用户名: 密码: 验证码:
非连续短纤维增强乳化沥青碎石应力吸收层性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国公路建设中,以水泥稳定材料或石灰粉煤灰稳定材料为主的半刚性基层和底基层是目前路面结构的主要形式,但裂缝问题日益突出已成为该结构主要缺陷。纤维增强乳化沥青应力吸收层以应力吸收和扩散能力强、抗裂性能好,防水性能好,稳定性高,施工快捷,便于回收利用,在国外被广泛的作为基层与面层之间的应力吸收层使用。目前对这项技术研究大多数只停留在工艺介绍上,机理研究较少,缺乏对材料的优选,材料用量基本是按照经验值,且不同研究者推荐的用量范围差异较大,没有系统的配合比设计方法,施工中缺乏过程控制指标等。本文依托重庆、江苏省交通科技研究项目对该技术进行了深入的理论和试验研究。
     论文从复合材料界面细观力学角度,通过接触角的测定,研究不同纤维品种与乳化沥青的界面粘附功;基于应变损耗功能和原理,分析比较不同纤维品种与乳化沥青复合材料的应变损耗能,提出纤维优选方案。利用红外光谱分析不同纤维对乳化沥青特征官能团的选择性吸附,提出纤维表面改性方法。
     应用断裂力学基本原理,采用有限元数值分析研究铺设纤维增强乳化沥青应力吸收层后对三种开裂模式(反射裂缝,Top-down裂缝,对接裂缝)的阻裂效果。深入研究了应力吸收层模量,厚度,反射裂缝宽度,层间接触条件,沥青混合料加铺层厚度对抗裂性能的影响。
     从断裂的能量角度分析纤维增强乳化沥青应力吸收层组成材料在不同因素水平下的断裂能,得出影响断裂能的主次因素和最佳材料用量组合,对比不同应力吸收层断裂能大小。系统研究影响应力吸收层路用性能指标(最大弯曲力,最大挠度,层间剪切力,层间粘结力,抗反射裂缝作用次数)的主要因素和最佳材料用量组合。讨论应力吸收层厚度和加铺层厚度对复合路面结构抗反射裂缝性能影响。
     动态监控铺设不同应力吸收层后,裂缝在复合路面结构中的发展情况,对比不同应力吸收层对裂缝扩展速度的影响;建立裂缝发展不同时期(初期、中期、后期)与各个力学指标的灰色关联度,确定与裂缝发展速度关联度最大的相关指标,并以此作为应力吸收层配合比设计的主要参数。
     基于最大功能和原理推导最佳纤维乳化沥青用量比,考虑碎石和半刚性基层对乳化沥青吸收率,得出配合比设计的半经验半理论方法。基于裂缝动态发展规律与力学指标关联度分析结果,以最大弯曲力、层间剪切力和断裂能作为主要设计参数指标,提出配合比设计的试验方法。结合研究成果,介绍纤维增强乳化沥青应力吸收层的配合设计工程应用示例和施工控制要点。
In the highway construction in China, semi-rigid base and subbase with cement stabilized material or lime and fly ash stabilized material is the main form of pavement structure of highway. At present, the crack problem increasingly has become the main defect of this structure. Fiber reinforced emulsified asphalt stress absorbing layer have good performance of stress absorbing, good anti-cracking, good waterproof performance, high stability, fast construction, convenient for recycling, in foreign countries has been widely used as stress absorbing layer between base and surface. At present this technology only stay in introducing the construction process, lacking theoretical research and selection of material, material consumption is largely basic on experience value, the amount range of different researchers recommend is bigger, does not have mix design method, lacking of process control index of construction, etc. In this paper, carrys out theory and experimental study in-depth of this technology base on the Chongqing and Jiangsu Province Traffic Science and Technology Projects.
     This paper from the micromechanics angle of composite material, by measuring the contact angle, obtains the adhesion work of the different fiber and emulsified asphalt, uses the principle of work and energy to calculate and compare strain and losing energy between different fibers and emulsified asphalt, makes fiber optimization scheme. Analysis of different fibers selective absorbing characteristic functional groups of emulsified asphalt by infrared spectrum, provides methods for the fiber surface modification.
     Application of basic principles of fracture mechanics, using finite element numerical analysis of anti-cracking effect after laying fiber reinforced emulsified asphalt stress absorbing layer on three kinds of cracking model (reflection crack, Top-down crack, docking crack). In-depth study the stress absorbing layer modulus, thickness, the reflection crack width, interlayer contact conditions and thickness of asphalt mixture overlay influence on crack resistance effect.
