用户名: 密码: 验证码:
广义切线模量理论及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用应力应变曲线上的物理参数建立了实际材料的应力和理想弹性材料应力之间相对应的称为“衍生比例定律”的函数关系,这种函数关系不受比例极限的限制,能反映应力应变曲线线性和非线性关系的全貌,它可以和材料比例定律一样,应用到固体力学的多个分支当中。衍生比例定律是各种材料都要遵守的本构关系,它能够利用切线模量将各种线性理论转化为相应的非线性理论,得到的新的非线性理论概念清晰、便于理解和应用。根据切线模量的这种功能,将这种利用材料衍生比例定律构建非线性理论的原理和方法称为“广义切线模量理论”。
     广义切线模量理论是用材料衍生比例定律将固体力学的多个分支,如压弯强度、失稳屈曲、断裂强度及疲劳强度等理论结合在一起的新的综合理论体系,同时它也是线性和非线性一体化的理论体系,因此具有求解强度稳定综合问题及各种非线性力学问题的优势。由于广义切线模量理论中的参数采用了相似理论中相似π数的形式,因此它在整理实验数据、扩大实验数据的使用范围、以及设计实物和模型试验方案等方面都有显著的优越性。
     本文系统论述了广义切线模量理论的原理、计算方法及其在稳定问题、强度稳定综合问题、断裂强度问题、疲劳寿命问题以及模型试验研究等方面的具体应用。
Derived proportional law can be established by using the relationship of real material stress and perfect elastic material stress, which doesn't limited by proportional limit of material, can reflect general views of stress-strain curve including linear part and nonlinear part, so it can be used in several branches of solid mechanics with proportional law of material. Derived proportional law is one of the constitutive relationship which must be submitted by all materials, it can transform linear theory to nonlinear theory by tangent modulus directly, and the nonlinear theory gained is easy to understand and apply. In term of the function of tangent modulus, we call the principle and method generalized tangent modulus theory.Generalized tangent modulus theory is a combined theory system of bending strength theory, stability theory, fracture theory and fatigue theory. Meantime, it is also an integrated system of linear and nonlinear theory, so it is good at solving all kinds of nonlinear mechanics questions and combined questions of strength and stability. Because parameters of generalized tangent modulus theory have the form of similarity coefficient, it can provide a new mechanism for using experiment data of entity or model, extending applied range of experimental data, designing and executing experiment scheme.This paper illustrates the principle and calculating method of generalized tangent modulus theory, and shows its applications in question of bending strength, stability, fracture strength, fatigue life and model experiment.
引文
[1] Shanley. The Column Paradox. Journal of Aeronautical Science,Vol.13, 1946.
    [2] Duberg, J.E and Wilder, T.w. Column Behavior in the Plastic Stress range. Journal of Aeronautical Science,Vol. 17, 1950.
    [3] Stowell, E.Z. A Unified Theory of Plastic Columns and Plates. NACA TN 1556,1948.
    [4] 陈骥.钢结构稳定理论与设计.科学出版社,2003年9月:30页.
    [5] Lorenze, R(1908). Achsensymmetrische Verzerrungen in dunnwandigen Hohlzylinder, Z.V.D.I.52,1706-1713P
    [6] Lorenze, R(1911). Achsensymmetrische Verzerrungen in dtlnnwandigen Hohlzylinder, Physik, Zeits Leipzig, Jahrg 12,241-260P
    [7] Timoshenko, SP(1910). Einige Stabilitats Problem der Elastizitatstheorie, Z. Math.Physik 58,337-352P
    [8] Timoshenko, SP(1914). Buckling of Cylinders, Bull, Eleetrotechnical Institute, St. Petersbury, Ⅺ
    [9] Southwell, RV(1914).On the General Theory of Elastic stability. Phil.Trans.Roy.(London)213,A, 197-244P
    [10] Lundquist, EE(1933). Strength Tests of Thin-Walled Duralumin Cylinders in Compression, NACA TR-473
    [11] Roberston, A(1929).The Strength of Tubular Struts, ARC Rep.and Mem., No1185
