用户名: 密码: 验证码:
神经递质类分子的电化学分析及硼酸体系与糖类作用的电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着神经生物学的发展,陆续在神经系统中发现了大量的神经活性物质,简称神经递质,儿茶酚胺类是其中的一种,包括多巴胺、去甲肾上腺素和。肾上腺素。血浆中儿茶酚胺水平的变化将使生物体显示不同的病态情形,因此其浓度的测定对于神经生理学、疾病诊断以及相关药物的控制都具有重要意义。近几十年来,糖类的研究已经取得了很大的进展,人们逐步了解了糖类的结构与功能,也逐渐认识到糖类对于生物体的重要性,糖类对生物体来说并非只是简单的能源物质,有关糖类的研究将成为生命科学的中心课题。糖类是生物体的主要能源物质,也是重要的信息分子,它参与许多生理和病理过程,许多疾病的发生和治疗都与糖类有密切关系。因此对糖类物质的研究与检测,也具有重要的现实意义。本工作的主要研究内容是:一、分别研究了NADH和壳聚糖参杂刚果红两种修饰电极在儿茶酚胺类物质分析方面的应用;二、硼酸体系对糖类的识别作用的研究。
     主要研究工作如下:
     1.NADH修饰电极在肾上腺素分析方面的应用
     研究了基于邻苯二胺聚合膜的纳米金自组装NADH修饰玻碳电极的制备,并探讨了肾上腺素在此修饰电极上的电化学行为,在pH 7.2的磷酸盐缓冲液中,肾上腺素在该修饰电极上产生一个灵敏的氧化峰,峰电流与肾上腺素浓度在3.0×10~(-6)~5.0×10~(-5)mol/L范围内呈良好的线性关系,检出限为3.15×10~(-7)mol/L。该方法可用于盐酸肾上腺素注射液中肾上腺素的检测。
     2.壳聚糖参杂刚果红修饰电极在同时测定多巴胺和尿酸方面研究
     利用涂抹的方法,在玻碳电极上涂抹一层壳聚糖与刚果红混合物修饰膜,制成了壳聚糖参杂刚果红的修饰电极。该壳聚糖参杂刚果红的修饰电极对多巴胺(DA)和尿酸(UA)有很好的电化学活性。利用差示脉冲法探讨了壳聚糖参杂刚果红修饰电极分别测定DA、UA以及同时测定两者的最佳实验条件,建立起测定DA和UA的电化学新方法,该法可用于实际样品中DA和UA的测定。
     3.3-氨基苯硼酸自组装膜修饰电极对葡萄糖等的电化学识别
     采用电沉积技术将壳聚糖修饰到金电极表面,再利用戊二醛作为交联剂连接3-氨基苯硼酸(APBA),在电极表面形成带有硼酸基的自组装膜。采用循环伏安和交流阻抗技术研究了该修饰膜对葡萄糖和果糖的识别作用,探讨了时间和pH值对硼酸修饰电极与葡萄糖的相互作用的影响,研究结果表明在最佳时间和酸度条件下,该修饰电极对糖类有很好的识别作用。4.3-噻吩硼酸自组装修饰电极对葡萄糖等的电化学识别
     采用电沉积技术将金纳米修饰到玻碳电极表面,借助金纳米和硫之间的强作用,3-噻吩硼酸(TBA)被自组装到玻碳电极的表面上。利用交流阻抗和扫描电子显微镜法研究了TBA自组装膜的电化学行为和表面形貌。研究表明TBA自组装膜电极对葡萄糖、甘露糖和果糖具有良好的识别作用,结果表明在最佳条件下阻抗值和糖浓度之间在一定范围有很好的线性关系,可用于糖类分子的电化学识别。
Catecholamine is a kind of the neurotransmitters, including dopamine (DA), epinephrine (EP) and norepinephrine. If the levels of catecholamine change among the blood plasma, the organism shall put up different morbidity. Therefore, the determination of catecholamine makes a very realistic significance. In recent years, a significant advance has been made in carbohydrate research, the knowledge of the structure and function of carbohydrates has been gradually obtained, and the importance of saccharides to the life, not just as a kind of simple energy substances, has also been realized. The researches of saccharides will become the emphases of life sciences. Saccharides are not only the main energy substances, but also as molecules with the function of carrying information, participate in many physiological and pathological processes. There are a lot of diseases tightly related to saccharides; thus, the analysis of saccharides is very important. In this work, one principal reaearch is about the application of NADH and chitosan congo red-polysaccharide hybrid modified electrode in the field of analysis of catecholamine, and the other is about the boronic acid system for the recognition of saccharides.
     The primary reaearch work is as follows:
     1. A novel sensor of NADH immobilized on poly-o-phenylenediamine film self-assembled nano gold and its application for the determination of epinephrine
     The preparation of NADH-poly-o-phenylenediamine film-nano gold chemically modified glassy carbon electrode was studied, and the cyclic voltammetric behavior of epinephrine (EP) on this modified electrode was investigated. It was found that EP showed a well oxidation peak on the modified electrode in a phosphate buffer solution of pH 7.2. The linear range of EP was 3.0×10~(-6)-5.0×10~(-5)mol/L and the detection limit was 5.0×10~(-7)mol/L. This method was applied to the measurement of EP in epinephrine hydrochloride injection samples with satisfaction results.
     2. Application of chitosan congo red-polysaccharide hybrid modified electrode in the field of simultaneous analysis of dopamine and uric acid