     From the fracture energy point of view, analysis fracture energy of fiber reinforced emulsified asphalt stress absorption layer material at different levels, and factors affecting the fracture energy and the best amount of material combination, compare fracture energy of the different stress absorbing layers. A comprehensive analysis of the main factors and the best dosage combination, which impact the other mechanical index (maximum bending force, the deflection, shear force, interlayer adhesive force, cycle fatigue loading times). Discuss about the influence of stress absorbing layer thickness and overlay thickness on the reflective cracking resistance performance of composite pavement structure.
     Dynamic monitor cracking development in composite pavement structure after laying different stress absorbing layer, comparing cracking development of the different stress absorbing layers; establishment grey relational degree of crack development in different periods (early, mid, later) with all mechanical index, according to the correlation value, determine relevant parameters, which have the maximum correlation degree with cracking development velocity, and as a main design parameters for stress absorbing layer.
     According to the maximum work and energy principle obtain optimal fiber asphalt content ratio, base on gravel and semi-rigid base absorption rate of emulsified asphalt mixture, puts forward the semi-empirical design method. According to the law of crack development and mechanical index correlation analysis results, use the maximum bending force, shearing force and fracture energy as the main mechanical parameters, put forward the test design method. According to the research results, example the fiber stress absorbing layer design application and the main construction controlling points.
引文
[1]张鹏.高等级公路半刚性基层材料的抗裂性能研究[D].大连理工大学,2007.
    [2]韩锋.沥青路面水损害及其治理措施[J].交通世界(运输.车辆),2012,(07):212-213
    [3]阚立新.沥青路面常见的病害及其预防措施[J].交通世界(建养.机械),2012,(07):78-79
    [4]程英伟,汤捷.高等级公路半刚性基层沥青路面开裂的机理分析及防治[J].公路交通技术,2004(12):39-42.
    [5]杨成忠,陈万祥.基于半刚性基层的沥青路面反射裂缝分析与防治[J].公路,2004(4):85-87.
    [6]Buttlar WG, Bozkurt D, Dempsey BJ. "Cost-Effectiveness of Paving Fabrics to Control Reflective Cracking", Transportation Research Record No.1730, Issues in Pavement Design and Rehabilitation, Transportation Research Board, National Research Council, National Academies, Washington, D.C.,2000:139-149.
    [7]Al-Qadi IL, Elseifi MM. "A Simplified Overlay Design Model against Reflective Cracking Utilizing Service Life Prediction", Pre-Print CD-ROM,82nd Annual Meeting of the Transportation Research Board, National Research Council, National Academies, Washington, D.C.,2003.
    [8]焦海新,周行春.半刚性路面反射裂缝防治措施研究综述[J].重庆交通学院学报,1998(3):52-57.
    [9]潘江.半刚性基层路面的施工特点及质量控制[J].西部探矿工程,2009,12:169-171.
    [10]王方杰.半刚性基层沥青路面应用探讨[J].公路交通技术,2008(3):43-45.
    [11]杨涛.半刚性基层沥青路面反射裂缝的产生机理及其防治措施[D].武汉理工大学,2005.
    [12]蒋应军,陈忠达,彭波,戴经梁.密实骨架结构水泥稳定碎石路面配合比设计方法及抗裂性能[J].长安大学学报(自然科学版),2002(7):9-12.
    [13]蒋应军,薛航,薛辉.陈忠达.半刚性基层预锯缝及铺土工布的路面防裂措施[J].长安大学学报(自然科学版)2006(3):6-9.
    [14]Lee, S.J. Mechanical performance and crack retardation study of a fiber glass grid-reinforced asphalt concrete system [J]. Can. J. Civil Eng.2008(10),2008:1042-1049.
    [15]Powell, R.B. Installation and performance of a fiberglass geogrid interlayer on the NCAT Pavement Test Track[R].Proceedings of the 6th RILEM Conference on Pavement Cracking,2008:731-739.
    [16]Prieto, J.N., Gallego, J., Perez, I.,2007. Application of the wheel reflective cracking test for assessing geosynthetics in anti-reflection pavement cracking systems[J].Geosynth. Int. 2007(5):287-297.
    [17]Jiwon K, William G B. Analysis of reflective crack control system involving reinforcing grid over base-isolating interlayer mixture[J]. Journal of Transportation Engineering,2002,128(4):375-384.
    [18]蔡喜棉.旧混凝土路面上的罩面[J].华东公路,2004(7):2-7.
    [19]戚文华,张占军.玻璃纤维土工格栅在沥青道路上的应用[J].平顶山工学院学报,2003(9):10-11.
