用户名: 密码: 验证码:
化学修饰电极及其在环境分析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氨基酸是生物体的最基本物质,又因含有氨基和羧基两种官能团而具有许多独特的性质,利用化学方法或电化学方法将氨基酸修饰到电极表面,在测定金属离子、生物分子、有机污染物等方面显示了其独特的优越性。
     化学修饰电极是当前电化学、电分析化学方面十分活跃的领域。它最突出的特性是,按人们意图设计,在电极表面连接或涂敷了一层具有选择性化学基团的薄膜。修饰电极赋予了电极某种预定的功能,能够提高测定的灵敏度与选择性。
     论文研究了对甲基苯磺酸在玻碳电极上电化学聚合的条件及修饰电极的电化学特性,实验表明在该修饰电极上对多巴胺(Dopamine,DA)和抗坏血酸(Ascorbic acid,AA)均具有良好的电催化效果,并且实现了对多巴胺与抗坏血酸的同时测定,得到满意结果。
     论文分别以天冬氨酸、谷氨酸、苯丙氨酸为修饰材料,用电聚合的方法制备了三种氨基酸类修饰电极。并用所制备的修饰电极作了环境中的对苯酚和邻苯酚的测定研究。通过修饰前后的玻碳电极比较,表明修饰后的电极提高了测定的灵敏度,而且所制备的三种氨基酸类修饰电极都能消除对苯酚(Hydroquinone,HQ)氧化电流对邻苯酚(Catechol,CC)氧化电流的干扰,可以实现对HQ和CC的同时测定。当三种修饰电极分别应用于合成水样中HQ和CC的同时测定时,具有较高的灵敏度和选择性。
     论文在用微脉冲伏安法实现多巴胺与抗坏血酸的同时测定及水样中对苯酚和邻苯酚的同时测定方面有创新,并得到满意结果。
     论文还研究了氨基酸分子结构对同时测定对苯酚和邻苯酚的影响,结果表明,氨基酸的分子结构对电催化效应的影响不显著。
Amino acid is the most essential matter in biological body, which has some specialcharacters for having amino group and carboxyl. Amino acid can be modified on the electrodeby chemical way or electrochemical way. The modified electrodes are applied for thedetermination of metal ion, biological molecule, organic pollutant and so on, which showssome special advantages.
     Chemically modified electrode is currently an active area of research. It can be designedaccording to our demand, and have shown splendid prospects in sensitivity and selectivity.
     In this paper, the polymerization condition of p-toluene sulfonic acid at glassy carbonelectrode and the electrochemical characeristics of the modified electrode had beeninvestigated. It was found that the the polymer showed strong electrocatalytic effects onoxidation of Dopamine (DA) and Ascorbic acid (AA). In differential pulse votammetric(DPV) measurements, the poly(p-toluene sulfonic acid) film modified electrode can separatethe DA and AA oxidation potentials by about 192mV and can be used to the simultaneousdetermination of DA and AA. The electrode shows excellent sensitivity, good selectivity andantifouling properties.
     In the paper, Glassy carbon electrode (GCE) was modified with electropolymerized filmsof poly (aspartic acid) (p-Asp), poly (glutamic acid) (p-Glu) and poly (phenylalanine) (p-Phe),respectively. These three kinds of polymer-modified electrodes (PMEs) were used tosimultaneous electrochemical determination of hydroquinone (HQ) and catechol (CC) andshow an excellent electrocatalytical effect on the oxidation of HQ and CC. A successfulelimination of the fouling effect by the oxidized product of HQ on the response of CC hasbeen achieved at these polymer-modified electrodes. The proposed three kinds ofpolymer-modified electrodes had been applied to simultaneous determination of HQ and CCin a water sample with simplicity and high selectivity.
     Also, we had studied that the structure of the amino acid affected on the oxidation of HQand CC. The result showed that the structure of the amino acid had no obvious effects on theelectrocatalysis of HQ and CC.
引文
[1] Lane R F, Hubbard A T. Electrochemistry of chemisorbed molecules. Ⅰ. reactants connected to electrodes through olefinic substituents. Journal of Physical Chemistry, 1973, 77(11):1401-1410.
    [2] Watking B F, Behling J R, Kariv E, Miller L L. Chiral electrode. Journal of the American Chemical Society. 1975, 97(12):3549-3558.
