
     2Analysis of genetic variation of bovine INSR gene in China Holstein dairy cattle
     Taken into account of the importance of nutritional physiology and genetics, INSR genewas selected as a candidate to find potential molecular markers, which controlled dairy cattleperformance by modulating feeding signals reception and transduction. A population of205China Holstein dairy cattle was investigated to study the genetic variation of bovine INSR viaDNA sequencing, DNA sequence analysis and PCR-RFLP techniques. We also conductedassociation analysis between the polymorphism of bovine INSR gene and milk performance (i.e., milk protein content, milk fat content, milk protein yield, milk fat yield and milk yield)of China Holstein dairy cattle, expecting to improve the future productionof dairy cattle in thecondition of intensive production and the application of MAS (marker-assist-selection). Theresults were in the followings:
     2.1Detection of SNPs within bovine INSR gene
     Sequencing from two direction and SNP scanning were conducted for CDS (codingsequence) region (including22exons) in the bovine INSR gene using27pairs of primers.Thirteen mutations were revealed within bovine INSR gene via DNA sequencing, DNAsequence analysis and PCR-RFLP techniques, including7SNPs, which occurred in codingregion and resulted alterations of amino acids, and6SNPs, which occurred in non-codingregion. The mutations were observed at intron8, exon11, intron16, intron20and exon21.
     (1) Mutation nt12689G>A occurred at intron8, resulting Hinf I polymorphism. Threegenotypes were observed via Hinf I PCR-RFLP analysis: genotype GG(315bp+149bp+34bp+5bp), genotype GA (315bp+218bp+149bp+97bp+34bp+5bp) andgenotype AA (218bp+149bp+97bp+34bp+5bp).
     (2) Mutation nt26301G>A, nt26334G>C, nt26496A>G, nt26504C>T and nt26526A>Goccurred at exon11, resulting alterations of amino acids as followings: Arg509His、Arg520Pro、Gln574Arg、Arg577Trp、His584Arg. No linkage was observed among the5SNPs.
     (3) Mutations nt44018G>A, nt44024A>G and nt44067C>T, which were linked together,occurred at intron16, resulting Hha I polymorphism, and three genotypes were observed:genotype GG (526bp+345bp), genotype GA (871bp+526bp+345bp) and genotype AA(871bp).
     (4) Mutations nt121892A>G and nt121877A>G occurred at intron20; Mutationsnt122326T>C and nt122362T>C occurred at exon21,resulting alterations of amino acids asfollowings: Val1231Ala and Leu1243Pro. Linkage among mutations nt121877A>G,nt122326T>C and nt122362T>C possessed Hha I polymorphism: genotype GG (621bp),genotype GA (621bp+517bp+104bp) and genotype AA (517bp+104bp). Three genotypeswere observed via forced Pvu II PCR-RFLP for mutation nt121877A>G: genotype AA(577bp), genotype AG (577bp+542bp+35bp) and genotype GG (542bp+35bp).
     2.2Genetic parameters of population for bovine INSR gene
     (1) Three genotypes were observed for all loci of bovine INSR. Data of He(Heterozygosity) and PIC (Polymorphism Information Content) suggested that polymorphismof INSR gene was not rich in the investigated population. Consistent with values ofHe(0.4085-0.4971), values of PIC at locus GT2, GT4, GT5and GT9implied a higher genetic polymorphism.
     (2) All loci in bovine INSR gene were not in Hardy-Weinberg balance in presentinvestigated population (P<0.05).
     (3) In present population, values of D’between two loci within INSR gene were higherthan0, suggesting linkage disequilibrium between two loci (0     2.3The effects of polymorphism of bovine INSR on milk performance in ChinaHolstein dairy cattle
     Association analysis between9loci of bovine INSR gene and milk performance (milkprotein content, milk fat content, milk protein yield, milk fat yield and milk yield) of205China Holstein dairy cattle revealed the followings:
     (1) There was no effect of polymorphisms of locus GT1、GT3、GT5、GT7and GT8onmilk performance, respectively (P>0.05).
     (2) Locus GT2might be important for milk fat content, milk protein yield and milk yield.Individuals with genotype AA had higher milk fat content than those with genotype GG(3.7%)and GA(3.9%), and no difference were observed for milk fat content between individuals withgenotype GG and GA. The interaction of lactation and GT2significantly influenced milkprotein yield (P=0.015),milk yield (P=0.008), with more milk protein yield and milk yield forindividuals with genotype GG than those with genotype AA at first lactation. The interactionof lactation and GT2tended to influenc milk fat yield (P=0.078).
     (3) Locus GT4might be important for milk fat content, milk fat yield, milk protein yieldand milk yield. Individuals with genotype GG had higher milk fat content than those withgenotype AG (3.7%). The interaction of season and GT4significantly influenced milk fatcontent (P=0.018), individuals with genotype AG had less milk fat content when deliveryoccurred from June to Augast than those from September to November and those fromDecember to Febrary. Interaction of lactation and GT2tended to influenc milk fat yield(P=0.078). Individuals with genotype AA had11.58%higher milk fat yield than those withgenotype GG at locus GT4. Genotype of locus GT4tended to affect milk protein yield(P=0.081) and milk yield (P=0.053).
     (4) Locus GT6might be important for milk fat content and milk protein content.Individuals with genotype GG had higher milk fat content than those with genotype AG (4.7%) at locus GT6. Individuals with genotype GG possessed higher milk protein contentthan those with genotype AG (0.6%).
     (5) Although there was no effect of polymorphism of locus GT9on milk fat content,milk fat yield, milk protein yield and milk yield (P>0.05), it showed tendency for milk proteincontent (P=0.085),suggesting that locus GT9probably was important for milk proteincontent.
引文
陈子江,石玉华,赵跃然,李媛,唐蓉,赵力新and张中和.2004.胰岛素受体基因多态性与多囊卵巢综合征发病的关系.中华妇产科杂志,39(009):582-585.
    黄永震.2010.黄牛NPM1、SREBP1c基因的克隆、SNPs检测及其与生长性状的关系.[硕士学位论文].杨凌:西北农林科技大学.
    庞莉.1997.胰岛素受体基因变异与胰岛素抵抗.国外医学:内分泌学分册,17(004):177-180.
    庞卫军.2007.猪Fox01基因cDNA的克隆及对前体脂肪细胞和成肌细胞分化的调控作用.[博士学位论文].杨凌:西北农林科技大学.
    王玲.2010.普通牛FoxOI、FoxO3、FoxO4基因的克隆、表达及其对一肉质性状的遗传效应分析.[博士学位论文].雅安:四川农业大学.
    张春雷.2007.黄牛能量平衡调控候选基因遗传变异及其与生长性状相关分析.[博士学位论文].杨凌:西北农林科技大学.
    张颖冬和石铸.2000.胰岛素受体基因多态性与脑血管病.国外医学:脑血管疾病分册,8(002):67-69.
    Abumrad NN, Robinson RP, Gooch BR and Lacy WW.1982. The effect of leucine infusion on substrateflux across the human forearm. J Surg Res,32(5):453-463.
