用户名: 密码: 验证码:
膜化学修饰电极在化学及生物传感器中的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜化学修饰电极是在电极表面进行分子设计,将具有某种优良化学性质的分子、离子和聚合物固定在电极的表面,使电极具有特定的化学和电化学性质。膜化学修饰电极的发展大大丰富了电化学的电极材料,拓展了电化学的研究领域。目前己应用于生命科学、环境科学、能源科学、分析科学、电子学和材料科学等许多方面。修饰在电极表面的媒介体可加速氧化还原中心在电极表面的电子传递过程以实现电催化反应,广泛应用于各种难以实现的电子传递慢过程,例如,生物分子的电催化、有机物的电催化、无机离子的电催化等。固定在电极表面的修饰剂用于分离、富集分析底物,实现分析测定的高灵敏度和高选择性。
     1、本文首先通过循环伏安法将甘氨酸氧化电聚合修饰在玻碳电极表面,制成聚甘酸膜化学修饰电极。利用聚甘氨酸膜的选择渗透性和富集作用,研制了高灵敏度和高选择性的多巴胺生物传感器。此法制备多巴胺传感器简单易行,电极易于再生,且有效地避免了抗坏血酸等的干扰,并使其在一定条件下实现共同测定成为可能。
     2、将修饰剂邻苯三酚直接电聚合到固体电极的表面,研制Bi(Ⅲ)离子化学传感器,该修饰电极稳定性和重现性很好,克服了以往碳糊电极机械强度差、重现性不好的缺陷,测定Bi(Ⅲ)达到了很低的检出限,应用于人发和指甲等实际样品的测定。
     3、首次合成了纳米银-磷酸锆复合材料,其吸附中性红后用于修饰玻碳电极。磷酸锆降低了纳米银胶粒在水溶液中的聚集,提高了其催化活性,而银胶粒保持了磷酸锆对介体的电位调制能力,并大大的提高了磷酸锆对碱性染料的吸附能力和染料分子的活性。本实验优化了纳米银和磷酸锆的性能,提出了一种介体固定的有效方法。
     4、上修饰电极与辣根过氧化酶相耦合制成酶电极,显著的催化了过氧化氢的还原,磷酸锆提高了中性红的氧化还原电位,大大的降低了测定的干扰,并有效的避免了辣根过氧化酶在过低的还原电位下失效,纳米银增强了膜对中性红的吸附,有效的防止了其流失。此工作大大拓展了中性红在生物传感器中的应用。
The film chemically modified electrodes are prepared by designing the electrode surfaces on the molecule level and immobilizing the molecules, ions and polymers of the specifically chemical and electrochemical properties on electrode surfaces to provide the modified electrodes with the specifically chemical and electrochemical functions, which enriched the electrode materials and expanded the research field of the electrochemistry. It was for the moment widely applied in many cases such as life science, environmental science, energv sources science, analytic science, electronics and material science. The mediator modified on the surface of electrodes can accomplish the electrocatalytic reactions by accelerating electron transferring between redox centers and the electrode surface. The electro catalysis of the modified electrode is an enormous impetus for its development and is widely used in the slow electron transferring processes which isn't easily realized, for example, the electro catalysis
    of biomolecules, organic compounds and inorganic ions. The substances immobilized on the modified electrodes are applied for the separation and accumulation of the analytes to accomplish the good selectivity and the high sensitivity of the analytical processes. 1. In our papers, the glycine was modified on the surface of glassy-carbon electrode by the oxidative electropolymerization of CV to fabricate the polyglycine modified electrodes. The high sensitivity and good selectivity were accomplished in the determination of the dopamine due to the selective penetration and the accumulative effect of the.polyglycine membrane. The method to make dopamine sensors is very easy and convenient. The obtained electrode is prone to be reproducible. The dopamine sensor effectively avoided the serious interference from the ascorbic acid and made it possible to determine them at the same time in some condition.
    
    
    
    2. The pyrogallol was adhered on the surface of the solid electrode by the direct oxidative electropolymerization to construct the chemical sensors for Bi (III) . The sensor exhibits perfect long stability and reproducibility. A low detection was obtained in the determination of Bi(III) and this way can be applied to determine the real samples such as human hair and nails.