     Chitosan and congon red polysaccharide hybrid can be modified onto the surface of glassy carbon electrode through daubing technique. The modified electrode shows an obvious electrochemical activity for the dopamine and uric acid. The reaction conditions were optimized carefully by differential pulse voltammetry. The modified electrode was applied to the determination in practical samples with satisfaction results.
     3. 3-Aminophenylboronic acid self-assembled layer based on chitosan films for recognition of monosaccharide
     Chitosan film has been successfully deposited at gold electrodes from an acidic solution and 3-aminophenylboronic acid (APBA) has been covalently bound to the chitosan film with glutaraldehyde (GD) linkage. The boronic acid groups of the APBA film could form covalent-bond with different sugars, which can change the dielectric characteristics of the APBA film. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetric (CV) were used to characterize the change of the dielectric characteristic. The CV peak current of Fe(CN)_6~(3-/4-) ion decreased and the EIS impedance increased with an increase in sugar concentration. Glucose and mannose have been detected with the CV and EIS methods. The EIS method had higher sensitivity compared with the CV method.
     4. 3-Thiopheneboronic acid self-Assembled gold naoparticles monolayer-modified electrodes sensitive to saccharide
     The glassy carbon electrode modified with nano-gold was prepared by the electrodeposition. Afterward the surface of nano-gold film was modified with a self-assembled monolayer (SAMs) of 3-thiopheneboronic acid (TBA). TBA can form well-packed monomolecular layers on the nano-gold modified glassy carbon electrode through a sulfur-Au bond. The boronic acids group of the TBA films can form covalent-bond with different sugars. Electrochemical impedance spectroscopy was used to display response to sugars in the presence of Fe(CN)_6~(3-/4-) ion. The dielectric characteristics of the TBA film can change with type and concentration of sugars. Three kinds of sugars have been studied by this method and good linear relationship and high sensitivity were obtained.
引文
[1]叶建山,朱传征.一氧化氮分子-打开神秘生命科学大门的一把钥匙[J].化学教育,1997,11:3
    [2]杨志学,童修伦,赵勇.精神分裂症与抑郁症症状学及神经递质的比较研究[J].中国临床心理学杂志,2000,8(3):177-178
    [3]张文,谢云峰,艾仕云,等.掺铈纳米二氧化铅修饰电极色谱电化学用于单胺类神经递质的研究[J].化学学报,2003,61(7):1030-1035
    [4]王宪楷.天然药物化学[M].北京:人民卫生出版社,1994,51
    [5]陈国珍.荧光分析法(第二版)[M].北京:科学出版社,1990,509
    [6]沈同.生物化学(上册)第二版[M].高教出版社,1990,426
    [7]白志龙,董兆申.鼠尿中儿茶酚胺荧光测定法[J].实验技术,1990,8(5-6):497-499。
    [8]张晓萍,王国民,邱宗萌.荧光—高效液相色谱法测定血浆中儿茶酚胺类化合物的研究.重庆医科大学学报[J].1997,22(3):194-197
    [9]王怀友,孙悦,唐波.分光光度法测定多巴胺[J].分析实验室,2003,22(1):45-47
    [10]张爱梅,王怀生,崔慧,等.动力学光度法测定水果、蔬菜、药物中抗坏血酸[J].分析化学,1998,26(11):1411
    [11]陈忠明 李家胜.电位滴定法测定番茄中抗坏血酸的含量[J].科技通报,1944,10(4):239-242
    [12]李习纯.抗坏血酸滴定法的进展[J].有色矿冶,1994,(6):46-47
    [13]Hows Mark E P,Lacroix L,Heidbreder C.High-performance liquid chromatography/tandem mass spectrometric assay for the simultaneous measurement of dopamine,norepinephrine,5-hydroxytryptamine and cocaine in biological samples[J].J Neurosci Methods,2004,138:123-132
    [14]Wang s,Schram I M,Sund R B,Determination of plasma ascorbic acid by HPLC:method and stability studies[J].Eur J Pharm sci,1995,3(4):231-239
    [15].Yebra-Biurrun M C,Flow injection determination methods of ascorbic acid[J],Talanta,2000,52(3):367-383
    [16]Garrido E,Manuela,Lima Jose L F C,Delerue-Matos C,Flow injection amperometric determination of L-dopa,epinephrine or dopamine in pharmaceutical preparations[J].Journao of Pharmaceutical and Biomedical Analysis,1997,15(6):845-849
    [17]Zhang H M,Li N Q,Zhu Z W,Electrocatalytic response of dopamine at dl-homocsteine self-assembled gold electrode[J].Microche J,2000,64(3):277-282