    Ahmed M, Nuttall FQ, Gannon MC and Lamusga RF.1980. Plasma glucagon and alpha-amino acidnitrogen response to various diets in normal humans. Am J Clin Nutr,33(9):1917-1924.
    Anderson JW, Johnstone BM and Cook-Newell ME.1995. Meta-analysis of the effects of soy proteinintake on serum lipids. N Engl J Med,333(5):276-282.
    Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS and Kimball SR.2000. Leucine stimulatestranslation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. JNutr,130(10):2413-2419.
    Armstrong JL, Bonavaud SM, Toole BJ and Yeaman SJ.2001. Regulation of glycogen synthesis by aminoacids in cultured human muscle cells. J Biol Chem,276(2):952-956.
    Baldwin RL.1999. The proliferative actions of insulin, insulin-like growth factor-I, epidermal growthfactor, butyrate and propionate on ruminal epithelial cells in vitro.32(3):261-268.
    Baldwin RL.2000. Sheep gastrointestinal development in response to different dietary treatments. SmallRuminant Res.,35:39-47.
    Baldwin RL, McLeod KR, Klotz JL and Heitmann RN.2004. Rumen Development, Intestinal Growth andHepatic Metabolism In The Pre-and Postweaning Ruminant. Journal of dairy science,87: E55-E65.
    Baldwin RLt and Jesse BW.1992. Developmental changes in glucose and butyrate metabolism by isolatedsheep ruminal cells. J Nutr,122(5):1149-1153.
    Ballard FJ and Oliver IT.1965. Carbohydrate Metabolism in Liver from Foetal and Neonatal Sheep.Biochem J,95:191-200.
    Bartlett KS, McKeith FK, VandeHaar MJ, Dahl GE and Drackley JK.2006. Growth and body compositionof dairy calves fed milk replacers containing different amounts of protein at two feeding rates. J. AnimSci.,84(6):1454-1467.
    Baum JI, O'Connor JC, Seyler JE, Anthony TG, Freund GG and Layman DK.2005. Leucine reduces theduration of insulin-induced PI3-kinase activity in rat skeletal muscle. Am J Physiol Endocrinol Metab,288(1): E86-91.
    Bergeron N, Deshaies Y and Jacques H.1992a. Dietary fish protein modulates high density lipoproteincholesterol and lipoprotein lipase activity in rabbits. J Nutr,122(8):1731-1737.
    Bergeron N, Deshaies Y and Jacques H.1992b. Factorial experiment to determine influence of fish proteinand fish oil on serum and liver lipids in rabbits. Nutrition,8(5):354-358.
    Bergeron N and Jacques H.1989. Influence of fish protein as compared to casein and soy protein on serumand liver lipids, and serum lipoprotein cholesterol levels in the rabbit. Atherosclerosis,78(2-3):113-121.
    Beynen AC, West CE, Spaaij CJ, Huisman J, Van Leeuwen P, Schutte JB and Hackeng WH.1990.Cholesterol metabolism, digestion rates and postprandial changes in serum of swine fed purified dietscontaining either casein or soybean protein. J Nutr,120(5):422-430.
    Bionaz M and Loor J.2008. Gene networks driving bovine milk fat synthesis during the lactation cycle.BMC genomics,9(1):366.
    Bionaz M and Loor JJ.2007. Identification of reference genes for quantitative real-time PCR in the bovinemammary gland during the lactation cycle. Physiological Genomics,29(3):312-319.
    Bionaz M and Loor JJ.2011. Gene networks driving bovine mammary protein synthesis during thelactation cycle. Bioinform Biol Insights,5:83-98.
    Bionaz M, Loor JJ, Bionaz M and Loor JJ.2011. Gene Networks Driving Bovine Mammary ProteinSynthesis During the Lactation Cycle. Bioinformatics and Biology Insights,5(BBI-5-Loor-Supplementary Material):83.
    Blome RM, Drackley JK, McKeith FK, Hutjens MF and McCoy GC.2003. Growth, nutrient utilization,and body composition of dairy calves fed milk replacers containing different amounts of protein. J.Anim Sci.,81(6):1641-1655.
    Blum JW and Baumrucker CR.2002. Colostral and milk insulin-like growth factors and related substances:mammary gland and neonatal (intestinal and systemic) targets. Domest Anim Endocrinol,23(1-2):101-110.
    Boden G and Tappy L.1990. Effects of amino acids on glucose disposal. Diabetes,39(9):1079-1084.
    Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A,Lawrence JC, Glass DJ and Yancopoulos GD.2001. Akt/mTOR pathway is a crucial regulator ofskeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol,3(11):1014-1019.
    Bogan JS, McKee AE and Lodish HF.2001. Insulin-responsive compartments containing GLUT4in3T3-L1and CHO cells: regulation by amino acid concentrations. Mol Cell Biol,21(14):4785-4806.
    Bolster DR, Crozier SJ, Kimball SR and Jefferson LS.2002. AMP-activated protein kinase suppressesprotein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin(mTOR) signaling. J Biol Chem,277(27):23977-23980.
    Bos C, Metges CC, Gaudichon C, Petzke KJ, Pueyo ME, Morens C, Everwand J, Benamouzig R and TomeD.2003. Postprandial kinetics of dietary amino acids are the main determinant of their metabolismafter soy or milk protein ingestion in humans. J Nutr,133(5):1308-1315.
    Brüning JC, Michael MD, Winnay JN, Hayashi T, H rsch D, Accili D, Goodyear LJ and Kahn CR.1998. AMuscle-Specific Insulin Receptor Knockout Exhibits Features of the Metabolic Syndrome of NIDDMwithout Altering Glucose Tolerance. Molecular Cell,2(5):559-569.
    Brameld JM, Atkinson JL, Saunders JC, Pell JM, Buttery PJ and Gilmour RS.1996. Effects of growthhormone administration and dietary protein intake on insulin-like growth factor I and growth hormonereceptor mRNA Expression in porcine liver, skeletal muscle, and adipose tissue. J. Anim. Sci.,74(8):1832-1841.
    Brameld JM, Buttery PJ, Dawson JM and Harper JM.1998. Nutritional and hormonal control ofskeletal-muscle cell growth and differentiation. Proc Nutr Soc,57(2):207-217.
    Brockman RP and Laarveld B.1986. Hormonal regulation of metabolism in ruminants; a review. LivestockProduction Science,14(4):313-334.
    Browne GJ and Proud CG.2002. Regulation of peptide-chain elongation in mammalian cells. Eur JBiochem,269(22):5360-5368.
    Buonomo FC and Baile CA.1991. Influence of nutritional deprivation on insulin-like growth factor I,somatotropin, and metabolic hormones in swine. Journal of Animal Science,69(2):755-760.
    Burrin DG, Britton RA, Ferrell CL and Bauer ML.1992. Level of nutrition and visceral organ proteinsynthetic capacity and nucleic acid content in sheep. J Anim Sci,70(4):1137-1145.