    [3] Moses P R, Tier L, Murray R W. Chemically modified tin oxide electrode. Analytical Chemistry, 1975, 47(12):1882-1886.
    [4] R W Murray, Electroanalytical Chemistry. Bard, A J, Ed Maecel Dekker:New York, 1984, 13: 191.
    [5] 金利通,全威,徐金瑞等.化学修饰电极.上海:华东师范人学出版社,1992.
    [6] Heller A. Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells. Accounts of chemical research, 1981, 14 (5) : 154-162.
    [7] Nair K G R, Madhavan P. Chitosan for removal of mercury from water. Fishery Technology. 1984, 21(3):109.
    [8] 董绍俊,车广礼,谢远武.化学修饰电极.北京:科学出版社,2003.
    [9] Liu Z F, Hashimoto K, Fujishima A. Difference between the electrochemical reductivities of trans and cis isomers of an azo compound in the assembled monolayer film. Journal of Electroanalytical Chemistry, 1992, 324(1,2):259-267.
    [10] Liu Z F, Morigaki K, Fujishima A et al. Kinetic studies on the thermal cis-trans isomerization of an azo compound in the assembled monolayer film. Journal of physical chemistry, 1992, 96(4):1875-1880.
    [11] Liu Z F, Hashimoto K, Fujishima A. Photoelectrochemical information storage using an azobenzene derivative. Nature, 1990, 347(6438):658-660.
    [12] Yu H Z, Wang Y Q, Liu Z F et al. Fabricating electroactive azobenzene self-assembled monolayers and their characterization. Journal of Electroanalytical Chemistry, 1995, 395(1,2):327-330.
    [13] 王永强,王健,于化忠等.金表面偶氮苯自组装膜的光电化学响应.高等学校化学学报,1996, 17(7):1130-1132.
    [14] 李海英,张浩力,张锦等.新型偶氮苯衍生物自组装膜的制备与结构表征,物理化学学报,1999, 15(3):198-203.
    [15] 曾章逸,潘湛昌.Nafion膜电极对氧的催化还原的研究(1)-CoTSPc和CoTMAP的循环伏安对比. 高等学校化学学报,1994,15(5):737-741.
    [16] 潘湛昌,曾章逸,李琼.氧在直接耐晒翠蓝GL修饰电极上的催化还原.物理化学学报,1999, (15)5:462-466.
    [17] Convet P, Coutanceau C, Crouigneau P et al. Electrodes modified by ectrodeposition of CoTAA complexes asselective oxygen cathodes in a direct methanol fuel cell. Journal of Applied Electrochemistry, 2001, 31(9):945-952.
    [18] Sridhar P, Pemmal R, Rajalakshmi Net al. Humidification studies on polymer electrolyte membrance fuel cell. Power Sources, 2001, 101(7):7278-7283.
    [19] 潘湛昌,崔英德,杨迟.负载有钴大环配合物Nafion膜气体扩散电极对氧的催化还原.化学世界.2003,44(5):227-230.
    [20] 易国斌,潘湛昌,杨迟等.卟吩铁大环配合物FeTFPP修饰电极对氧的催化还原.化学世界,2005, 509(8):462-464.
    [21] 杨辉,李长志,陆天虹等.甲醇在铂微粒修饰的聚硫堇电极上的电催化氧化.物理化学学报, 1997 13(6):542-547.
    [22] 吕艳卓,韩飞,刘长鹏等.杂多酸修饰的电极对于甲醇电氧化的促进作用.高等学校化学学报, 2004,25(10):1909-1911.
    [23] 马玉荣,杨秋霞,李国宝等.甲醛在脯氨酸膜修饰电极上的电催化氧化.电化学,2002, 8(2):208-212.
    [24] 赵庆琦,陈实,邓锐等.一氧化氮在大环铜配合物修饰电极上的电催化氧化及测定.分析测试学报,2001,20(3):9-11.
    [25] 葛文,莫金垣.聚1,10-邻菲络琳合钴(Ⅱ)化学修饰电极对一氧化氮测定的研究.分析科学学报, 2003,19(2):157-159.
    [26] 刘斌,孙向英,徐金瑞.壳聚糖修饰电极测定碘的研究.电化学,2004,10(1):59-64.