    [18]Selvaraju T,Ramaraj R,Simultaneous determination of ascorbic acid,dopamine and serotonin at poly(phenosafranine)modified electrode[J].Electrochem Commun,2003,5(8):667-672
    [19]Ernst H,Knoll M,Electrochemical characterization of uric acid and ascorbic acid at a platinum electrode[J].Anal Chim Acta,2001,449(1-2):129-134
    [20]Wang Q,Dong D,Li N.Q,Electrochemical response of dopamine at a penicillamine self-assembled gold electrode[J].Bioelectrochem,2001,54:169-175
    [21]Chen S M,Peng K T,The electrochemical properties of dopamine,epinephrine,norepinephrine,and their electrocatalytic reactions on cobalt(Ⅱ)hexacyanoferrate film[J].Electroanal Chem.2003,547:179-189
    [22]zhang H M,Zhou X L,Hui R T,et al,Studies of the electrochemical,behavior of epinephrine at a homocysteine self-assembled electrode[J].Talanta,2002,56:1081-1088
    [23]Xue K H,Tao F F,Yin S Y,et al,Investigation of the electrochemical behaviors of dopamine on the carbon atom wire modified electrode[J].Chem Plays Lett,2004,391:243-247
    [24]Kim S H,Lee J W,Yeo I H,Spectroelectrochemical and electrochemical behavior of epinephrine at a gold electrode[J].Electrochim Acta,2000,45:2889-2895
    [25]方禹之,于雁灵,何品刚,Nafion修饰电化学活化碳纤维微电极测定去甲肾上腺素[J].分析化学,1995,23(12):1440-1443
    [26]方禹之,于雁灵,何品刚,硫辛酸修饰碳纤维电极在抗坏血酸共存下选择性测定神经递质多巴胺[J].分析化学,1996,24(4):407-410
    [27]孙延一,吴康兵,胡胜水.多壁碳纳米管-Nafion化学修饰电极在高浓度抗坏血酸和尿酸体系中选择性测定多巴胺[J].高等学校化学学报,2003,23(111):2067-2069
    [28]Zhao H,Zhang Y Z,Yuan Z B,Electrochemical determination of dopamine using a poly-(sulfosalicylic acid)modified glassy carbon electrode[J].Anal Chim Acta,2001,441:117-122
    [29]Selvaraju T,Ramara R,Simultaneous determination of ascorbic acid,dopamine and serotonin at poly(phenosafranine)modified electrode[J].Electrochem Commun.2003,5:667-672
    [30]Lib T,Li M X,Li Q Y,Electroanalysis of dopamine at a gold electrode modified with N-acetylcysteine self-assembied monolayer[J].Talanta,2004,63:1053-1059
    [31]倪静安,鞠先,陈洪渊,等,儿茶酚胺类神经递质在饿配位聚合物和Nafion双层膜修饰碳基电极上的电催化氧化及其痕量测定[J].高等学校化学学报,1999,20:224-226
    [32]龚毅,叶蕾,陈洪渊,等,饿-聚乙烯吲哚配合物修饰电极对肾上腺素的电催化氧化[J].高等学校化学学报,2000,21:202-205
    [33]Li N B,Niu L M,Luo H Q,Electrochemical behavior of uric acid and epinephrine at a Meso-2,3-Dimercaptosuccinic acid self-assembled gold electrode[J].Microchim Acta,2006,153:37-44
    [34]Ren W,Luo H Q,Li N B,Simultaneous voltammetric messurement of ascorbic acid,epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid[J].Biosens Bioelectron,2006,21:1086-1092
    [35]Wermuth C G,Meditional Chemistry for the 21st Century(IUPAC Chemistry for the 21st Century)[M].London:Blackwell Scientific Publications,1992,38-84
    [36]焦克芳,袁越,李松.21世纪药物化学展望[J].国外医学药学分册.1994,21(6):321-325
    [37]崔进,糖基硫脲类似物的合成[J].西安石油大学硕士学位论文.2007
    [38]王克夷.作为信息分子的糖类[J].化学进展.1996,8(2):98-108
    [39]王克夷.糖类研究的进展和前沿[J].生命的化学.1994,14(5):4-8
    [40]王克夷.正在来临的糖组学[J].生命的化学.2000,20(6):286-287
    [41]蒋秋燕,乔旭光.生命科学的新领域——糖生物学.山东农业大学学报(自然科学版)[J].2003,34(2):294-298
    [42]沈同,王镜岩。高等学校教材,生物化学(上册)[M].高等教育出版社,北京,1990,10-28。
    [43]Boeseken J,The use of boric acid for the determination of the configuration of carbohydrates [J].Adv Carbohydr Chem,1949,4:189-210
    [44]Foster A,Zone electrophoresis of carbohydrates[J].Adv Carbohydr Chem,1957,12:81-115
    [45]Mattok G L,Wilson D L,Separation of catecholamines and metanephrine and nonnetane-phrine using a weak cation-exchange resin[J],Anal Biochem,1965,11:575-579
    [46]Lorand J P,EdWards J O,Complexes and structure of the benzeneboronateion[J].Org Chem,1959,24:769-774
    [47] Eggert H, Frederiksen J, Morin C, et al, A new glucose selective fluorescent bisboronic acid first report of strong a-Furanose complexation in aqueous solution at physiological pH [J].OrgChem,1999,64: 3846-3852
    