    Burrin DG and Davis TA.2004. Proteins and amino acids in enteral nutrition. Curr Opin Clin Nutr MetabCare,7(1):79-87.
    Burrin DG, Ferrell CL, Britton RA and Bauer M.1990. Level of nutrition and visceral organ size andmetabolic activity in sheep. Br J Nutr,64(2):439-448.
    Burrin DG, Ferrell CL, Eisemann JH and Britton RA.1991. Level of nutrition and splanchnic metaboliteflux in young lambs. J Anim Sci,69(3):1082-1091.
    Burrin DG, Ferrell CL, Eisemann JH, Britton RA and Nienaber JA.1989. Effect of level of nutrition onsplanchnic blood flow and oxygen consumption in sheep. Br J Nutr,62(1):23-34.
    Bush JA, Kimball SR, O'Connor PMJ, Suryawan A, Orellana RA, Nguyen HV, Jefferson LS and Davis TA.2003. Translational Control of Protein Synthesis in Muscle and Liver of Growth Hormone-TreatedPigs. Endocrinology,144(4):1273-1283.
    Byfield MP, Murray JT and Backer JM.2005. hVps34is a nutrient-regulated lipid kinase required foractivation of p70S6kinase. J Biol Chem,280(38):33076-33082.
    Chevalier S, Burgess SC, Malloy CR, Gougeon R, Marliss EB and Morais JA.2006. The greatercontribution of gluconeogenesis to glucose production in obesity is related to increased whole-bodyprotein catabolism. Diabetes,55(3):675-681.
    Chiang GG and Abraham RT.2005. Phosphorylation of mammalian target of rapamycin (mTOR) atSer-2448is mediated by p70S6kinase. J Biol Chem,280(27):25485-25490.
    Dan HC, Sun M, Yang L, Feldman RI, Sui XM, Ou CC, Nellist M, Yeung RS, Halley DJ, Nicosia SV,Pledger WJ and Cheng JQ.2002. Phosphatidylinositol3-kinase/Akt pathway regulates tuberoussclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem,277(38):35364-35370.
    Davis TA and Fiorotto ML.2009. Regulation of muscle growth in neonates. Curr Opin Clin Nutr MetabCare,12(1):78-85.
    Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC and Thomas G.2001. Mammalian TOR: ahomeostatic ATP sensor. Science,294(5544):1102-1105.
    Deshmukh AS, Treebak JT, Long YC, Viollet B, Wojtaszewski JF and Zierath JR.2008. Role of adenosine5'-monophosphate-activated protein kinase subunits in skeletal muscle mammalian target ofrapamycin signaling. Mol Endocrinol,22(5):1105-1112.
    Dickson MC, Saunders JC and Gilmour RS.1991. The ovine insulin-like growth factor-I gene:characterization, expression and identification of a putative promoter. J Mol Endocrinol,6(1):17-31.
    Dodson MV, McFarland DC, Grant AL, Doumit ME and Velleman SG.1996. Extrinsic regulation ofdomestic animal-derived satellite cells. Domestic Animal Endocrinology,13(2):107-126.
    Doi M, Yamaoka I, Fukunaga T and Nakayama M.2003. Isoleucine, a potent plasma glucose-loweringamino acid, stimulates glucose uptake in C2C12myotubes. Biochem Biophys Res Commun,312(4):1111-1117.
    Doi M, Yamaoka I, Nakayama M, Mochizuki S, Sugahara K and Yoshizawa F.2005. Isoleucine, a bloodglucose-lowering amino acid, increases glucose uptake in rat skeletal muscle in the absence ofincreases in AMP-activated protein kinase activity. J Nutr,135(9):2103-2108.
    Donkin SS and Armentano LE.1994. Regulation of gluconeogenesis by insulin and glucagon in theneonatal bovine. Am J Physiol,266(4Pt2): R1229-1237.
    Donkin SS and Armentano LE.1995. Insulin and glucagon regulation of gluconeogenesis in preruminatingand ruminating bovine. Journal of Animal Science,73(2):546-551.
    Drackley JK.2008. Calf Nutrition from Birth to Breeding. Veterinary Clinics of North America: FoodAnimal Practice,24(1):55-86.
    Dreyer HC, Drummond MJ, Pennings B, Fujita S, Glynn EL, Chinkes DL, Dhanani S, Volpi E andRasmussen BB.2008. Leucine-enriched essential amino acid and carbohydrate ingestion followingresistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J PhysiolEndocrinol Metab,294(2): E392-400.
    Drummond MJ, Dreyer HC, Pennings B, Fry CS, Dhanani S, Dillon EL, Sheffield-Moore M, Volpi E andRasmussen BB.2008. Skeletal muscle protein anabolic response to resistance exercise and essentialamino acids is delayed with aging. J Appl Physiol,104(5):1452-1461.
    Eckel RH.2003. A new look at dietary protein in diabetes. Am J Clin Nutr,78(4):671-672.
    Edwards EM, Dhand UK, Jeacock MK and Shepherd DA.1975. Activities of enzymes concerned withpyruvate and oxaloacetate metabolism in the heart and liver of developing sheep. Biochim BiophysActa,399(2):217-227.
    Faichney GJ and Barry TN.1984. Intravenous somatostatin infusion affects gastrointestinal tract functionin sheep. Canadian journal of animal science.,64:93-94.
    Felig P.1975. Amino acid metabolism in man. Annu Rev Biochem,44:933-955.
    Felig P, Marliss E and Cahill GF, Jr.1969. Plasma amino acid levels and insulin secretion in obesity. NEngl J Med,281(15):811-816.
    Felig P, Marliss E and Cahill GF, Jr.1970. Are plasma amino acid levels elevated in obesity? N Engl J Med,282(3):166.
    Ferrell CL.1988. Contribution of visceral organs to animal energy expenditures. Journal of Animal Science,66(Supplement3):23-34.
    Ferrell CL, Koong LJ and Nienaber JA.1986. Effect of previous nutrition on body composition andmaintenance energy costs of growing lambs. Br J Nutr,56(3):595-605.
    Feskens EJ, Bowles CH and Kromhout D.1991. Inverse association between fish intake and risk of glucoseintolerance in normoglycemic elderly men and women. Diabetes Care,14(11):935-941.
    Feskens EJ and Kromhout D.1993. Epidemiologic studies on Eskimos and fish intake. Ann N Y Acad Sci,683:9-15.
    Flakoll PJ, Wentzel LS, Rice DE, Hill JO and Abumrad NN.1992. Short-term regulation ofinsulin-mediated glucose utilization in four-day fasted human volunteers: role of amino acidavailability. Diabetologia,35(4):357-366.
    Fox HL, Kimball SR, Jefferson LS and Lynch CJ.1998. Amino acids stimulate phosphorylation of p70S6kand organization of rat adipocytes into multicellular clusters. Am J Physiol,274(1Pt1): C206-213.
    Freetly HC, Ferrell CL, Jenkins TG and Goetsch AL.1995. Visceral oxygen consumption during chronicfeed restriction and realimentation in sheep. J Anim Sci,73(3):843-852.