    [27] 黄美荣,刘睿,李新贵.芳香族二胺聚合物修饰电极对痕量重金属离子的络合与探测.分析测试学报,2005,24(2):109-113.
    [28] 王宗花,罗国安,肖素芳等.α-环糊精复合碳纳米管电极对异构体的电催化作用.高等学校化学学报,2003,24(5):811-813.
    [29] 王南平,张其平,张湛赋等.β-环糊精修饰金电极对神经递质的电化学测定.分析测试学报,2003, 22(5):29-32.
    [30] Wang Z H, Xiao S F, Chen Y. β-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine. Journal of Electroanalytica] Chemistry, 2006, 589(2):237-242.
    [31] 王辉:房喻:梅明华.二甲氨基查耳酮修饰的β-环糊精在不同溶剂中的光物理行为.物理化学学报,2002,18(6):495-499.
    [32] 刘海玲,赵朋妹.聚合β—环糊精包结二甲酚橙修饰碳糊铬(Ⅵ)电极的研制和应用分析化学, 2002,30(12):1533.
    [33] 蔡红,张占军,王斌等.s-BLM修饰电极对组胺电化学传感行为的研究.化学物理学报,2004, 17(2):207-210.
    [34] 王保珍,杜晓燕,郑晶等.铂电极表面生物素—亲和素固载单链脱氧核糖核酸的化学修饰电极. 分析化学研究报告,2005,33(6):789-792.
    [35] 梁汝萍,邱建丁,邹小勇等.基于Nafion-L-赖氨酸-溶胶-凝胶膜的电催化型多巴胺传感器.应用化学,2003,20(4):346-350.
    [36] 张玉,张治军,李桂敏等.8-羟基喹啉-5-磺酸修饰电极pH传感器的制备及应用.化学研究,2005, 16(2):45-47.
    [37] 陆华,李勇,施国跃.W/WOs/Nafion新型pH H修饰电极的研究及其应用.传感器技术,2003,22(7):15-18.
    [38] 刘海玲,朱桂平.以环糊精包结物为敏感膜的钙离子选择电极研究,分析试验室,2004, 23(4):52-54.
    [39] 张兴之,瞿万云,关德晶.化学修饰碳糊电极对环境水样中微量铅、锡离子的连续电化学测定. 化工科技,2003,11(3):39-41.
    [40] 黄文胜,杨春海,张升晖.Nafion修饰电极伏安法测定痕量镉。分析试验室,2003,22(2):80-82.
    [41] 杨庆华,叶宪曾,王宏.金在脱乙酰壳多糖修饰电极上的电化学行为及分析应用,分析试验室, 1998,17(6):5-9
    [42] 王艳,叶宪曾,李南强.钯在脱乙酰壳多糖修饰电极上的电化学行为及分析应用,北京大学学报, 1996,32(4):407-412.
    [43] 王艳,叶宪曾,许振华等.脱乙酰壳多糖化学修饰电极测定铂的研究.高等学校化学学报,17(9): 1367-1371.
    [44] 杨庆华,叶宪曾,洪志超.银在脱乙酰壳多糖修饰电极上的电化学行为及分析应用,理化检验-化学分册,2000,36(4):161-163.
    [45] Lagerlof F, Matsuo S. Ionselective minielectrode determination of ionic and total calcium concentrations in mixed saliva. Clinica Chimica Acta, 1991, 198 (3):175-181.
    [46] 魏小平,李建乎,戴达勇.吡咯烷二硫代氨基甲酸盐碳糊修饰电极的研究.分析实验室,1997, 16(4): 13-16.
    [47] Hoyer B. Calibration of a solid-state copper ion-selective electrode in cupric ion buffers containing chloride. Talanta, 1991, 38(1):115-118.
    [48] 杨大鸣,胡晓安,陆俭洁等.PVC膜修饰粉末电极的研制及应用.分析化学,1998, 19(11):1743-1745.
    [49] 姜艳霞,宋文波,刘颖.分子筛修饰电极中内电子传输机理的研究.高等学校化学学报,1998, 19(12):1929-1932.
    [50] 何红波,张文杰.化学修饰电极预富集一石墨炉原子吸收测定铕的研究.沈阳工业学院学报,学院学报,2001,20(2):79-83.