    [48] Norrild J C, Eggert H, Evidence for mono- and bisdentate boronate complexes of glucose in the furanose form application of Jc-c coupling constants as a structural probe [J]. Am Chem Soc,1995,117:1479-1484
    
    [49] Wiskur S L, Lavigne J L, Ait-Haddou H, et al, pKa Values and geometries of secondary and tertiary amines complexed to boronic acids-implications for sensor design [J]. Org Lett, 2001,3:1311-1314
    
    [50] Yang W, He H, Drueckhammer D G, Computer-guided design in molecular recognition: Design and synthesis of a glucopyranose receptor [J]. Angew Chem Int Ed, 2001,40:1714-1718
    
    [51] Cabell L A, Monahan M K, Anslyn E V, A competition assay for determining glucose-6-phosphate concentration with a tris-bpronic acid receptor [J]. Tetrahedron Lett,1999,40:7753-7756
    
    [52] Gao S,Wang W, Wang B, Building fluorescent sensors for carbohydrates using template-directed polymerizations [J]. Bioorg Chem, 2001, 29: 308-320
    
    [53] Yang W, Gao S, Gao X, et al, Diboronic acids as fluorescent probes for cells expressing sialyllexis x [J]. Bioorg Med Chem Lett, 2002,12: 2175-2177
    
    [54] Yan J, Springsteen G, Deeter S, et al, The Relationship among pKa, pH, and Binding Constants in the Interactions between Boronic Acids and Diols-It is not as Simple as It Appears [J].Tetrahedron,2004,60: 11205-11209
    
    [55] Zhu L, Zhong Z, Anslyn E V, Guidelines in implementing enantioselective indicator-displacement assays for hydroxycarboxylates and diols [J]. J. Am. Chem. Soc, 2005,127:4260-4269
    
    [56] Smith B D, Gardiner S J, Munro T A, et al. Facilitated transport of carbohydrates,catecholamines and cmino acids through liquid and plasticized organic membranes [J]. J. Incl.Phenom. Macro, 1998, 32: 121-131.
    [57] James T D, Sandanayake K R A S, Iguchi R, et al. Novel saccharide-photoinduced electron-transfer sensors based on the interaction of boronic acid and amine [J]. J. Am. Chem.Soc, 1995,117(35): 8982-8987
    
    [58] Arimori S, Bosch L I, Ward C J, et al. Fluorescent internal charge transfer (ICT) saccharide sensor [J]. Tetrahedron Lett, 2001, 42: 4553-4555
    [59] Mohler L K, Czamik A W. Ribonucleoside membrane transport by a new class of synthetic carrier[J].J.Am. Chem.Soc,1993,115: 2998-2999
    
    [60] Gardiner S., Smith B., Duggan P, et al. Selective fructose transport through sup ported liquid membranes containing diboronic acid or conjugated monoboronic acid-quaternary ammonium aarriers [J]. Tetrahedron, 1999, 55: 2857-2864
    
    [61] Adamek V, Liu X C, Zhang Y A, et al. New aliphatic. boronate ligands for affinity chromatography [J]. J. Chromatogr, 1992, 625: 91-99
    [62] Westmark P R, Valencia L S, Smith B D. Influence of eluent anions in boronate affinity chromatography [J]. J. Chromatogr. A, 1994, 664: 123-128
    
    [63] Kuivila H G, Keough A H, Soboczenski E J. Areneboronates from diols and polyols [J]. J Org Chem, 1954,19: 780-783
    
    [64] Lorand J P, Edwards J O, Complexes and structure of the benzeneboronateion [J]. J Org Chem,1959,24:769-774
    
    [65] Hirata O, Kubo Y, Takeuchi M, et al. Mono- and oligosaccharide sensing by phenylboronic acid-appended 5,15-bis(diarylethynyl)porphyrin complexes [J]. Tetrahedron. 2004, 60:11211-11218
    
    [66] Lo'pez E V, Luis G P, Sua'rez-Rodn'guez J L, et al. Immobilization of a boronic receptor for fructose recognition: influence on the photoinduced electron transfer process [J]. Sens.Actuators B, 2003, 90: 256-263
    
    [67] Pickup J C, Hussain F, Evans N D, et al. Fluorescence-based glucose sensors [J]. Biosens.Bioelectron, 2005, 20: 2555-2565
    
    [68] Suenaga 1, Mikarni M, Sandanayake K R A S, et al, Screening of fluorescent boronic acids for sugar sensing which show a large fluorescence change [J]. Tetrahedron Lett, 1995, 36:4825-4828
    
    [69] Cesare N D, Lakowicz J R. Chalcone-analogue fluorescent prfobes for saccharides signaling using the boronic acid group [J]. Tetrahedron Lett. 2002,43: 2615-2618
    
    [70] Cesare N D, Lakowicz J R. Fluorescent probe for monosaccharides based on a functiorialized boron-dipyrromethene with a boronic acid group [J]. Tetrahedron Lett, 2001,42: 9105-9108
    
    [71] Yang W Q, Lin L, Wang B H, A new type of boronic acid fluorescent reporter compound for sugar recognition [J]. Tetrahedron Lett, 2005,46: 7981-7984
    