    Friedberg CE, Janssen MJ, Heine RJ and Grobbee DE.1998. Fish oil and glycemic control in diabetes. Ameta-analysis. Diabetes Care,21(4):494-500.
    Fujita S, Dreyer HC, Drummond MJ, Glynn EL, Cadenas JG, Yoshizawa F, Volpi E and Rasmussen BB.2007. Nutrient signalling in the regulation of human muscle protein synthesis. J Physiol,582(Pt2):813-823.
    Gálfi P, Veresegyházy T, Neogrády S and Kutas F.1981. Effect of Sodium n-Butyrate on Primary RuminalEpithelial Cell Culture. Zentralblatt für Veterin rmedizin Reihe A,28(3):259-261.
    Gannon MC, Nuttall FQ, Lane JT and Burmeister LA.1992. Metabolic response to cottage cheese or eggwhite protein, with or without glucose, in type II diabetic subjects. Metabolism,41(10):1137-1145.
    Gannon MC, Nuttall FQ, Saeed A, Jordan K and Hoover H.2003. An increase in dietary protein improvesthe blood glucose response in persons with type2diabetes. Am J Clin Nutr,78(4):734-741.
    Gao X, Zhang Y, Arrazola P, Hino O, Kobayashi T, Yeung RS, Ru B and Pan D.2002. Tsc tumoursuppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol,4(9):699-704.
    Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma SC, Hafen E, Bos JL andThomas G.2003. Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibitedby TSC1and2. Mol Cell,11(6):1457-1466.
    Gascon A, Jacques H, Moorjani S, Deshaies Y, Brun LD and Julien P.1996. Plasma lipoprotein profile andlipolytic activities in response to the substitution of lean white fish for other animal protein sources inpremenopausal women. Am J Clin Nutr,63(3):315-321.
    Giesecke D, Beck U, Wiesmayr S and Stangassinger M.1979. The effect of rumen epithelial developmenton metabolic activities and ketogenesis by the tissue in vitro. Comp Biochem Physiol B,62(4):459-463.
    Gill M, France J, Summers M, McBride BW and Milligan LP.1989. Simulation of the energy costsassociated with protein turnover and Na+,K+-transport in growing lambs. J Nutr,119(9):1287-1299.
    Gilliland RL, Bush LJ and Friend JD.1962. Relation of Ration Composition to Rumen Development inEarly-Weaned Dairy Calves with Observations on Ruminal Parakeratosis. Journal of Dairy Science,45(10):1211-1217.
    Gingras A-C, Raught B and Sonenberg N.2001. Regulation of translation initiation by FRAP/mTOR.Genes&Development,15(7):807-826.
    Glass DJ.2005. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol,37(10):1974-1984.
    Gross KL, Harmon DL and Avery TB.1990. Portal-drained visceral flux of nutrients in lambs fed alfalfa ormaintained by total intragastric infusion. J Anim Sci,68(1):214-221.
    Gual P, Gremeaux T, Gonzalez T, Le Marchand-Brustel Y and Tanti JF.2003. MAP kinases and mTORmediate insulin-induced phosphorylation of insulin receptor substrate-1on serine residues307,612and632. Diabetologia,46(11):1532-1542.
    Gulve EA, Cartee GD and Holloszy JO.1991. Prolonged incubation of skeletal muscle in vitro: preventionof increases in glucose transport. Am J Physiol,261(1Pt1): C154-160.
    Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE and Shaw RJ.2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell,30(2):214-226.
    Haga S, Fujimoto S, Yonezawa T, Yoshioka K, Shingu H, Kobayashi Y, Takahashi T, Otani Y, Katoh K andObara Y.2008. Changes in Hepatic Key Enzymes of Dairy Calves in Early Weaning ProductionSystems. Journal of dairy science,91(8):3156-3164.
    Halevy O, Nadel Y, Barak M, Rozenboim I and Sklan D.2003. Early Posthatch Feeding StimulatesSatellite Cell Proliferation and Skeletal Muscle Growth in Turkey Poults. The Journal of Nutrition,133(5):1376-1382.
    Hamada T, Maeda S and Kameoka K.1976. Factors influencing growth of rumen, liver, and other organs inkids weaned from milk replacers to solid foods. J Dairy Sci,59(6):1110-1118.
    Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C and Avruch J.1998. Amino acid sufficiency andmTOR regulate p70S6kinase and eIF-4E BP1through a common effector mechanism. J Biol Chem,273(23):14484-14494.
    Haruta T, Uno T, Kawahara J, Takano A, Egawa K, Sharma PM, Olefsky JM and Kobayashi M.2000. Arapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomaldegradation of insulin receptor substrate-1. Mol Endocrinol,14(6):783-794.
    Hay N and Sonenberg N.2004. Upstream and downstream of mTOR. Genes Dev,18(16):1926-1945.
    Heitmann RN, Dawes DJ and Sensenig SC.1987. Hepatic ketogenesis and peripheral ketone bodyutilization in the ruminant. J Nutr,117(6):1174-1180.
    Herrero MC, Remesar X, Blade C and Arola L.1997. Muscle amino acid pattern in obese rats. Int J ObesRelat Metab Disord,21(8):698-703.
    Hinault C, Mothe-Satney I, Gautier N, Lawrence JC, Jr. and Van Obberghen E.2004. Amino acids andleucine allow insulin activation of the PKB/mTOR pathway in normal adipocytes treated withwortmannin and in adipocytes from db/db mice. Faseb J,18(15):1894-1896.
    Hinault C, Mothe-Satney I, Gautier N and Van Obberghen E.2006. Amino acids require glucose to enhance,through phosphoinositide-dependent protein kinase1, the insulin-activated protein kinase B cascade ininsulin-resistant rat adipocytes. Diabetologia,49(5):1017-1026.
    Hird FJ and Weidemann MJ.1964. Ketone-body synthesis in relation to age of lambs. Biochem J,93(2):423-430.
    Holz MK and Blenis J.2005. Identification of S6kinase1as a novel mammalian target of rapamycin(mTOR)-phosphorylating kinase. J Biol Chem,280(28):26089-26093.
    Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, Chin ER and Esser KA.2004.Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide3-kinase-, proteinkinase B-and growth factor-independent mechanism. Biochem J,380(Pt3):795-804.
    Hubbard R, Kosch CL, Sanchez A, Sabate J, Berk L and Shavlik G.1989. Effect of dietary protein onserum insulin and glucagon levels in hyper-and normocholesterolemic men. Atherosclerosis,76(1):55-61.
    Inoki K, Li Y, Xu T and Guan KL.2003. Rheb GTPase is a direct target of TSC2GAP activity andregulates mTOR signaling. Genes Dev,17(15):1829-1834.
    Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K,Wang CY, He X, MacDougald OA, You M, Williams BO and Guan KL.2006. TSC2integrates Wntand energy signals via a coordinated phosphorylation by AMPK and GSK3to regulate cell growth.Cell,126(5):955-968.
    Inoki K, Zhu T and Guan K-L.2003. TSC2Mediates Cellular Energy Response to Control Cell Growthand Survival. Cell,115(5):577-590.