    [20]徐伟,白海涛,张肖宁.沥青混泥土加铺层结构中玻璃纤维格栅作用实验分析[J].中南公路工程,2003,28(2):19-21.
    [21]李修磊.复合式路面防裂夹层防反射裂缝的效果评价[D].重庆:重庆交通大学,2011:8-12.
    [22]高国华.半刚性沥青路面基面层间界面关键问题研究[D].重庆交通大学,2008.
    [23]张宗辉.纤维封层技术及在公路养护中的应用[J].工程机械与维修,2008(1):3-4.
    [24]闫修海,于金成,王建国等.纤维封层技术的引进与应用[J].北方交通,2008,(8):76-77.
    [25]Gillespie RI. "The Evaluation and Study of a Fibre-Reinforced Membrane to Inhibit Reflective Cracking"[R], Proceedings,4th International RILEM Conference on Reflective Cracking in Pavements, Ottawa, Ontario, Canada.2000.
    [26]Ghassan RC, Palacios CJ. "Evaluation Study of Fibermat B(?) Interlayer System for Roadway Pavement Rehabilitation"[R], Pennsylvania Transportation Institute, Pennsylvania State University, University Park, Pennsylvania, USA:2007.
    [27]张宗辉.同步碎石封层技术在道路养护和建设中的应用前景[J].建筑机械,2004(3):51-53.
    [28]张兰.纤维封层于中国首次施工[J].筑路机械与施工机械化,2007,24(9):17.
    [29]谭峰,包惠明.同步碎石封层新技术的应用[J].桂林工学院学报,2007,27(1):69-72.
    [30]Douglas.D.Gransberg, P.E, Ellker.Karaea, Sanjaya-Senadheera. Caleulating roller Requirements for chip seal Projects[J]. Journal of Construction Engineering and Management(ASCE),2004,130(3):378-384.
    [31]DouglasD.GransbergP.E.Using a New seal and Performance Specification evaluate U.5.ehiPseal Performance. Journal of transportation Engineering(ASCE),2007,133(12):688-695
    [32]Buttlar WG, Bozkurt D, Dempsey BJ. Cost-Effectiveness of Paving Fabrics to Control Reflective Cracking[R].Transportation Record No 1730, Issues in Pavement Design and Rehabilitation, Transportation Research Record search Board. National Research Council. National Academies. Washington, D.C.,2000:139-149
    [33]Cleveland GS, Lytton RL, Button JW. Reinforcing Benefits of Geosynthetic Materials in Asphalt Concrete Overlays using Pseudo Strain Damage[R].Pre-Print CD-ROM,82nd Annual Meeting of the Transportation Research Board, National Research Council, National Academies, Washington, D.C.,2003.
    [34]Gillespie R1. The Evaluation and Study of a Fibre-Reinforced Membrane to Inhibit Reflective cracking Proceedings[R],4th International RILEM conference on Reflective cracking in Pavements. Ottawa, Ontario, Canada,2000.
    [35]Jean-Wartin Croteam, P. Eng. A Four-Year Performance Review of North American and International Fiber-Reinforced Membrane Systems Interlayer System for Roadway Pennsylvania Transportation Institute, Pennsylvania State University, University Park, Pennsylvania, USA 2007:400-415.
    [36]Yeates C. An Evaluation of the Use of a Fibre-Reinforced Membrane to Inhibit Reflective Cracking[J], in Cabrera JG, Dixon JR. Performance and Durability of Bituminous Materials: Proceedings of Symposium, University of Leeds, March 1994, E&F Spon, London, UK,1996.
    [37]Lysenko J, Scott G. Are Your Roads Getting Enough Fibre[R].Proceedings Focusing on Performance Conference, Australian Asphalt Pavement Association (AAPA), Sidney, Australia,1998.
    [38]李坤.纤维封层力学性能试验研究[D].大连:大连理工大学,2008:78.
    [39]杜隽.纤维封层应用技术研究[D],大连理工大学硕士论文,2009
    [40]赵晓亮.纤维沥青碎石封层配合比设计研究[D].西安:长安大学,2010.
    [41]张宗辉,法国SECMAIR纤维封层技术及在中国应用[R].北京:北京埃盟泰机械设备有限公司,2008.
    [42]辽宁省公路管理局.纤维碎石封层技术的推广与应用[R].辽宁省普通公路养护新技术,2008.
    [43]李伟,纤维增强封层技术在公路沥青路面养护中的应用研究[D].重庆:重庆交通大学,2011:40.
    [44]李峰,孙立军沥青路面Top-Down开裂成因的有限元分析[R].公路交通科技,2006(6):1-3.