    [51] 但德忠,陈文,龚峰景等.聚氯乙烯膜修饰碳微电极的研究及应用.分析化学,2001, 28(9):1150-1154
    [52] 费俊杰,黎拒淮,易芳支.懈皮素化学修饰碳糊电极吸附溶出伏安法测定痕量铅.分析化学,2001, 29(8):916-918.
    [53] 邓芳、邱华、翁燕等.亚硝酸根-品红-8-羟基喹啉吸附波的研究及痕量亚硝酸根的测定.分析试验室,1994,13(3):55-56,64.
    [54] 鲍所言、王彤立、边金英.溴酸钾氧化亮绿SF催化光度法测定痕量亚硝酸根的研究[J].分析化学,1995,23(2):191-193.
    [55] 张贵珠、张海清、何锡文等.荧光光度法同时测定硝酸银及亚硝酸根的研究.分析化学,1994, 22(10):1006-1009.
    [56] 王亚林,方能虎、康敬万等.基于亚硝化反应的极谱法测定亚硝酸根的研究.分析测试学报,1999, 18(3):53-55.
    [57] 秦汉明.单扫描极谱法同时测定环境水样中微量硝酸根和亚硝酸根.环境科学与技术,2001, 97(5):30-33.
    [58] 吴鸣虎,王升富.亚硝酸根在磷钼镍杂多酸—聚吡咯膜修饰电极上的伏安法行为及其含量测定. 分析试验室,1999,18(3):45-48.
    [59] 兰雁华,陆光汉,吴晓刚.甲壳素修饰碳糊电极测定亚硝酸根.分析实验室,1999,18(1):27-30.
    [60] 姚长斌,景丽洁,官柏艳等.化学修饰电极应用研究进展.河南化工,2002,2:5-8.
    [61] 田敏,奚晓丹,董绍俊.硅钨杂多酸修饰微电极的研究.分析化学,1996,24(8):902-905
    [62] 孙玉堂,吴建人,刘强等.铅基磷酸铅化学修饰电极的研究.分析化学.1995,23(11):274-1276
    [63] 吴建人,张晓辉,丁秀琴.Ag-AgSO_4化学修饰电极的研制与应用.理化检验一化学分册,1996, 32(3):156-157
    [64] Crosby N T, Denns A L, Stevens J G. An evaluation of some methods for the determination of fluoride in potable waters and other aqueous solutions. Analyst, 1968, 93(1111): 643~652.
    [65] Yan J C. Environmental Analysis. Beijing: Chemical Industry Press, 2002.
    [66] 咸阳市环境保护局.电化学分析方法在环境监测中的应用论文集.北京:中国环境科学,1986.
    [67] 魏培海,陈立仁,李关宾.酚类化合物在二氧化锡微粒修饰碳纤维电极上的氧化及检测.分析化学,2001,29(1):49-52
    [68] Zhang H, Wang Z H, Zhou S P. Simultaneous determination of nitrophenol isomers at the single-wall carbon nanotube compound conducting the single-wall carbon nanotube compound conducting. Science in China Series B Chemistry, 2005, 48(3):177-182.
    [69] 李启隆,赵敏,胡劲波等.离子注入修饰电极检测硝基苯.分析化学,1997,25(11):1246-1249.
    [70] 金利通,周满水,史占玲等.C60修饰电极电位传感器对十六烷基三甲基溴化胺的检测和应用析究.分析化学,1995,23(2):163-66.
    [71] Ai S Y, Gao M N, Zhang W etal. Preparation of Ce-PbO_2 modified electrode and its application. Talanta, 2004, 62(3): 445-450.
    [72] 兰雁华,陆光汉,姚胜来等,甲壳素修饰碳糊电极测定痕量铜.分析化学,1998,26(10):1192-1195.
    [73] Ulman A. Formation and Structure of Self-Assembled Monolayers. Chemical review, 1996, 96(4):1533-1539.
    [74] Murty K V G K, Venkataramanan M, Pradeep T. Self-assembled monolayers of 1,4-benzenedimethanethiol on polycrystalline silver and gold films: An investigation of structure, stability, dynamics and reactivity. Langmuir, 1998, 14(19):5446-5456.
    [75] Raj C R, Abde]rahman A I, Ohsaka T. Gold nanoparticle-assisted electroreduction of oxygen. Electrochemistry communications, 2005, 7(9):888-893.