    3. A novel composite material (Ag0n- ZP) consisting of nano colloidal silver and solid zirconium phosphate was firstly synthesized and applied for the preparation of chemically modified electrodes after it adsorbed the dye molecules such as neutral red. The zirconium phosphate reduced the agglomeration degree of the anodize silver colloid in aqueous medium and improved the catalytic activity of Ag0n. The silver colloid in the composite material never changed the ability of ZP to tune the potential of redox mediators. But the ability of the zirconium phosphate to adsorb neutral red and the redox reaction ability of this phenothiazine dye were enhanced significantly in the composite film due to the nanosize silver colloid. This experiment optimized the performances of ZP and Ag0n An effective way to fix the mediator was put forward in our paper.
    4. The H2O2 biosensor was constructed with the film made from the Ag0n- ZP colloid with HRP, BSA and glutaraldehyde. This sensor had the significant effect of electro catalytic effect on the reduction of H2O2. Its catalytic current was linear with the concentration of H2O2. Most of interference was effectively eliminated and the inactivity of HRP under the too low potential to catalytize the reduction of H2O2 was avoided due to the enhanced potential of NR by ZP in the composite film. While the silver colloid in the composite film enhanced the capability of ZP to adsorb NR and prevented effectively NR from leaching off. This job greatly extended the use of NR in the biosensors.
引文
[1] A.F. Diaz, K.K.Kanazawa, G.P. Gardini, J.Chem. Soc.,Chem. Commun. 635(1979).56
    [2] M.Kawashima, Y. Sato,M.Sato,M.Sakaguchi, Polym.J. 23 (1991) 37.
    [3] B.Zinger, Synth. Met. 30 (1989) 209.
    [4] D.Belanger, G. Laperriere,L.Gravel, J.Electrochem. Soc. 137 (1990) 365.
    [5] G.E.Wenk, L.A.Prezyna, J.J.Lee, Polym. Prepr. 30 (1990) 178.
    [6] D.Velayutham,M.Noel, Talanta 39 (1992) 481.
    [7] S.Dong,Z.Sun,Z. Lu, J.Chem. Soc. Chem.Commun. 993(1988).
    [8] 李春光,崔刚,尹寿玉,姜光哲 分析化学,22 (1994) 922.
    [9] M.Okano, K.Itoh,A.Fujishina, Chem. Lett. 2129(1987).
    [10] A.Boyale, E.Genies,M.Fouletrie, J.Electroanal.Chem. 279 (1990) 197.
    [11] K. Uosaki,K.Okalaki,H.Kita, J.Polym.Sci. Polym.Chem. 28 (1990) 399.
    [15] A.Tsumura, H.Koezuka, S.Tsunoda, T. Ando, Chem. Lett. 863(1986).
    [16] M.Josowicz,J.Janata, Anal.Chem. 58 (1986) 514.
    [17] M.Josowicz, J.Janata, K.Ashley, S.Pons, Anal.Chem. 59 (1987) 253.
    [18] A.A.Karyakin,E.E.Karyakina, H.L.Schmidt, Electroanalysis 11 (1999) 149.
    [19] G. Inzelt, E.Csahok, Electroanalysis 11 (1999) 744.
    [20] D.Benito,J.J.GarciaJareno,J.Navarro-Laboulais, J.Electroanal.Chem. 446 (1998)47.
    [21] R.Yang,C.Ruan,W. Dai,J.Deng,J.Kong, Electrochim.Acta 44 (1999) 1585.
    [22] D.M.Zhou,J.J.Sun, H.Y. Chen,H.Q.Fang, Electrochim.Acta 43 (1998) 1803.
    [23] D.Benito,J.J.Garcia-Jareno,J.Navarro-Laboulais, J.Electroanal.Chem.446 (1998)47.
    [24] A.A.Karyakin,E.E.Karyakina, W. Schuhmann, Eletroanalysis 11(1999)553.
    [25] S.A.Wring, J.P. Hart, Analyst 117 (1992) 1215.
    [26] F. Ni,H.Feng, L.Gorton,T.M.Cotton, Langmuir 6 (1990) 66.
    [27] W.J.Albery, P.N.Bartlett, J.Chem. Soc.,Chem.Commun. 234(1984)63.
    [28] T. Ohsaka, K.Tanaka, K.Tokuda, J.Chem. Soc.,Chem. Commun. 222(1993)58.
    [29] Y.Xiao, H.-X.Ju,H.-Y Chen, Anal.Chim. Acta 391 (1999)299.
    
    
    [30] A.A.Karyakin,E.E.Karyakina, W. Schuhmann, Eletroanalysis 6(1995) 821.