    Inoki K, Zhu T and Guan KL.2003. TSC2mediates cellular energy response to control cell growth andsurvival. Cell,115(5):577-590.
    Iritani N, Sugimoto T, Fukuda H, Komiya M and Ikeda H.1997. Dietary soybean protein increases insulinreceptor gene expression in Wistar fatty rats when dietary polyunsaturated fatty acid level is low. JNutr,127(6):1077-1083.
    Jacinto E and Hall MN.2003. Tor signalling in bugs, brain and brawn. Nat Rev Mol Cell Biol,4(2):117-126.
    Jacques H, Noreau L and Moorjani S.1992. Effects on plasma lipoproteins and endogenous sex hormonesof substituting lean white fish for other animal-protein sources in diets of postmenopausal women. AmJ Clin Nutr,55(4):896-901.
    Jaeger LA and Lamar CH.1992. Immunolocalization of epidermal growth factor (EGF) and EGF receptorsin the porcine upper gastrointestinal tract. Am J Vet Res,53(9):1685-1692.
    Johnson DE, Johnson KA and Baldwin RL.1990. Changes in liver and gastrointestinal tract energydemands in response to physiological workload in ruminants. J Nutr,120(6):649-655.
    Johnson MM and Peters JP.1993. Technical note: an improved method to quantify nonesterified fatty acidsin bovine plasma. J Anim Sci,71(3):753-756.
    Kabadi UM.1991. Dose-kinetics of pancreatic alpha-and beta-cell responses to a protein meal in normalsubjects. Metabolism,40(3):236-240.
    Kahn BB, Alquier T, Carling D and Hardie DG.2005. AMP-activated protein kinase: ancient energy gaugeprovides clues to modern understanding of metabolism. Cell Metab,1(1):15-25.
    Kelly D, McFadyen M, King TP and Morgan PJ.1992. Characterization and autoradiographic localizationof the epidermal growth factor receptor in the jejunum of neonatal and weaned pigs. Reprod Fertil Dev,4(2):183-191.
    Khamzina L, Veilleux A, Bergeron S and Marette A.2005. Increased activation of the mammalian target ofrapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linkedinsulin resistance. Endocrinology,146(3):1473-1481.
    Khan MA, Lee HJ, Lee WS, Kim HS, Kim SB, Ki KS, Ha JK, Lee HG and Choi YJ.2007. Pre-andPostweaning Performance of Holstein Female Calves Fed Milk Through Step-Down and ConventionalMethods. Journal of dairy science,90(2):876-885.
    Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H, Tempst P and Sabatini DM.2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growthmachinery. Cell,110(2):163-175.
    Kim E, Goraksha-Hicks P, Li L, Neufeld TP and Guan KL.2008. Regulation of TORC1by Rag GTPases innutrient response. Nat Cell Biol,10(8):935-945.
    Kimball SR and Jefferson LS.2006. New functions for amino acids: effects on gene transcription andtranslation. Am J Clin Nutr,83(2):500S-507S.
    Klotz JL and Heitmann RN.2006. Effects of Weaning and Ionophore Supplementation on Selected BloodMetabolites and Growth in Dairy Calves. Journal of dairy science,89(9):3587-3598.
    Klotz JL and Heitmann RN.2007. Changes in Net Portal Nutrient Flux in Response to Weaning Transitionand Ionophore Supplementation in Dairy Calves. Journal of dairy science,90(3):1326-1339.
    Knudsen L, De Meyts P and Kiselyov VV.2011. Insight into the molecular basis for the kinetic differencesbetween the two insulin receptor isoforms. Biochem J,440(3):397-403.
    Koundakjian PP and Snoswell AM.1970. Ketone body and fatty acid metabolism in sheep tissues.3-Hydroxybutyrate dehydrogenase, a cytoplasmic enzyme in sheep liver and kidney. Biochem J,119(1):49-57.
    Kozma SC and Thomas G.2002. Regulation of cell size in growth, development and human disease: PI3K,PKB and S6K. BioEssays,24(1):65-71.
    Krebs M.2005. Amino acid-dependent modulation of glucose metabolism in humans. Eur J Clin Invest,35(6):351-354.
    Krebs M, Brehm A, Krssak M, Anderwald C, Bernroider E, Nowotny P, Roth E, Chandramouli V, LandauBR, Waldhausl W and Roden M.2003. Direct and indirect effects of amino acids on hepatic glucosemetabolism in humans. Diabetologia,46(7):917-925.
    Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, Nowotny P, Roth E, WaldhauslW and Roden M.2002. Mechanism of amino acid-induced skeletal muscle insulin resistance inhumans. Diabetes,51(3):599-605.
    Kromann N and Green A.1980. Epidemiological studies in the Upernavik district, Greenland. Incidence ofsome chronic diseases1950-1974. Acta Med Scand,208(5):401-406.
    Krook A and O'Rahilly S.1996. Mutant insulin receptors in syndromes of insulin resistance. Baillieres ClinEndocrinol Metab,10(1):97-122.
    Lacaille B, Julien P, Deshaies Y, Lavigne C, Brun LD and Jacques H.2000. Responses of plasmalipoproteins and sex hormones to the consumption of lean fish incorporated in a prudent-type diet innormolipidemic men. J Am Coll Nutr,19(6):745-753.
    Lane MA, Baldwin RLt and Jesse BW.2000. Sheep rumen metabolic development in response to age anddietary treatments. J Anim Sci,78(7):1990-1996.
    Lane MA and Jesse BW.1997. Effect of Volatile Fatty Acid Infusion on Development of the RumenEpithelium in Neonatal Sheep. Journal of Dairy Science,80(4):740-746.
    Lavigne C, Marette A and Jacques H.2000. Cod and soy proteins compared with casein improve glucosetolerance and insulin sensitivity in rats. Am J Physiol Endocrinol Metab,278(3): E491-500.
    Lavigne C, Tremblay F, Asselin G, Jacques H and Marette A.2001. Prevention of skeletal muscle insulinresistance by dietary cod protein in high fat-fed rats. Am J Physiol Endocrinol Metab,281(1): E62-71.
    Le Roith D, Kim H, Fernandez AM and Accili D.2002. Inactivation of muscle insulin and IGF-I receptorsand insulin responsiveness. Current Opinion in Clinical Nutrition&Metabolic Care,5(4):371-375.
    Li Y, Corradetti MN, Inoki K and Guan KL.2004. TSC2: filling the GAP in the mTOR signaling pathway.Trends Biochem Sci,29(1):32-38.
    Linn T, Geyer R, Prassek S and Laube H.1996. Effect of dietary protein intake on insulin secretion andglucose metabolism in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab,81(11):3938-3943.
    Linn T, Santosa B, Gronemeyer D, Aygen S, Scholz N, Busch M and Bretzel RG.2000. Effect of long-termdietary protein intake on glucose metabolism in humans. Diabetologia,43(10):1257-1265.
    Linn T, Strate C and Schneider K.1999. Diet promotes beta-cell loss by apoptosis in prediabetic nonobesediabetic mice. Endocrinology,140(8):3767-3773.