    [45]GILBERT Y BALADI, MICHAEL SCHORSCH, TUNWIN SVASDIS ANT. Determining the Causes of Top-Down Cracks in Bituminous Pavements[R].MDOT-PRCE-MSU,2003:110.
    [46]王汝敏.聚合物基复合材料[M].北京:科学出版社,2011:22-30.
    [47]郝元恺,肖加余.高性能复合材料学[M].北京:化学工业出版社,2004:92-93.
    [48]陈小兵,李荣,丁一.高性能纤维复合材料土木工程应用技术指南[M].北京:中国建筑工业出版社,2009:23-34.
    [49]王振清,雷红帅,周博,王玉龙.形状记忆合金增强复合材料界面剪应力研究[J].哈尔滨工程大学学报,2012,(06):6-95.
    [50]李小宏.3A1203-2SiO2/A1-3.5Cu复合材料界面研究[J].热加工工艺,2012,(16):98-100,84
    [51]杨序纲.复合材料界面[M].北京:化学工业出版社,2010:1-2.
    [52]Hefer, A.W., D.N. Little, and R.L. Lytton. A Synthesis of Theories and Mechanisms of Bitumen-Aggregate Adhesion Including Recent Advances in Quantifying the Effects of Water[C]//Al-Qadi, Imad L,2005 Journal of the Association of Asphalt Paving Technologists: From the Proceedings of the Technical Sessions.Association of Asphalt Paving Technologist,2005:139-196.
    [53]蒋兆华,孙德智,邵光杰.应用表面化学与技术[M].哈尔滨工业大学出版社,2000:124-127.
    [54]邓锐,李敏,张佐光,贾晶晶.接触角法测玄武岩及玻璃纤维表面能实验[J].北京航空航天大学学报,2007,33(11):1349-1352.
    [55]罗晓斌,朱定一,石丽敏.基于接触角法计算固体表面张力的研究进展[J].科学技术与工程,2007,7(19):6-8.
    [56]韩森,刘亚敏,徐鸥明.材料特性对沥青-集料界面粘附性的影响[J].长安大学学报(自然科学版),2010,30(3):6-9.
    [57]第三作者.功能原理在纤维封层沥青胶浆配合比中的应用[J].武汉理工大学学报,2012,34(4):32-36.
    [58]黄晓明,沥青与沥青混合料[M].南京东南大学出版社,2002:59.
    [59]肖桂彰.道路复合材料[M].北京:人民交通出版社,1996:3748.
    [60]陈华鑫.SBS改性沥青路用性能与机理研究[R].长安大学,2006.
    [61]赵瑶兴、孙祥玉.有机分子结构光谱鉴定[M].北京:科学技术出版社.2003.
    [62]Potts. W. J. Chemical Infrared Spectroscopy. Volume 1:Techniques Wiley. New York.1963.
    [63]Carswell, W.S.; R.C.Roberts, Environment Fatigue Stress Failure Mechanism for Glass Fibre mat Reinforced Polyester. Composites, April 1980:57.
    [64]顾震隆.短纤维复合材料力学[M].国防工业出版社,北京,1987:97-99
    [65]黄争鸣.复合材料细观力学引论[M].北京:科学出版社,2004.17-20.
    [66]荻江.复合材料原理[M].武汉:武汉工业大学出版社,1998:11.
    [67]冯小明,张崇才.复合材料[M].重庆:重庆大学出版社,2011:27.
    [68]李清富,张鹏,刘晨辉.聚丙烯纤维半刚性基层抗裂性能研究[M].郑州:黄河水利出版社,2010,6:81.
    [69]J.M.霍奇金森,J.M.Hodgkinson.先进纤维增强复合材料性能测试[M].北京:化学工业出版社,2005:38.
    [70]尹双增.断裂·损伤理论及其应用[M].北京:清华大学出版社,1992:41.
    [71]张东.基于内聚力模型的沥青路面断裂研究[D].东南大学,2010.
    [72]梁乃兴,萧赓.水泥粉煤灰碎石基层力学性能对沥青路面结构的影响分析[J].中国公路报,2003(7):19-21.
    [73]任贵明.耐久性复合式路面技术[M].人民交通出版社,北京,2009:90-91.
    [74]张红.沥青路面近荷载区Top-Down裂缝形成机理及扩展规律分析[D].长安大学,2011.
    [75]黄仰贤.路面分析与设计[M].北京:人民交通出版社.1998:20.
    [76]Song, S.H. Fracture of Asphalt Concrete:A Cohesive Zone Modeling Approach Considering Viscoelastic Effects [D]. Urbana:University of Illinois,2006.
    [77]吴赣吕,张淦生.沥青路面温缩裂缝的应力强度分析[J].中国公路学报,1996,9(1):37-44.