    [72] Gao X M, Zhang Y L, Wang B H, A highly fluorescent water-soluble boronic acid reporter for saccharide sensing that shows ratiometric UV changes and significant fluorescence changes [J]. Tetrahedron,2005,61:9111-9117
    [73]Wang J F,Jin S,Wang B H,A new boronic acid fluorescent reporter that changes emission intensities at three wavelengths upon sugar binding[J].Tetrahedron Lett,2005,46:7003-7006
    [74]Springsteen G,Wang B H,A detailed examination of acid-diol complexation[J].Tetrahedron,2002,58:5291-5300
    [75]Badugu R,Lakowicz J R,Geddes C D,Boronic acid fluorescent sensors for monosaccharide signaling based on the 6-methoxyquinolinium heterocyclic nucleus:progress toward noninvasive and continuous glucose monitoring[J].Bioorg.Med.Chem,2005,13:113-119
    [76]Swamy K M K,Jang Y J,Park M S,et al,A sorbitol-selective fluorescence sensor[J].Tetrahedron Lett,2005,46:3453-3456
    [77]Kimura T,Takeuchi M,Nagasaki T,et al.Sugar-Induced Color and Orientation Changes in a Cyanine Dye Bound to Boronic -Acid-Appended Poly(L-lysine)[J].Tetrahedron Letters,1995,36:559-562
    [78]Badugu R,Lakowicz J R,Geddes C D,Wavelength-ratiometric and colorimetric probes for glucose determination[J].Dyes Pigm,2006,68:159-163
    [79]Shojila E,Freund M S.Potentiometric Saccharide Detection Based on the pKa Changes of Poly (aniline boronic acid)[J].J.Am.Chem.Soc,2002,124:12486-12493
    [80]Ma Y,Yang X R,One saccharide sensor based on the complex of the boronic acid and the monosaccharide using electrochemical impedance spectroscopy[J].J.Electroanal.Chem,2005,580:348-352
    [81]刘斌,孙向英,徐金瑞.含硼酸基的自组装膜对糖的电化学识别[J].分析化学,2004,32:601-605
    [82]TAKAHASHI S,KASHIWAGI Y,HOSHI T,et al,Voltammetric Response of Phenylboronic Acid monolayer-modified gold electrode to sugars[J].Anal.Sci,2004,20:757-759
    [83]Lee M,Kim T,Kim K,et al.Formation of a self-assembled phenylboronic acid monolayer and its application toward developing a surface plasmon resonance-based monosaccharide sensor [J].Anal.Biochem,2002,310:163-170
    [84]Pribyl J,Skl'adal P.Quartz crystal biosensor for detection of sugars and glycated hemoglobin [J].Anal.Chim.Acta,2005,530:75-84
    [85]Kitano H,Morokoshi S,Ohhori K,et al.Accumulation of phenyl boronic acid-carrying telomers on a gold surface[J].J.Colloid Interface Sci,2004,273:106-114
    [86]Nicolas M,Fabre B,Simonet J.Electrochemical sensing of fluoride and sugars with a boronic acid-substituted bipyridine Fe(Ⅱ)complex in solution and attached onto an electrode surface [J].Electrochimica Acta,2001,46:1179-1190
    [87]Lau O W;Shao B,Lee M T W.Affinity mass sensors:determination of fructose[J].Anal Chim.Acta,2000,403:49-56
    [88]Masashi Yamamoto,Masayuki Takeuchi and Seiji Shinkai Supramolecular macrocycles self-assembled by phenanthroline-Cu(Ⅰ)and sugar-boronic acid interactions[J].Tetrahedron Lett,2000,41:3137-3140
    [89]Robinson M R,Eaton R P,Haaland D M,et al.Noninvasive glucose monitoring in diabetic patients:a preliminary evaluation[J].Clin Chem,1992,38:1618-1622
    [90]Okand T,Fufita T,Intramolecular electron donor-acceptor interactions in the excited state of (anthracene)-(CH_z)_n-(N,N-dinethylaniline)systems[J].Chem Phys Lett,1972,14:563-568
    [91]庞月红,白蛋白与药物及新型ICT荧光探针作用的研究,山西大学硕士研究生论文,2005
    [92]Ni W J,Kaur G,Springsteen G,et al.Regulating the Xuorescence intensity of an anthracene boronic acid system:a B-N bond or a hydrolysis mechanism[J].Bioorg.Chem,2004,32:571-581
    [93]刘力宏,超分子体系中的分子内电荷转移反应机理和应用,夏门大学博士学位论文,2005
    [94]Retting W.Charge separation in excited states of decoupled systems-TICT compounds and implications regarding the development of new laser dyes and the primary procedded of vision and pphotosynthesis[J].Angew Chem Int Ed Engl,1986,25:971-988
    [95]Gamsey S.Baxter N A,Sharrett Z,et al,The effect of boronic acid-positioning in an optical glucose-sensing ensemble[J].Tetrahedron,2006,62:1-11
    [96]Badugu R,Lakowicz J R,Geddes C D,Wavelength-ratiometric near-physiological pH sensors based on 6-aminoquinolinium boronic acid probes[J].Talanta,2005,66:569-574
    [97]Shinmori H,Takeuchi M,Shinkai S,Spectroscopic Sugar Sensing by a Stilbene Derivative with Push(Me2N-)-Pull((HO)2B-)-Type Substituents[J].Yetrahedron,1995,51:1893-1902
    [98]Camara J N,Suri J T,Cappuccio F E,et al.Wessling and Bakthan Singaram Boronic acid substituted viologen based optical sugar sensors:modulated quenching with viologen as a method for monosaccharide detection[J].Tetrahedron Lett,2002,43:1139-1141
    [99]Pribyl J,Skl'adal P.Development of a combined setup for simultaneous detection of total and glycated haemoglobin content in blood samples[J].Biosens.Bioelectron,2006,21:1952-1959
    [100]徐丹,褚良银.苯硼酸及其衍生物在医药与化工领域的应用研究进展[J].化工进展,2006,25:1045-1048
    [101]Lee M C,Kabilan S,Hussain A.Glucose-sensitive holographic sensors for monitoring bacterial growth[J].Anal.Chem,2004,76:5748-5755.
    [102]Senel S,Camli S T,Tuncel,M,et al.Nucleotide adsorption-desorption behaviour of boronic acid functionalized uniform-porous particles[J].J.Chromatogr.B,2002,769:283-295.
    [103]Winblade N D,Schmokel H,Baumann M,et al.Sterically blocking adhesion of cells to biological surfaces with a surface-active copolymer containing poly(ethylene glycol)and phenylboronic acid[J].J Biomed.Mater.Res,2002,59:618-631
    [104]薛启冥.神经系统的生理和病理化学[M].北京:科学出版社,1978.102
    [105]Storm M L,Stewart J T.Stability-indicating HPLC assays for the Determination of Prilocaine Procaine Drug Combination[J].J Pharm Biomed Anal,2002,30:49-58.
    [106]Yang J H,Zhang G L,Cao X H et al.Fluorimetric Determination of Epinephrine with 2,3-diaminonaphthalene[J].Spectrochim Acta A,1997,53:1671-1676.
    [107]Yang J H,Zhang G L,Wu X et al.Fluorimetric Determination of Epinephrine with o-phenylenylenediamine[J].Anal Chim Acta,1998,363:105-110.
    [108]Maurice I,Monique T.A Chemiluminescent Catecholamine Assay:It Application for Monitoring Adrenergic Thansmitter Release[J].Neurosci Method,1999,91:101-107.
    [109]Michalowski J,Halaburda P.Flow-injection Chemiluminescent Determination of Epinephrine in Pharmaceutical Preparations using Raw Apple Juice as Source[J].Talanta,2001,55:1165-1171.
    [110]Liang C,Peng H,Zhou A,et al.Molecular Imprint Polymer Coated BAW Bio-mimic Sensor for Direct Determination of Epinephrine[J].Anal Chim Acta,2000,415:135-141.
    [111]邬春华,吕元琦,袁倬斌.咖啡酸修饰电极的电化学性质及其对肾上腺素的电化学研究[J].分析测试学报,2004,23(5):60-62.
    [112]孙登明,顾海鹰,俞爱民,等.用聚吲哚酸修饰电极测定肾上腺素[J].分析化学,1997,25(7):777-779.
    [113]邓婷,王桦,雷存喜,等.基于电聚合膜和纳米金自组装的生物分子固定化新方法的研究[J].分析测试学报,2004,23(4):5-8.
    [114]顾海鹰.NAD~+在纳米金胶上的组装,表征及其应用研究[J].淮阴师范学院学报(自然科学版),2002,1(2):48-53.
    [115] Fren, G. Controlled Nucleation for the Regulation of the Partille Size in Monodisperse Gold Suspension [J]. Nat Phy Sci 1973,241 (105): 20-22.
    