    Liu Z, Wu Y, Nicklas EW, Jahn LA, Price WJ and Barrett EJ.2004. Unlike insulin, amino acids stimulatep70S6K but not GSK-3or glycogen synthase in human skeletal muscle. Am J Physiol EndocrinolMetab,286(4): E523-528.
    Long X, Ortiz-Vega S, Lin Y and Avruch J.2005. Rheb binding to mammalian target of rapamycin (mTOR)is regulated by amino acid sufficiency. J Biol Chem,280(25):23433-23436.
    Loor JJ, Dann HM, Everts RE, Oliveira R, Green CA, Guretzky NAJ, Rodriguez-Zas SL, Lewin HA andDrackley JK.2005. Temporal gene expression profiling of liver from periparturient dairy cows revealscomplex adaptive mechanisms in hepatic function. Physiological Genomics,23(2):217-226.
    Lynch CJ, Fox HL, Vary TC, Jefferson LS and Kimball SR.2000. Regulation of amino acid-sensitive TORsignaling by leucine analogues in adipocytes. J Cell Biochem,77(2):234-251.
    McBride BW and Kelly JM.1990. Energy cost of absorption and metabolism in the ruminantgastrointestinal tract and liver: a review. J Anim Sci,68(9):2997-3010.
    McBride BW and Milligan LP.1985. Influence of feed intake and starvation on the magnitude ofNa+,K+-ATPase(EC3.6.1.3)-dependent respiration in duodenal mucosa of sheep. Br J Nutr,53(3):605-614.
    McLeod KR and Baldwin RLt.2000. Effects of diet forage:concentrate ratio and metabolizable energyintake on visceral organ growth and in vitro oxidative capacity of gut tissues in sheep. J Anim Sci,78(3):760-770.
    McLeod KR, Bauer ML, Harmon DL, Reynolds CK and Mitchell GE, Jr.1997. Effects of exogenoussomatostatin and cysteamine on net nutrient flux across the portal-drained viscera and liver of sheepduring intraduodenal infusion of starch hydrolysate and casein. J Anim Sci,75(11):3026-3037.
    Metges CC and Barth CA.2000. Metabolic consequences of a high dietary-protein intake in adulthood:assessment of the available evidence. J Nutr,130(4):886-889.
    Morisset J.1993. Regulation of growth and development of the gastrointestinal tract. J Dairy Sci,76(7):2080-2093.
    Mouratoff GJ, Carroll NV and Scott EM.1969. Diabetes mellitus in Athabaskan Indians in Alaska.Diabetes,18(1):29-32.
    Mouratoff GJ and Scott EM.1973. Diabetes mellitus in Eskimos after a decade. Jama,226(11):1345-1346.
    Nader GA, McLoughlin TJ and Esser KA.2005. mTOR function in skeletal muscle hypertrophy: increasedribosomal RNA via cell cycle regulators. Am J Physiol Cell Physiol,289(6): C1457-1465.
    Naeem A, Drackley JK, Stamey J and Loor JJ.2012. Role of metabolic and cellular proliferation genes inruminal development in response to enhanced plane of nutrition in neonatal Holstein calves. Journal ofDairy Science,95(4):1807-1820.
    Nave BT, Ouwens M, Withers DJ, Alessi DR and Shepherd PR.1999. Mammalian target of rapamycin is adirect target for protein kinase B: identification of a convergence point for opposing effects of insulinand amino-acid deficiency on protein translation. Biochem J,344Pt2:427-431.
    Nishitani S, Takehana K, Fujitani S and Sonaka I.2005. Branched-chain amino acids improve glucosemetabolism in rats with liver cirrhosis. Am J Physiol Gastrointest Liver Physiol,288(6): G1292-1300.
    Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer JM, Natt F, Bos JL,Zwartkruis FJ and Thomas G.2005. Amino acids mediate mTOR/raptor signaling through activationof class3phosphatidylinositol3OH-kinase. Proc Natl Acad Sci U S A,102(40):14238-14243.rskov ER, Benzie D and Kay RNB.1970. The effects of feeding procedure on closure of the oesophagealgroove in young sheep. British Journal of Nutrition,24(03):785-795.rskov ER, Grubb DA, Smith JS, Webster AJ and Corrigall W.1979. Efficiency of utilization of volatilefatty acids for maintenance and energy retention by sheep. Br J Nutr,41(3):541-551.
    Ortigues I, Martin C, Durand D and Vermorel M.1995. Circadian changes in energy expenditure in thepreruminant calf: whole animal and tissue level. J Anim Sci,73(2):552-564.
    Patti ME, Brambilla E, Luzi L, Landaker EJ and Kahn CR.1998. Bidirectional modulation of insulin actionby amino acids. J Clin Invest,101(7):1519-1529.
    Peter RU, Beetz A, Ried C, Michel G, van Beuningen D and Ruzicka T.1993. Increased expression of theepidermal growth factor receptor in human epidermal keratinocytes after exposure to ionizingradiation. Radiat Res,136(1):65-70.
    Peters AL and Davidson MB.1993. Protein and fat effects on glucose responses and insulin requirements insubjects with insulin-dependent diabetes mellitus. Am J Clin Nutr,58(4):555-560.
    Peyrollier K, Hajduch E, Blair AS, Hyde R and Hundal HS.2000. L-leucine availability regulatesphosphatidylinositol3-kinase, p70S6kinase and glycogen synthase kinase-3activity in L6musclecells: evidence for the involvement of the mammalian target of rapamycin (mTOR) pathway in theL-leucine-induced up-regulation of system A amino acid transport. Biochem J,350Pt2:361-368.
    Ping Wang QX, Xianyong Lan, Zhuanjian Li, Mijie Li, Xingtang Fang, Mingxun Li and Hong Chen.2011.A novel EcoRII PCR-RFLP detecting genetic variation of goat NF1-C2gene and its association withmilk yield. Arch Tierz,54:224-226.
    Pisters PW, Restifo NP, Cersosimo E and Brennan MF.1991. The effects of euglycemic hyperinsulinemiaand amino acid infusion on regional and whole body glucose disposal in man. Metabolism,40(1):59-65.
    Playford RJ, Woodman AC, Clark P, Watanapa P, Vesey D, Deprez PH, Williamson RC and Calam J.1993.Effect of luminal growth factor preservation on intestinal growth. Lancet,341(8849):843-848.
    Proud CG.2002. Regulation of mammalian translation factors by nutrients. Eur J Biochem,269(22):5338-5349.
    Pruznak AM, Kazi AA, Frost RA, Vary TC and Lang CH.2008. Activation of AMP-activated proteinkinase by5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside prevents leucine-stimulatedprotein synthesis in rat skeletal muscle. J Nutr,138(10):1887-1894.
    Remer T, Pietrzik K and Manz F.1996. A moderate increase in daily protein intake causing an enhancedendogenous insulin secretion does not alter circulating levels or urinary excretion ofdehydroepiandrosterone sulfate. Metabolism,45(12):1483-1486.