    [76] Arrigan D W M, Bihan L L. A study of L-cysteine adsorption on gold via electrochemical desorption and copper(Ⅱ) ion complexatio. Analyst, 1999, 124(11):1645-1651.
    [77] 徐肖邢.铜卟啉-L-半胱氨酸自组装复合膜修饰电极的制备及电化学性能的研究.化学研究与应用,2004,16(5):632-636.
    [78] 王广凤,李茂国,阐显文等.纳米银/半胱氨酸修饰金电极的制备及对苯二酚的测定.应用化学, 2005,22(2):168-173.
    [79] Buttry D A. Electroanalytical Chemistry, New York: Taylor&Francis Ltd, 1991.
    [80] 董绍俊.化学修饰电极.化学通报,1981,9(12):12-17.
    [81] Untereker D F, Lennox J C, Wier L M et al. Chemically modified electrodes: Part Ⅳ. Evidence for formation of monolayers of bonded organosilane reagents, Journal of Electroanalytical Chemistry. 1977, 81(2):309-318.
    [82] Zhao G H, Li M F, Hu Z Het al. Electrocatalytical redox of hudroquinone by two forms of L-Proline. Journal of Molecular Catalysis A: Chemical. 2006, 255(1,2):86-91.
    [83] 李昌安,葛存旺,刘战辉等.戊二醛偶联组氨酸修饰金电极测定铜离子的研究.传感技术学报,2003,4:477-48.
    [84] 顾凯,朱俊杰,陈洪渊.血红蛋白在L-半胱氨酸微银修饰电极上的电化学行为.分析化学, 1999,27(10):1173-1180.
    [85] Lin A C, Chen D C, Lin C C et al. Application of Cysteine Monolayers for Electrochemical Determination of Sub-ppb Copper(Ⅱ). Analytical Chemistry, 1999, 71(8):1549-1557.
    [86] 杨培慧,颜丽,汤绮娜等.L-半胱氨酸自组装膜电极对硒的电催化及分析应用.分析化学,2004,32(4):507-510.
    [87] 李军,李洪坤,赵艳霞等.聚L-赖氨酸修饰电极对去甲肾上腺素的电催化氧化.化学传感器, 2004,24(3):56-58.
    [88] 贾莉,孟娟,张修华,王升富.L-半胱氨酸自组装膜修饰电极对对氨基酚电催化氧化及其分析应用. 分析科学学报,2003,19(6):507-510
    [89] Zhang L, Lin X Q, Covalent modification of glassy carbon electrodes with Glycine for voltammetric separation of dopamine and ascorbic acid. Fresenius journal of analytical chemistry. 2001, 3?0(7):956-962.
    [90] 梁汝萍,邱建丁,蔡沛祥.多巴胺在聚L-聚天冬氨酸修饰电极上的催化氧化及测定.中山大学学报,2003,42(1):119-121.
    [91] 王艳玲,刘海燕,张国荣.多巴胺在聚甘氨酸修饰电极上的催化氧化及其痕量测定.化学传感器,2002,22(1):44-51.
    [92] 朱庆仁,孙登明,张宏兵. 聚组氨酸修饰电极测定多巴胺的研究.淮北煤师院学报,200l,22(4):26-29.
    
    [93] Guilbgault G G. Analy tical Uses of Immobilized Enzymes, New York: Marcel Dekker, 1984.
    [94] Mazzali M, Hughes J, Kim Y G et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension, 2001, 38(5):1101-1106.
    [95] Zhang L, Lin X Q. Covalent modification of glassy carbon electrode with glutamic acid for simultameous determination of uric acid and ascorbic acid. Analyst. 2001, 126(3): 367-370.
    [96] Liu Y C, Cui S Q, Zhao J, Yang Z S. Direct electrochemistry behavior of cytochrome c/L-cysteine modified electrode and its electrocatalytic oxidation to nitric oxide. Bioelectrochemistry. 2006, 71(1): 121-125.
    [97] Zhao H, Zhang Y Z, Yuan Z B. Determination of Dopamine in the Presence of Ascorbic Acid Using Poly(hippuric acid) Modified Glassy Carbon Electrode, Electroanalysis, 2002, 14(14): 1031-1034.
    [98] Micheal A C, Justice J B J. Oxidation of dopamine and 4-methylcatechol at carbon fiber disk electrodes, Analytical Chemistry, 1987, 59(3): 405-410.