    [116] Damier P, Hirsch E C, Agid Y, et al, The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinsons disease [J]. Brain 1999,122: 1437-1448.
    
    [117] Martin C, The Parkinsons puzzle-new developments in our undersranding of Parkinsons disease have generated a number of promising new treatments for this disabling condition [J] Chem. Br. 1998,34:40-42.
    
    [118] Heinz A, Przuntek H, Winterer G, et al, Clinical aspects and follow-up of dopamine-induced psychoses in continuous dopaminergic therapy and their implications for the dopamine hypothesis of schizophrenic symptoms [J]. Nervenarzt 1995, 66: 662-669.
    
    [119] Smith T E, Textbook of Biochemistry with Clinical Correlations, Wiley/Liss, New York, 1992,929.
    
    [120] Venton B J, Wightman R M, Psychoanalytical electrochemistry: dopamine and behavior [J].Anal Chem. 2003,75:414-421
    
    [121] Zhang L, Sun Y G, Covalent modification of glassy carbon electrodes with p-Alanine for voltammetric separation of dopamine and ascorbic acid [J]. Anal Sci. 2001,17: 939-943
    [122] Wen X L, Jia Y H, Liu Z Li, Micellar effects on the electrochemistry of dopamine and its selective detection in the presence of ascorbic acid [J]. Talanta 1999, 50: 1027-1033
    
    [123] Chen S M, Chen J Y, Vasantha V S, Electrochemical preparation of epinephrine/Nafion chemically modified electrodes and their electrocatalytic oxidation of ascorbic acid and dopamine [J]. Electrochimica Acta 2006, 52: 455-465.
    
    [124] Zhou Y L, Tian R H, Zhi J F, Amperometric biosensor based on tyrosinase immobilized on a boron- doped diamond electrode [J]. Biosens Biochelectron 2007, 22: 822-828.
    
    [125] Zheng L Z, Wu S G, Lin X Q, et al, Selective determination of uric acid by using a β-cyclodextion modified electrode [J]. Electroanal, 2001,13:1351-1354
    
    [126] Miland E, Ordieres A J M, Blanco P T, et al, Poly(o-aminophenol)-modified bienzyme carbon paste electrode for the detection of uric [J]. Talanta, 1996,43: 785-796
    
    [127] Shi K, Shiu K K, Determination of uric acid at electrochemically activated glassy carbon electrode, Electroanalysis [J]. 2001, 13: 1319-1325.
    
    [128] John S A, Simultaneous determination of uric acid and ascorbic acid using glassy carbon electrodes in acetate buffer solution [J]. J Electroanal Chem, 2005,579: 249-256
    
    [129] Mizutani F, Sato Y, Hitata Y, et al, Interference-free, amperometric measurement of urea in biological samples using an electrode coated with tri-enzyme/polydimethylisiloxane-bilayer membrane [J]. Anal Chim Acta 2001,44: 175-181.
    
    [130] Cooper N, Khosravan R, Erdmann C, et al, Quantification of uric acid , xanthine and hypoxanthine in human serum by HPLC for pharmacodynamic studies [J]. J Chromatogr B,2006, 837: 1-10.
    