    [31] J.Yano,A.Shimoyama, K.Ogura, J.Chem. Soc.,Faraday Trans. 88(1992) 2523.
    [32] T.Ohsaka, T. Hirokawa, H.Miyamoto,N.Oyama, Anal.Chem. 59(1987) 1758.
    [33] G. Sittampalam,G.S.Wilson,Anal. Chem.55(1983)1608.
    [34] S.V. Sasso,R.J.Pierce,R.Walla,A.M.Yacynych,Anal.Chem. 62(1990)1111.
    [35] C.Malitesta, F. Palmisano,L.Torsi,P.G. Zambonin, Anal.Chem. 62(1990)2735.
    [36] I.Carelli,I.Chiarotto,A.Curulli,G. Palleschi, Electrochim.Acta 41(1996)1793.
    [37] E.Ekinci,A.A.Karagozler, A.E.Karogozler, Electroanalysis 8(1996)571.
    [38] P.N.Bartlett, D.J.Caruana, Analyst 64(1992) 138.
    [39] P.N.Barelett, P. Tebutt, C.H.Tyrell, Anal.Chem. 64(1992) 138.
    [40] P.I.Ortiz, P.R.Abu Nader, H.A.Mottola, Electroanalysis 5(1993)165.
    [41] Hseuh C.,Brajter-Toth,A., Anal.Chem. 64(1992)635.
    [42] Gao,Z.,Chen,B.,Zi,M. Analyst 119(1994)459.
    [43] Xueji, Zhang, Bozidar Ogorevc,Gabrijela, Tavcar, Analyst 121(1996) 1817.
    [44] G. Nagy, G.A.Gerhardt,A.F.Oke, J.Electroanal.Chem. 188(1985) 85.
    [45] H.M.Ji,E.K.Wang, J.Chromatogr. 410(1987)111.
    [46] J.Zhou, E.wang, Anal.Chim. Acta 249(1991)489.
    [47] G. Fortier, M.Vaillancourt, D.Belanger, Electroanalysis 4(1992)275.
    [48] W.L.Sun,J.Xue,J.Sh. Chen, Talanta 49(1999)345.
    [49] V.D.Neff, J.Electrochem. Soc. 125(1978)886.
    [50] K.Itaya, T. Ataka, S.Toshima, J.Am.Chem. Soc. 104(1982)3751.
    [51] P.K.Ghosh,A.J.Bard, J.Am.Chem. Soc. 105(1983)5692.
    [52] C.G. Murray, R.J.Nowak, D.R.Rolison, J.Electroanal. Chem. 164(1984)205.
    [53] P.J.Kulesza, L.R.Faulkner, J.Am.Chem. Soc. 110(1988)4905.
    [54] J.H.Zagal,E.Momoz, S.Ureta-Zanartu, Electrochim.Acta 27(1982) 1373.
    [55] J.P. Collman,P. Deniserich,Y. Konai,M.Marrocco, J.Am. Chem. Soc. 102(1980)6027.
    [56] F. Opekar. J.Electroanal.Chem. 260(1989)451.
    [57] B.Keita, L.Nadjo, J.Electroanal.Chem. 269(1989)447.
    
    
    [58] M.Jiang,Z.Zhao, J.Electroanal.Chem. 292(1990)281.
    [59] M.Jiang,X.Zhou,Z.Zhao, J.Electroanal.Chem. 292(1990)389.
    [60] C.X.Cai,H.X.Ju,H.Y. Chen, Anal.Chim. Acta. 310(1995)145.
    [61] M.H.Pournaghi-Azau, H.Razmi-Nerbin, J.Electroanal.Chem. 456(1998)83.
    [62] S.M.Chen, Electrochim.Acta 43(1998)3359.
    [63] B.D. Humphrey, S.Sinha, A.B.Bocarsly, J.Phys. Chem. 91(1987)586.
    [64] B.J.Feldman,R.W. Murray, Inorg. Chem. 26(1987) 1702.
    [65] V.D.Neff, J.Electrochem. Soc. 132(1985)1382.
    [66] D.N.Upadhyay, D.M.Kolb, J.Electroanal.Chem. 358(1993)317.
    [67] J.Bacskai,K.Martinusz, E.Czirok,G. Inzelt, J.Electroanal.Chem. 385(1995)241.
    [68] D.N.Upadhyay, H.Gomathi,G. Prabhakara Rao, J.Electroanal.Chem. 301(1991)199.