    [99] Pandey P C, Upadhyay BC. Studies on differential sensing of dopamine at the surface of chemically sensitized ormosil-modified electrodes, Talanta, 2005, 67(5): 997-1006.
    [100] Zhang L, Jiang X. Attachment of gold nanoparticles to glassy carbon electrode and its application for the voltammetric resolution of ascorbic acid and dopamine, Journal of the Electroanalytical Chemistry, 2005, 583(2): 292-299.
    [101] Zhang P, Wu F H, Zhao G C, et al. Selective response of dopamine in the presence of ascorbic acid at multi-walled carbon nanotube modified gold electrode, Bioelectrochemistry, 2005, 67(1): 109-114.
    [102] Zhang P, Wu F H, Zhao G C, et al. Selective response of dopamine in the presence of ascorbic acid at multi-walled carbon nanotube modified gold electrode, Bioelectrochemistry, 2005, 67(1):109-114.
    [103] Yuan S, Chen W H, Hu S S. Fabrication of TiO2 nanoparticles/surfactant polymer complex f ilm on glassy carbon electrode and its application to sensing trace dopamine, Materials Science and Engineering C, 2005, 25(4): 479-485.
    [104] Xue KH, Tao FF, Xu W, et al. Selective determination of dopamine in the presence of ascorbic acid at the carbon atom wire modified electrode, Journal of the Electroanalytical Chemistry, 2005, 578(2): 323-329.
    [105] Zetterstrom T, Sharp T, Marsden CA et al. In vivo measurement of dopamine and its metabolites by intracerebral dialysis: change after D-amphetamine, Journal of Neurochemistry, 1983, 41(6): 1769-1773.
    [106] Capella P, Ghasemzadeh B, Mitchell K et al. Nafiorrcoated carbon fiber electrodes for neurochemical studies in brain tissue, Electroanalysis, 1990, 2(3): 175-178.
    [107] Dayton M A, Ewing A G, Wightman R M. Response of microvoltammetric electrodes to homogeneous catalytic and slow heterogeneous charge-transfer reactions, Analytical Chemistry, 1980, 52(14): 2392-2396.
    [108] Wang Q, Jiang N, Li N Q. Electrocatalytic response of dopamine at a thiolactic acid self-assembled gold electrode, Microchemical journal, 2001, 68(1): 77-85.
    [109] Wang Q, Dong D, Li N Q. Electrochemical response of dopamine at a penicillamine self-assembled gold electrode, Bioelectrochemistry, 2001, 54(2): 169-175.
    [110] Raj C R, Okajima T, Ohsaka T. Gold nanoparticle arrays for the voltammetric sensing of dopamine, journal of the Electroanalytical Chemistry, 2003, 543(2): 127-133.
    [111] Gonon F, BudaM, CespuglioR, et al. Voltammetry in the striatum of chronic freely moving rats: Detection of catechols and ascorbic acid, Brain Research, 1981, 223(1): 69-80.
    [112] Downard A J, Roddick A D, Bond A M. Covalent modification of carbon electrodes for voltammetric differentiation of dopamine and ascorbic acid, Analytica Chimica Acta, 1995, 317(1-3): 303-310.
    [113] Nagy G, Rice M E, Adams R N. A new type of enzyme electrode: The ascorbic acid eliminator electrode, Life Science, 1982, 31(23): 2611-2616.
    [114] Zhao H, Zhang Y Z, Yuan Z B. Study on the electrochemical behavior of dopamine with poly(sulfosalicylic acid) modified glassy carbon electrode, Analytica Chimica Acta, 2001, 441(1): 117-122.
    [115] Xu F, Gao M G, Wang L et al. Sensitive determination of dopamine on poly(aminobenzoic acid) modified electrode and the application toward an experimental Parkinsonian animal model, Talanta, 2001, 55(2): 329-336.
    [116] Jin G Y, Zhang Y Z, Cheng W X. Poly (p-aminobenzene sulfonic acid)-modified glassy carbon electrode for simultaneous detection of dopamine and ascorbic acid, Sensors and Actuators B, 2005, 107(2): 528-534.
    [117] Ramesh P, Sampath S. Selective Determination of Uric Acid in Presence of Ascorbic Acid and Dopamine at Neutral pH Using Exfoliated Graphite Electrodes, Electroanalysis, 2004, 16(10): 866-869.