    [131] Lu G H, Yao X, Wu X G, et al, Determination of the total iron by chitosan-modified glassy carbon electrode [J]. Microchem, 2001, 69: 81-87
    
    [132] Wu B Y, Hou S H, Yin F, et al, Amperometric glucose biosensor based on layer- by- layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode [J]. Biosens and Bioelectron, 2007, 22: 838-844.
    
    [133] Shan D, Wang S X, Xue H G, et al, Direct electrochemistry and electrocatalysis of hemoglobin entrapped in composite matrix based on chitosan and CaCO_3 nanoparticles [J]. Electrochem Commun 2007, 9: 529-534.
    
    [134] Zangmeister R A., Park J J, Ruboff G W, et al,. Electrochemical study of chitosan films deposited from solution at reducing potentials [J]. Electrochim Acta 2006, 51: 5324-5333.
    
    [135] Christopher M A, Gyorgy I, Vilmos K, Poly ( methylene blue ) modified electrode sensor for hemoglobin [J]. Anal Chim Acta, 1999, 385: 119-123.
    
    [136] Karyakin A A, Ivanova Y N, Karyakina E E, Equilibrium (NAD+/NADH ) potential on poly (neutral red) modified electride [J]. Electrochem Canmum, 2003, 5: 667-680.
    
    [137] Wu X, Wang Y B, Wang M Q, et al, Determination of nucleic acida at nanogram level using resonance light scattering technique with Congo Red [J]. Spectrochim Acta Part A, 2005, 61:361-366
    
    [138] Wang Z P, Zhang Z M, Ding Z J. Photoluminescence study of Congo red molecules under high pressure [J]. Luminescence, 2007, 122-123: 237-240.
    
    [139] Badugu R, Lakocicz J R, Geddes C D, Fluorescence sensors for monosaccharides based on the 6-methylquinolinium nucleus and boronic acid moiety: potential application to ophthalmic diagnostics [J]. Talant, 2005, 65: 762-768
    
    [140] Takahashi S, Anzai J, Phenylboronic Acid Monolayer-Modified Electrodes Sensitive to Sugars [J]. Langmuir, 2005, 21: 5102-5107
    [141] Park S, Boo H, Chung T D, Electrochemical non-enzymatic glucose sensors [J]. Anal. Chim.Acta, 2006, 556: 46-57
    [142] Zhao Z X, Qiao M Q, Yin Q, B. et al, Amperometric glucose biosensor based on self-assembly hydrophobin with high efficiency of enzyme utilization [J]. Biosens. Bioelectron, 2007, 22:3021-3027
    
    [143] Li J, Lin X Q, Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol)film on polypyrrole-Pt nanocomposite modified glassy carbon electrode [J]. Biosens Bioelectron, 2007, 22: 2898-2905
    
    [144] Shen X S, Huang C Z, Li Y F, Localized surface plasmon resonance sensing detection of glucose in the serum samples of diabetes sufferers based on the redox reaction of chlorauric acid [J]. Talanta, 2007, 72: 1432-1437
    
    [145] Hartley J H, James T D, Saccharide accelerated hydrolysis of boronic acid imines [J].Tetrahedron Lett, 1999,40: 2597-2600
    
    [146] Badugu R, Lakowicz J R, Geddes C D, Fluorescence sensors for monosaccharides based on the 6-methylquinolinium nucleus and boronic acid moiety: potential application to ophthalmic diagnostics [J]. Talanta, 2005, 65: 762-768
    
    [147] Pribyl J, Skladal P, Development of combined setup for simultaneous detection of total and glycated haemoglobin content in blood samples [J]. Biosens Bioelectron, 2006, 21: 1952-1959
    
    [148] Ma Y, Qian L, Huang H Z, Yang X R, Buildup of gold nanoparticle multilayer thin films based on the covalent-bonding interaction between boronic acids and polyols [J]. J Colloid. Interf Sci 2006, 295: 583-588
    
    [149] Barba V, Farfan N, Losi S, et al, Ferrocenylboronates: crystal structures and electrochemical properties [J]. Inorg Chim Acta, 2006, 359: 1269-1274
    
    [150] Ma Y, Gao Q, Yang X R, Immobilization of glycosylated enzymes on carbon electrodes, and its application in biosensors [J]. Microchim Acta, 2005,150: 21-26
    
    [151] Liu S Q, Miller B, A. Chen C, Phenylboronic acid self-assembled layer on glassy carbon electrode for recognition of glycoprotein peroxidase [J]. Electrochem. Commun, 2005, 7:1232-1236
    
    [152] Wu L Q, Gadre A P, Yi H M, et al, Voltage-dependent assembly of the polysaccharide chitosan onto an electrode surface [J]. Langmuir, 2002, 18: 8620-8625
    
    [153] Zangmeister R A, Park J J, Rubloff G W, et al, Electrochemical srudy of chitosan films deposited from solution at reducing potentials [J]. Electrochim. Acta, 2006, 51: 5324-5333
    
    [154] Yi H, Wu L Q, Ghodssi R, et al, A robudt technique for assembly of nucleic acid hybridization chips based on electrochemically templated chitosan [J]. Anal. Chem, 2004, 76, 365-372
    
    [155] Chen C, Jiang Y, Kan J Q, A noninterference polypyrrole glucose biosensor [J]. Biosen. Bioelectron, 2006, 22 : 639-643
    