    Reynolds CK, Tyrrell HF and Reynolds PJ.1991. Effects of diet forage-to-concentrate ratio and intake onenergy metabolism in growing beef heifers: whole body energy and nitrogen balance and visceral heatproduction. J Nutr,121(7):994-1003.
    Rickard MD and Ternouth JH.1965. The effect of the increased dietary volatile fatty acids on themorphological and physiological development of lambs with particular reference to the rumen. TheJournal of Agricultural Science,65(03):371-377.
    Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD and Glass DJ.2001.Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR andPI(3)K/Akt/GSK3pathways. Nat Cell Biol,3(11):1009-1013.
    Rompala RE, Hoagland TA and Meister JA.1988. Effect of dietary bulk on organ mass, fasting heatproduction and metabolism of the small and large intestines in sheep. J Nutr,118(12):1553-1557.
    Rompala RE, Johnson DE, Rumpler WV, Phetteplace HW and Parker CF.1987. Level of alimentation andline of breeding on oxygen uptake by ovine jejunal mucosa. Am J Physiol,252(2Pt2): R398-401.
    Rossetti L, Rothman DL, DeFronzo RA and Shulman GI.1989. Effect of dietary protein on in vivo insulinaction and liver glycogen repletion. Am J Physiol,257(2Pt1): E212-219.
    Sakata T, Hikosaka K, Shiomura Y and Tamate H.1980. Stimulatory effect of insulin on ruminalepithelium cell mitosis in adult sheep. Br J Nutr,44(3):325-331.
    Sakata T and Tamate H.1976a. Effect of intraruminal injection of n-sodium butyrate on the mitotic indicesin sheep ruminal epithelium. Tohoku J. Agric. Res.,27:133-135.
    Sakata T and Tamate H.1976b. Effect of n-Butyrate Administration Rate on the Epithelial CellProliferation in Adult Sheep Rumen: A Preliminary Report. Tohoku journal of agricultural research,27(3/4%U http://id.nii.ac.jp/0085/00022394%81977-03-29):136-138.
    Sakata T and Tamate H.1978. Rumen epithelial cell proliferation accelerated by rapid increase inintraruminal butyrate. J Dairy Sci,61(8):1109-1113.
    Sakata T and Tamate H.1979. Rumen epithelium cell proliferation accelerated by propionate and acetate. JDairy Sci,62(1):49-52.
    Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L and Sabatini DM.2008. TheRag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science,320(5882):1496-1501.
    Sanchez A and Hubbard RW.1991. Plasma amino acids and the insulin/glucagon ratio as an explanation forthe dietary protein modulation of atherosclerosis. Med Hypotheses,35(4):324-329.
    Sander EG, Warner RG, Harrison HN and Loosli JK.1959. The Stimulatory Effect of Sodium Butyrate andSodium Propionate on the Development of Rumen Mucosa in the Young Calf. Journal of DairyScience,42(9):1600-1605.
    Savan PMJ, Jeacock MK and Shepherd DAL.1986. Gluconeogenesis in foetal, suckling and weaned lambs:the effect of glucagon. The Journal of Agricultural Science,106(02):259-264.
    Schmelzle T and Hall MN.2000. TOR, a Central Controller of Cell Growth. Cell,103(2):253-262.
    Schneider K, Laube H and Linn T.1996. A diet enriched in protein accelerates diabetes manifestation inNOD mice. Acta Diabetol,33(3):236-240.
    Scott PH, Brunn GJ, Kohn AD, Roth RA and Lawrence JC, Jr.1998. Evidence of insulin-stimulatedphosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase Bsignaling pathway. Proc Natl Acad Sci U S A,95(13):7772-7777.
    Seal CJ and Reynolds CK.1993. Nutritional implications of gastrointestinal and liver metabolism inruminants. Nutr Res Rev,6(1):185-208.
    Shah OJ, Anthony JC, Kimball SR and Jefferson LS.2000.4E-BP1and S6K1: translational integrationsites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab,279(4):E715-729.
    Shaw RJ and Cantley LC.2006. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature,441(7092):424-430.
    Shirazi-Beechey SP, Hirayama BA, Wang Y, Scott D, Smith MW and Wright EM.1991a. Ontogenicdevelopment of lamb intestinal sodium-glucose co-transporter is regulated by diet. J Physiol,437:699-708.
    Shirazi-Beechey SP, Smith MW, Wang Y and James PS.1991b. Postnatal development of lamb intestinaldigestive enzymes is not regulated by diet. J Physiol,437:691-698.
    Siegel EG, Trapp VE, Wollheim CB, Renold AE and Schmidt FH.1980. Beneficial effects oflow-carbohydrate--high-protein diets in long-term diabetic rats. Metabolism,29(5):421-428.
    Smith BJ, Huang K, Kong G, Chan SJ, Nakagawa S, Menting JG, Hu S-Q, Whittaker J, Steiner DF,Katsoyannis PG, Ward CW, Weiss MA and Lawrence MC.2010. Structural resolution of a tandemhormone-binding element in the insulin receptor and its implications for design of peptide agonists.Proceedings of the National Academy of Sciences.
    Smith EM, Finn SG, Tee AR, Browne GJ and Proud CG.2005. The tuberous sclerosis protein TSC2is notrequired for the regulation of the mammalian target of rapamycin by amino acids and certain cellularstresses. J Biol Chem,280(19):18717-18727.
    Smith JM, Amburgh MEV, D铆az MC, Lucy MC and Bauman DE.2002. Effect of nutrient intake on thedevelopment of the somatotropic axis and its responsiveness to GH in Holstein bull calves. J Anim Sci,80(6):1528-1537.
    Smith RH.1961. The development and function of the rumen in milk-fed calves II. Effect of woodshavings in the diet. The Journal of Agricultural Science,56(01):105-111.
    Soucy J and LeBlanc J.1999. The effects of a beef and fish meal on plasma amino acids, insulin andglucagon levels. Nutrition Research,19(1):17-24.
    Spiller GA, Jensen CD, Pattison TS, Chuck CS, Whittam JH and Scala J.1987. Effect of protein dose onserum glucose and insulin response to sugars. Am J Clin Nutr,46(3):474-480.
    Stamey JA.2008. INFLUENCE OF STARTER PROTEIN CONTENT AND PLANE OF NUTRITION ONGROWTH AND BODY COMPOSITION OF DAIRY CALVES Urbana, Illinois:Master thesis ofUniversity of Illinois at Urbana-Champaign.
    Stobo IJF, Roy JHB and Gaston HJ.1966. Rumen development in the calf. British Journal of Nutrition,20(02):189-215.
    Sugano M, Ishiwaki N, Nagata Y and Imaizumi K.1982. Effects of arginine and lysine addition to caseinand soya-bean protein on serum lipids, apolipoproteins, insulin and glucagon in rats. Br J Nutr,48(2):211-221.
    Takano A, Usui I, Haruta T, Kawahara J, Uno T, Iwata M and Kobayashi M.2001. Mammalian target ofrapamycin pathway regulates insulin signaling via subcellular redistribution of insulin receptorsubstrate1and integrates nutritional signals and metabolic signals of insulin. Mol Cell Biol,21(15):5050-5062.