    [12] Flupple, W(1932). Die Stabilitat der Kreiszylinderschale, In genienieur-Archiv. Band Ⅲ5, 463-506P
    [13] Wilson, WM, and Newmark, NM(1993).The Strength of Thin Cylindrical Shells as Columns,Bull.255,Fng.Fxp.Station,Univ.of Illinois
    [14] Karman, Th.Von, and Tsien, HS(1939). The Buckling of Spherical Shells by External Pressure, J.Aero.Scie.,7,43-50P
    [15] Karman, Th. von,Dunn, LG, and Tsien, HS(1940). The Influence of Curvature on the Buckling Characteristic of Structures, J. Aero.Scie.,7,276P
    [16] Karman, Th.Von, and Tsien, HS(1941). The Buckling of Thin Cylindrical Shells Under Axial Compression, J.Aero.Scie.,8,303P
    [17] 李云龙.壳体的稳定性理论及其应用.上海力学,2,1998:71-78P
    [18] 陈铁云,沈惠申.结构的屈曲.上海科学技术文献出版社,1993,12
    [19] 周承倜.薄壳弹塑性稳定理论.国防工业出版社,1979,12
    [20] 梁炳文,胡世光.弹塑性稳定理论.国防工业出版社,1983,11
    [21] Stein, M(1962). The Effect on the Buckling of Cylinders of Prebuckling Deformations and Stresses Induced by Edge Support, NASA TN D-1510 217-224P
    [22] Stein, M(1964). The Influence of Prebuckling Deformations and Stresses on the Buckling of Perfect Cylinders, NASA TRR-190
    [23] Stein, M(1968). Some Recent Advances in the Investigation of Shell Buckling. AIAAJ. 6,12,2339-2345P
    [24] Tielemann, WF, and Esslinger, ME(1967). On the Postbuckling Behavior of Thin-Walled Axially Compressed Circular Cylinders of Finite Length, Proc. Symp.on the Theory of Shells, ed by D.Muster,433-479P, Univ.of Houston
    [25] Yamaki, N, Otomo, K, and Matsuda, K(1975). Experiments on the Postbuckling Behavior of Circular Cylindrical Shells Under Compression, Exp.Mech. 15,23-28P
    [26] Friedrichs, Ko, and Stoker, JJ(1939). The Non-linear Boundary Value Problem of the Buckled Plate, Nat.Acad.Sci.U.S.A.,25,532-540P
    [27] Friedrichs, KO(1941). On the Minimum Buckling Load for Spherical Shells, Theodore von Karman Anniversary Volume, California Institute of Technology, 258-272P
    [28] Fung, YC, and Wittrick, WH(1995). A Boundary Layer Phenomenon in the Large Deflection of Thin Plates, Quart.J.Mech.Appl.Math.,8,part 2, 191-210P
    [29] 黄克智,蒋智翔,郑思梁.薄壳简单边界效应理论的二次渐近方程.力学学报.13,6(1981)550-561P
    [30] 林鸿荪.圆板屈曲问题中的边界现象.弹性圆薄板大挠度问题.中国科学院出版社,99-116,1954P
    [31] Masur, EF, and Chang, CH(1964). Development of Boundary Layers in Buckled Plates, J.Eng.Mech.,ASCE.90,2,33-50P
    [32] Shen, HS, and Chen, TY(1990). A Boundary Layer Theory for the Buckling of Thin Cylindrical Shells Under Axial Compression, Adv. Appl. Math.&Mech. in China,Vol.2,155-172P
    [33] Neale, KW(1975). Effect of Imperfections on the Plastic Buckling of Rectangular Plates, J.Appl.Mech.,42,115-120P
    [34] Needleman, A(1976). An Analysis of the Imperfection Sensitivity of Square Elastic-plastic Plates under Axial Compression, Int. J. Solids Structures, 12,185-201P
    [35] Rectliffe, AT(1968).The Strength of Plates of Plates in Compression. Cantab Ph.D. Thesis
    [36] Jerzy Maciejewaski and Jerzy Zlelneca(1984).Nonlinear Stability Problem of an Elastic-plastic Open Conical Shell, Rozprawy Inzynierskic, Vol 32,3,361-330P
    [37] Weichert, D(1984).Stability of Geometrically Non-linear Elasticplastic Shells, PT163-T165,ZAMM.Zeitschrift fur Angewandte Mathemalik and Mechabik,64,4
    [38] Hill, R(1978). Aspects of Invariance in Solid Mech. Aspects in Appl. Mech.,Vol 18,1-75P