    [156] Du Y, Luo X L, Xu J J, Chen H Y, et al, A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor, Bioelectrochem, 2007, 70: 342-347
    
    [157] Dahlman O, Jacobs A, Ljenberg A L, et al, Analysis of carbohydrates in wood and pulps employing enzymatic hydrolysis and subsequent capillary zone electrophoresis [J]. J Chromatogr A, 2000, 891: 157-174
    
    [158] Liu X C, Boronic acids as ligands for affinity chromatography [J]. Chin J Chromatogr, 2006, 1:73-80
    
    [159] Takeuchi M, Mizuno T, Shinmori H, et al, Fluorescence and CD Spectroscopic Sugar sensing by a cyanine-appended Diboronic Acid Probe [J]. Tetrahedron, 1996, 52: 1195-1204
    
    [160] Shinkai S, Takeuchi M, Molecular design of synthetic receptors with dynamic, imprinting,allosteric functions [J]. Biosen. Bioelectron, 2004, 20:1250-1259
    
    [161] Horgan A M, Marshall A J, Kew S J, et al, Crosslinking of phenylboronic acid receptors as means of glucose selective holographic detection, Biosensors and Bioelectronics [J]. Biosen. Bioelectron, 2006, 21: 1838-1845
    
    [162] Bosch L I, Fyles T M, James T D, Binary and ternary phenylboronic acid complexes with saccharides and Lewis bases [J]. Tetrahedron, 2004, 60: 11175-11190
    
    [163] Shoji E, Freund M S, Potentiometric saccharide detection based on the pKa changes of poly (aniline boronic acid) [J]. J Am Chem Soc, 2001,123: 3383-3384
    
    [164] Adamczyk M, Chen Y Y, Johnson D D, et al, Chemiluminescent acridinium-9-carboxamide boronic acid probes: Application to a homogeneous glycated hemoglobin assay [J]. Bioorg Med Chem Lett, 2006,16:1324-1328
    
    [165] Sporzynski A, Miskiewicz A, Gierczyk B, et al, Polyoxaalkyl esters of phenylboronic acids as new podands [J]. J Mol Struct, 2006, 791: 111-116
    
    [166] Porter T L, Structural study of the surface of aniline-3-aminophenylboronic acid copolymer films [J]. Synthetic Met, 1992,46: 105-112
    
    [167] Saba M V, Bauer G, Stich N, et al, A self assembled shell of 11-mercaptoundecanoic aminophenylboronic acids on gold nanoclusters [J]. Mat Sci Eng C, 1999, 8-9: 205-209
    
    [168] Miss P, Phillips D C, Woodruff B P, et al, Investigation of the adsorption and Reactions of Thiophene on Sufided Cu, Mo, Rh Catalysis [J]. J Phys Chem B, 2000,104: 3237-3249
    
    [169] Qiao M H, Tao Y, Liu Q, et al, Electronic and Vibrational Properties of Thiophene on Si(100) [J].J Phys Chem B, 2000, 104: 11211-11219
    [170] Blyth R I R, Mittendorfer F, Hafner J, et al, An experimental and theoretical investigation of the thiophene/aluminum interface [J]. J Chem Phys, 2001,114: 935-942
    
    [171] Lachkar A, Selmani A, Sacher E, et al, Metallization of polythiophenes I. interaction of vapor-deposited Cu, Ag and Au with poly(3-hexylthiophene)(P3HT) [J]. Synth Met, 1994, 66:209-215
    
    [172] Elfeninat F, Fredriksson C, Sacher E, et al, A theoretical investigation of the interactions between thiopnene and vanadium, chromium, copper, and gold [J]. J Chem Phys, 1995, 102:6153-6158
    
    [173] Dishner M H, Hemminger J C, Feher F J, Fromation of self-assembled monolayer by adsorption of thiophene on Au(111) and its photooxidation [J]. Langmuir 1996,12: 6176-6178
    
    [174] Noh J, Ito E, Araki T, et al, Adsorption of thiophene and 2,5-dimethylthiophene on Au (111) from ethanol solutions [J]. Surf Sci, 2003, 532-535: 1116-1120
    
    [175] Haes A J, Dayne R P V, A nanoscal optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles [J]. J Am Chem Soc, 2002,124: 10596-10604
    
    [176] He Y B, Luo H Q, Li N B, Thermodynamic and kinetic analysis of the interaction between hepatitis B surface antibody and antigen on gold electrode modified with cysteamine and colloidal gold via electrochemistry [J]. Biosen. Bioelectron, 2007, 22: 2952-2957
    
    [177] Cai H, Xu C, He P G, et al, Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA [J]. J Electroanal Chem, 2001, 510: 78-85
    
    [178] Finot M O, Braybroolk G D, McDermott M T, Characterization of electrochemicall deposited gold nanocrystals on glassy carbon electrodes [J]. J Electroanal Chem, 1999, 466: 234-241
    
    [179] Frens G, Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions [J]. Nat: Phys Sci, 1973,105: 20-22
    
    [180] Leng P, Li QY, Zheng Y, et al, Electrocatalytic Oxidation of Formaldehyde in Glassy Carbon Electrode modified with Nano-Gold [J]. Chemistry Analysis Meterge, 2006, 2: 24-26
    
    [181] Shoji E, Freund M S, Potentiometric saccharide detection based on the PKa changes of poly(anilme boronic acid) [J]. J Am Chem Soc, 2002, 124: 12486-12493

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700