    [69] L.T. Kubota, Y. Gushikem, J.Electroanal.Chem. 362(1993)219.
    [70] K.Tanaka, R.Tamamushi, J.Electroanal.Chem. 380(1995)279.
    [71] N.R.de Tacconi,N.Myung, K.Rajeshwar, J.Phys. Chem. 99(1995)6103.
    [72] Karyakin,A.A.;Karyakina, E.E.;Gorton,L. J.Electroanal.Chem. 456(1998)74.
    [73] Karyakin,A.A.;Karyakina, E.E. Sens. Actuators B 57(1999)268.
    [74] Karyakin,A.A.;Karyakina, E.E.;Gorton,L. Anal.Chem.,72(2000)1720.
    [75] Gorton,L. Electroanalysis 7(1995) 23.
    [76] Itaya, K.;Shoji,N.;Uchida, I. J.Am. Chem. Soc. 106(1984)3423.
    [77] Garijonyte, R.;Malinauskas,A. Sens. Actuators B 46(1998)236.
    [78] Lin,M.S.;Tseng, T.F.;Shih,W.C. Analyst 123(1998)159.
    [79] Garijonyte,R.;Malinauskas,A. Sens. Actuatorss B 56(1999)93.
    [80] Boyer, A.;Kalcher, K;Pietsch,R. Electroanalysis 2(1990) 155.
    [81] Weissenbacher, M.;Kalcher, K;Greschoning, Fresenius J.Anal.Chem. 344(1992)87.
    [82] Hou, W.;Wang, E. Anal,Chim.Acta 257(1992) 275.
    [83] Narayanan,S.S.;Sholz, F. Electroanalysis 11(1999) 465.
    [84] Lu, W.;Wallace,G.G.;Karyakin,A.A.Electroanalysis 10(1998) 472.
    [85] Karyakin,A.A.;Gitelmacher, O.V.;Karyakina, E.E. Anal.Lett. 27(1994)2861.
    
    
    [86] Chi,Q.;Dong, S. Anal.Chim.Acta 310 (1995) 429.
    [87] Karyakin,A.A.;Gitelmacher, O.V.;Karyakina, E.E. Anal. Chem. 67(1995)2419.
    [88] Karyakin,A.A.; Karyakina, Gorton,L. Talanta 43(1996)1597.
    [89] Jaffari,S.;Turner, A.P.F. Biosens. Bioelectron.12(1997)1.
    [90] Deng,Q.;Li,B.;Dong,S. Analyst 123(1998)1995.
    [91] Zhang,X.;Wang,J.;Ogorevc,B.;Spichiger, U.S. Electroanalysis 11(1999)945.
    [92] J.Mo,Bozidar Ogorevc,Xueji,Zhang, Boris Pihlar, Electroanalysis 12(2000)48.
    [93] H.DusseI,A.Dostal,F. Scholz, Fresenius. J.Anal.Chem. 355(1996)21.
    [94] A.Ruaudel-Teixier, A.Barraud,M.Vandevyver, Mol.Cryst. Liq.Cryst. 120(1985)319.
    [95] A.Hamnett,A.R.Hillman, J.Electroanal.Chem. 182(1985)99.
    [96] M.T. Carter, A.J. Bard, J.Electroanal.Chem. 229(1992)191.
    [97] Jyh-Myng Zen,Chin-Wen Lo, Anal.Chem. 68(1996)2635.
    [98] Jyh-Myng Zen,Su-Hua Jeng, Horng-Ji Chen, J.Electroanal. Chem. 408(1996)157.
    [99] Shengshui,Hu, J.Electroanal.Chem. 463(1999)253.
    [100] Chenghong Lei,Jiaqi,Deng, Anal.Chem. 68(1996)3344.
    [101] Jyh-Myng Zen,Chin-Wen Lo, Ping-Jyh Chen, Anal.Chem. 69(1997)1669.
    [102] O.Hatozaki,T. Ohsaka, N.Oyama, J.Phys. Chem. 96(1992)10492.
    [103] S.Dong,Q.Chu, Electroanalysis 5(1993)135.
    [104] N.Oyama, T. Ohsaka, H.Yamamoto,M.Kaneko, J.Phys. Chem. 90(1986)3850.
    [105] E.S.Forzani,G.A.Rivas,V.M.Solis, J. Electroanal.Chem. 435(1997)77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700