    [78]第一作者.水泥稳定碎石基层不同层间接触情况下的力学性能分析[J].桂林理工大学学报,2011(8):372-374.
    [79]李修磊,复合式路面防裂夹层防反射裂缝的效果评价[D].重庆交通大学,2011.
    [80]李云雁,胡传荣.试验设计与数据处理[M],北京:化学工业出版社,2005:83-85,213.
    [81]俪正能,何庆芝.工程断裂力学[M].北京:北京航空航天大学出版社,1993:2-5.
    [82]黄维扬.工程断裂力学[M].南京:航空工业出版社,1992:7-8..
    [83]徐世娘,赵艳华,吴智敏.楔入劈拉法研究混凝土断裂能[J].高洪水力发电学报:2003(4):15-18.
    [84]郭向勇,方坤河,冷发光混凝土断裂能的理论分析[J].哈尔滨工业大学学报2005(9):1219-1222.
    [85]曹永智,张生坦,孟庆鑫.高强混凝土断裂能加载速率效应研究[J].建筑材料学报,2010,13(1):90-93.
    [86]李清富,张鹏,刘晨辉,聚丙烯纤维半刚性基层抗裂性能研究[M].郑州:黄河水利出版社,2010,6:81.
    [87]公路工程沥青及沥青混合料试验规程(JTG E20-2011)[S].北京:人民交通出版社,2011.
    [88]李小青,王火明,陈李峰.刚柔复合式路面界面层强度特性试验研究[J].现代交通技术, 2009.4(6):1-3.
    [89]袁明.复合式路面永久变形及界面粘结强度变化规律研究[D]重庆交通大学,2012.
    [90]曹晓雨,张程煜,殷小玮,刘建功. C/C-SiC复合材料的制备及其层间剪切强度分析[J].热加工工艺,2012(12):87-90.
    [91]侯芸,王效杰,贾非.超薄沥青混凝土磨耗层层间剪切应力状态与抗剪指标分析[J]公路交通科技(应用技术版):2010(01):19-21.
    [92]朱耀庭,雷茂锦,时宁.基于层间剪切疲劳等效的沥青路面轴载换算研究[J].华东公路,2011(4):87-90.
    [93]曹荣吉,白启峰.橡胶沥青应力吸收层在盐通高速公路上的应用研究[J].公路交通科技(应用技术版),2006(10):120-122.
    [94]朱洪州,高爽,唐伯明.沥青混合料常应变小梁弯曲疲劳试验[J].华中科技大学学报(城市科学版).2009(26):5-8.
    [95]冯新军,郝培文,查旭东.沥青稳定碎石基层抗反射裂缝能力评价方法[J].中国公路学报,2011(3):6-10.
    [96]杨斌,陈拴发,王秉纲,李祖仲.模拟沥青加铺层反射裂缝扩展的MTS疲劳试验[J].公路,2006.2(2):117-120.
    [97]廖卫东,陈拴发,刘刚.疲劳荷载下沥青加铺层抗反射裂缝试验研究[J].武汉理工大学学报,2005.12(27):30-33.
    [98]张肖宁,邹桂莲,王绍怀.旧混凝土路面上沥青加铺层的抗反射裂缝能力[J].华南理工大学学报,2001.8(8):82-85.
    [99]李善强,王选仓.沥青加铺层反射裂缝发展疲劳模拟试验研究[J].中外公路,2009.4(29):190-193.
    [100]任贵明.耐久性复合式路面技术[M].人民交通出版社,北京,2009:90-91.
    [101]吴顺祥,灰色粗糙模型及其应用[M].北京:科学出版社2009:21-25,
    [102]刘思峰,郭天榜,党辉国,灰色系统理论及其应用[M].北京:科学出版社1999:
    [103]Lantenois S,Nedellec Y,Prelot B. Thermodynamic Assessment of the Variation of the Surface Areas of Two Synthetic Swelling Clays During Adsorption of Water[J]. Science Direct, 2007(7):1003-1011.
    [104]赵艳新,张瞥利.改性乳化沥青纤维封层在路面面层施工中的应用[J].辽宁省交通高等专科学校学报,2007,12(9):24-25.
    [105]中华人民共和国行业标准.公路工程沥青及沥青混合料试验规程[S].JTGE20-2011.
    [106]周泽洪.同步碎石下封层应用技术研究[D].长安大学,2009.
    [107]邓洪亮,廖瞥丹,王正念.半刚性基层沥青路面温度型反射裂缝的扩展机理分析[J].水利与建筑工程学报,2009,7(4):4-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700