    [118] Roy P R, Saha M S, Okajima T, et al. Selective Detection of Dopamine and Its Metabolite, DOPAC, in the Presence of Ascorbic Acid Using Diamond Electrode Modified by the Polymer Film, Electroanalysis, 2004, 16(21): 1777-1784.
    [119] Roy P R, Okajima T, Ohsaka T. Simultaneous electroanalysis of dopamine and ascorbic acid using poly (N, N-dimethylaniline)-modif ied electrodes, Bioelectrochemistry, 2003, 59(1-2) : 11-19.
    [120] Ohnuki Y, Ohsaka T, Matsuda H, et al. Permselectivity of films prepared by electrochemical oxidation of phenol and amino-aromatic compounds, Journal of the Electroanalytical Chemistry, 1983, 158(1): 55-67.
    [121] Volkov A, Tourilion G, Lacaze P C et al. Electrochemical polymerization of aromatic amines: IR, XPS and PMT study of thin film formation on a Pt electrode, Journal of the Electroanalytical Chemistry, 1980, 115(2): 279-291.
    [122] Wang J, Chen S P, Lin M S. Use of different electropolymerization conditions for controlling the size-exclusion selectivity at polyaniline, polypyrrole and polyphenol films, Journal of the Electroanalytical Chemistry, 1989, 273(1-2): 231-242.
    [123] Ekinci E, Erdogdu G, Karagozler A E. Preparation, optimization, and voltammetric characteristics of poly(o-phenylenediamine) film as a dopamine-selective polymeric membrane, Applied Polymer Science, 2001, 79(2): 327-332.
    [124] Pontie M, Gobin C, Pauporte T, et al. Electrochemical nitric oxide microsensors: sensitivity and selectivity characterization, Analytica Chimica Acta, 2000, 411(1-2): 175-185.
    [125] Zhao H, Zhang Y Z, Yuan Z B. Electrochemical Behavior of Norepinephrine at Poly (2, 4, 6-trimethylpyridine) Modified Glassy Carbon Electrode, Electroanalysis, 2002, 14(6): 445-448.
    [126] Zhao H, Zhang Y Z, Yuan Z B. Poly(isonicotinic acid) modified glassy carbon electrode for electrochemical detection of norepinephrine, Analytica Chimica Acta, 2002, 454(1): 75-81.
    [127] Roy P R, Saha M S, Okajima T, et al. Electrooxidation and Amperometric Detection of Ascorbic Acid at GC Electrode Modified by Electropolymerization of N, N-Dimethylaniline, Electroanalysis, 2004, 16(4): 289-297.
    [128] Roy RR, Okajima T, Ohsaka T. Simultaneous electrochemical detection of uric acid and ascorbic acid at a poly(N, N-dimethylaniline) film-coated GC electrode, Journal of the Electroanalytical Chemistry, 2004, 561(1): 75-82.
    [129] Taniguchi I, Iseki M, Yamaguchi H, et al. Surface enhanced raman scattering from bis(4-pyridyl)-disulfide- and 4,4' -bipyridine-modified gold electrodes, Journal of the Electroanalytical Chemistry, 1985, 186(1-2): 299-307.
    [130] Giz M J, Duong B, Tao N J. In situ STM study of self-assembled mercaptopropionic acid monolayers for electrochemical detection of dopamine, Journal of the Electroanalytical Chemistry, 1999, 465(1): 72-79. .
    
    [131] Ward T J, Chiral Separations. Analytical chemistry, 2002, 74(12):2863-2872.
    [132] Ding Y P, Liu W L, Wu Q S et al. Direct simultaneous determination of dihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry. Journal of electroanalytical Chemistry, 2005, 575(2):275-280.
    [133] Xie T Y, Liu Q W, Shi Y R et al. Simultaneous determination of positional isomers of benzenediols by capillary zone electrophoresis with square wave amperometric detection. Journal of Chromatography A, 2006, 1109(2):317-321.
    [134] Zawisza I, Bilewicz R, Luboch E et al. Langmuir - Blodgett films of azocrown ethers on electrodes-voltammetric recognition of isomers. Journal of electroanalytical Chemistry, 1999, 471 (2):156-166.