    Tamate H, McGilliard AD, Jacobson NL and Getty R.1962. Effect of Various Dietaries on the AnatomicalDevelopment of the Stomach in the Calf. Journal of Dairy Science,45(3):408-420.
    Tarnawski A, Lu SY, Stachura J and Sarfeh IJ.1992. Adaptation of gastric mucosa to chronic alcoholadministration is associated with increased mucosal expression of growth factors and their receptor.Scand J Gastroenterol Suppl,193:59-63.
    Tessari P, Inchiostro S, Biolo G, Duner E, Nosadini R, Tiengo A and Crepaldi G.1985.Hyperaminoacidaemia reduces insulin-mediated glucose disposal in healthy man. Diabetologia,28(11):870-872.
    Tessari P, Kiwanuka E, Zanetti M and Barazzoni R.2003. Postprandial body protein synthesis and aminoacid catabolism measured with leucine and phenylalanine-tyrosine tracers. Am J Physiol EndocrinolMetab,284(5): E1037-1042.
    Tremblay F, Dubois MJ and Marette A.2003b. Regulation of GLUT4traffic and function by insulin andcontraction in skeletal muscle. Front Biosci,8: d1072-1084.
    Tremblay F, Krebs M, Dombrowski L, Brehm A, Bernroider E, Roth E, Nowotny P, Waldhausl W, MaretteA and Roden M.2005. Overactivation of S6kinase1as a cause of human insulin resistance duringincreased amino acid availability. Diabetes,54(9):2674-2684.
    Tremblay F, Lavigne C, Jacques H and Marette A.2003a. Dietary cod protein restores insulin-inducedactivation of phosphatidylinositol3-kinase/Akt and GLUT4translocation to the T-tubules in skeletalmuscle of high-fat-fed obese rats. Diabetes,52(1):29-37.
    Tremblay F, Lavigne C, Jacques H and Marette A (2007). Role of dietary proteins and amino acids in thepathogenesis of insulin resistance. Annual Review of Nutrition. Palo Alto, Annual Reviews.27:293-310.
    Tremblay F and Marette A.2001. Amino acid and insulin signaling via the mTOR/p70S6kinase pathway.A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem,276(41):38052-38060.
    Varnam GC, Jeacock MK and Shepherd DA.1970. Formation and interconversion of ketone bodies intissues of developing lambs. Biochem J,120(4):30P.
    Varnam GC, Jeacock MK and Shepherd DA.1978. Hepatic ketone-body metabolism in developing sheepand pregnant ewes. Br J Nutr,40(2):359-367.
    Vary TC, Anthony JC, Jefferson LS, Kimball SR and Lynch CJ.2007. Rapamycin blunts nutrientstimulation of eIF4G, but not PKCepsilon phosphorylation, in skeletal muscle. Am J PhysiolEndocrinol Metab,293(1): E188-196.
    Veilleux A, Houde VP, Bellmann K and Marette A.2010. Chronic Inhibition of the mTORC1/S6K1Pathway Increases Insulin-Induced PI3K Activity but Inhibits Akt2and Glucose Transport Stimulationin3T3-L1Adipocytes. Mol Endocrinol,24(4):766-778.
    Velleman SG, Zhang X, Coy CS, Song Y and McFarland DC.2010. Changes in satellite cell proliferationand differentiation during turkey muscle development. Poult Sci,89(4):709-715.
    Wan M, Wu X, Guan KL, Han M, Zhuang Y and Xu T.2006. Muscle atrophy in transgenic mice expressinga human TSC1transgene. FEBS Lett,580(24):5621-5627.
    Wang L, Baldwin RLt and Jesse BW.1996. Identification of two cDNA clones encoding small proline-richproteins expressed in sheep ruminal epithelium. Biochem J,317(Pt1):225-233.
    Wang X, Campbell LE, Miller CM and Proud CG.1998. Amino acid availability regulates p70S6kinaseand multiple translation factors. Biochem J,334(Pt1):261-267.
    Warner RG, Flatt WP and Loosli JK.1956. Ruminant Nutrition, Dietary Factors Influencing Developmentof Ruminant Stomach. Journal of Agricultural and Food Chemistry,4(9):788-792.
    Welsh GI, Miller CM, Loughlin AJ, Price NT and Proud CG.1998. Regulation of eukaryotic initiationfactor eIF2B: glycogen synthase kinase-3phosphorylates a conserved serine which undergoesdephosphorylation in response to insulin. FEBS Lett,421(2):125-130.
    Werner H, Woloschak M, Adamo M, Shen-Orr Z, Roberts CT and LeRoith D.1989. Developmentalregulation of the rat insulin-like growth factor I receptor gene. Proceedings of the National Academyof Sciences of the United States of America,86(19):7451-7455.
    Wester TJ, Britton RA, Klopfenstein TJ, Ham GA, Hickok DT and Krehbiel CR.1995. Differential effectsof plane of protein or energy nutrition on visceral organs and hormones in lambs. J Anim Sci,73(6):1674-1688.
    White RG and Leng RA.1980. Glucose metabolism in feeding and postabsorptive lambs and mature sheep.Comparative Biochemistry and Physiology Part A: Physiology,67(2):223-229.
    Williamson DL, Bolster DR, Kimball SR and Jefferson LS.2006. Time course changes in signalingpathways and protein synthesis in C2C12myotubes following AMPK activation by AICAR. Am JPhysiol Endocrinol Metab,291(1): E80-89.
    Xu G, Kwon G, Marshall CA, Lin TA, Lawrence JC, Jr. and McDaniel ML.1998. Branched-chain aminoacids are essential in the regulation of PHAS-I and p70S6kinase by pancreatic beta-cells. A possiblerole in protein translation and mitogenic signaling. J Biol Chem,273(43):28178-28184.
    Yoshizawa F, Kimball SR and Jefferson LS.1997. Modulation of translation initiation in rat skeletal muscleand liver in response to food intake. Biochem Biophys Res Commun,240(3):825-831.
    Yoshizawa F, Kimball SR, Vary TC and Jefferson LS.1998. Effect of dietary protein on translationinitiation in rat skeletal muscle and liver. Am J Physiol,275(5Pt1): E814-820.
    Young JW, Tove SB and Ramsey HA.1965. Metabolism of acetate, propionate, and n-butyrate in youngmilk-fed calves. J Dairy Sci,48(8):1079-1087.
    Zanton GI and Heinrichs AJ.2008. Analysis of Nitrogen Utilization and Excretion in Growing DairyCattle1. Journal of dairy science,91(4):1519-1533.
    Zhang HH, Lipovsky AI, Dibble CC, Sahin M and Manning BD.2006. S6K1regulates GSK3underconditions of mTOR-dependent feedback inhibition of Akt. Mol Cell,24(2):185-197.
    Zick Y.2001. Insulin resistance: a phosphorylation-based uncoupling of insulin signaling. Trends Cell Biol,11(11):437-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700