    [135] Wang X G, Wu Q S, Ding Y P. Direct Simultaneous Determination of α-and β-Naphthol Isomers at GC-Electrode Modified with CNTs Network Joined by Pt Nanoparticles Through Derivative Voltammetry. Electroanalysis, 2006, 18(5):517-520.
    [136] Duvall S H, McCreery R L. Control of Catechol and Hydroquinone Electron-Transfer Kinetics on Native and Modified Glassy Carbon Electrodes. Analytical Chemistry, 1999, 71(20):4594-4602.
    [137] Murray R W. Chemically modified electrodes. Accounts of Chemical Research, 1980, 13(5), 135-141.
    [138] Qi H L, Zhang C X. Simultaneous Determination of Hydroquinone and Catechol at a Glassy Carbon Electrode Modified with Multiwall Carbon Nanotubes. Electroanalysis, 2005, 17(10):832-838.
    [139] Cui H, He C X, Zhao G W. Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection. Journal of Chromatography A, 1999, 855(1): 171-179.
    [140] Bensalah N, Gadri A, Canizares P et al. Electrochemical Oxidation of Hydroquinone, Resorcinol, and Catechol on Boron-Doped Diamond Anodes. Environmental science& technology, 2005, 39(18):7234-7239.
    [141] Xu Z A, Chen X, Qu X H et al. Electrocatalytic Oxidation of Catechol at Multi-Walled Carbon Nanotubes Modified Electrode. Electroanalysis, 2004, 16(8): 684-687.
    [142] CarvalhoRM, MelloC, Kubota L T. Simultaneous determination of phenol isomers in binary mixtures by differential pulse voltammetry using carbon fibre electrode and neural network with pruning as a multivariate calibration tool. Analytica Chimica Acta, 2004, 20(1):109-121.
    [143] Lunstord S K, Ma Y L, Galal A et al. The application of various immobilized crown ether platinum-modified electrodes as potentiometric and amperometric detectors for flow injection analyses of catechol and catecholamines. Electroanalysis, 1995, 7(5): 420-424.
    [144] Zen J M, Chen P J. An Ultrasensitive Voltammetric Method for Dopamine and Catechol Detection Using Clay-Modified Electrodes. Electroanalysis, 1998, 10(1):12-15.
    [145] Zhou J X, Wang E K. Liquid chromatography amperometric detection of catechol, resorcinol, and hydroquinone with a copper-based chemically modified electrode. Electroanalysis, 1992, 4(2), 183-189.
    [146] Takehara K, Takemura H, Aihara M et al. Charge-selectivity of the monolayer modified gold electrode for the electrochemical oxidation of catechol derivatives. Journal of electroanalytical Chemistry, 1996, 404(1):179-182.
    [147] Vijayan M, Krishnan V. Electrocatalytic oxidation of hydroquinone on a polypyrrole-coated glassy carbon electrode. Electroanalysis, 1995, 7(2):197—198.
    [148] Pournaghi-Azar M H, Ojani R. Preparation of polypyrrole-coated platinum modified electrode in chloroform in the presence of various supporting electrolytes and its use for the catalytic oxidation of hydroquinone in aqueous and chloroform solutions. Talanta 1995, 42(4):657-662.
    [149] Deslouis C, Musiani M M, Tribollet B. Mediated oxidation of hydroquinone on poly(N-ethylcarbazole): Analysis of transport and kinetic phenomena by impedance techniques. Synthetic Metals, 1990, 38(2):195-203.
    [150] Buttner E, Holze R. Hydroquinone oxidation electrocatalysis at polyaniline films. Journal of electroanalytical Chemistry, 2001, 508(1,2):150-155.
    [151] Shaidarova L G, Gedmina A V, Chelnokova I A et al. Electrocatalytic oxidation of hydroquinone and pyrocatechol at an electrode modified with a polyvinyl pyridine film with electrodeposited rhodium and its use in the analysis of Pharmaceuticals. Journal of Analytical Chemistry, 2004, 59(11):1025-1031.
    [152] Vieira I C, Fatibello-Filho O, Angnes L. Zucchini crude extract-palladium-modified carbon paste electrode for the determination of hydroquinone in photographic developers. Analytica Chimica Acta, 1999, 398(2,3): 145-151.
    [153] W. Ren, H. Q. Luo, N. B. Li, Simultaneous voltammetric measurement of ascorbic acid epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid, Biosensors and Bioelectronics, 2006, 21(7):1086-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700