    [39] Hutchinson, JW(1974). Plastic Buckling, Advances in Appl. Mech. Vol 14,67-143P
    [40] Hutchinson, JW(9173). Post-bifurcation Behavior in the Plastic Range. J. Mech. Phy. Solids,Vol 21,163-190P
    [41] Bushnell, D(1985). Computerized Buckling Analysis of Shells, Martinus Nij hoff Publishers, Dordrecht
    [42] Bushnell, D(1985). Static Collapse, A Survey of Methods and Modes of Behavior. Finite Elements Anal. Des. 1,2,165-205P
    [43] Bushnell, D, and Meller, E(1984). Elastic-plastic Collapse of Axially Compressed Cylindrical Shells, A brief Survey with Particular-application to Ring-stiffened Cylindrical Shells with Reinforced Openings, ASME J.Pressure Vessel Technology, 106,1, 2-16P
    [44] 蒋和洋,唐立民.用拟协调元进行壳体非线性稳定分析.工程力学,3,1985
    [45] Tergulev, AG(1982). Imperfect Spherical Shell Stability Analysis Based on a Refined Buckling Pattern, Soviter Aeronautics, Vo125, 4, 85-88P
    [46] Simitses, GJ(1985).Stability of Cylindrical Shells by Various Nonlinear Shell Theories(in German), Z. Angew. Math. Mech. 65, 5, 159-166P
    [47] 李丽娟,刘锋.有初始几何缺陷的壳体弹塑性大变形分析.固体力学学报,1.1995:61-64P
    [48] 周承芳,周少奇.壳体强度和稳定性的非线性有限元分析.大连理工大学学报,2.1992:144—150P
    [49] Henryk Frackiewicz (1985). Geometrical Aspects of Non-linear Stability of Shells, ICN, Shanghai, China
    [50] 张进敏.塑性本构理论研究近况.力学进展.4,1988:482—492P
    [51] 罗培林,佟福山,张春.切线模量定律和比例极限定律的关系和应用.机械强度,2,1986:56—60P
    [52] Luo Peilin(1994). Axisymmetrie and Non-Axisymmetric Buckling of Circular Cylindrical Shells, The Proc. of the Special Offshore Symp China, Beijing,April. 16-18P
    [53] Luo Peilin, and Others(1992). Proportional Limit Law of Material and Strength Utilization Ratio Function, Pro. of the Second Int. Offshore and Polar Eng. Conference, San Francisco, USA, June,500-507P, EI92-146850
    [54] Luo Peilin(1987).A Combined Theory of Strength and Stability and Its Signification, Proc. of the Sixth Int. Offshore Mech. and Arctic Eng.Symp.,Vol2, 475-492P, EI M8707-047714
    [55] 罗培林.结构强度稳定综合理论的梗概和意义.机械强度,2,1986:56-60P
    [56] 石德新.梁柱问题和压杆第二类稳定问题的共性.哈尔滨船舶工程学院学报,3,1991:21—30P
    [57] 罗培林.材料应力应变图的相似性及其表达形式和应用.哈尔滨船舶工程学院学报,1984
    [58] 石德新.强度利用率函数与多(?)—(?)曲线的一致性.中国造船学会船舶结构应力分析学组1984年专题讨论会论文
    [59] 罗培林,石德新.建议在钢结构设计规范中应用强度利用率函数.钢结构,1993:68-71页
    [60] 罗培林.应力应变六参数方程及其在结构稳定性的计算和实验中的应用.中国造船,1981
    [61] 罗培林.材料比例极限定律和结构平衡状态图的显示.中国造船编辑部论文集,1992,山海关
    [62] Luo Peilin(1993).The Influence of Prebuckling Deformations and Stresses on the Buckling of Spherical Shell, Int. J. of Offshore and Polar Eng.,Vol,No.4,97-104P, EI93-14096
    [63] 罗培林,佟福山.贯流式机组泡体承压能力的理论分析.哈船院科技报告,1993
    [64] 佟福山,罗培林.贯流式机组泡体承压能力的计算方法.哈船院科技报告,1993
    [65] 佟福山.球形薄壳承压能力的研究与应用.哈尔滨工程大学博士论文,1995
    [66] 罗洪武,罗培林.材料的对数型比例极限定律和球壳稳定系数.中国钢协与海洋钢结构协会论文集,1996
    [67] 刘康林,罗培林.截顶圆锥壳屈曲载荷的灰色预测.系统工程,第15卷,第四期.1997.7
    [68] Luo PeiLin. Relationship Between Critical Stress Coefficients of Buckling and Fracture and Its Signification. Proceedings of the Sixth Pacific Structural Steel Conference, Beijing China(2001):251—259P.
    [69] Luo PeiLin, Liu KangLin,Luo HongWu. Application of Combined Theory of Strength and Stability to Fracture Mechanics. Proceedings of the Sixth International Offshore and Polar Engineering Conference, Los Angeles USA(1996):356—361P.
    [70] 刘康林.结构失效分析的强度稳定综合理论法研究.哈尔滨工程大学博士论文,1996.6
    [71] 张志平.裂纹扩展的简明机理和断裂力学中的切线模量理论.哈尔滨工程大学硕士论文,2003.1
    [72] 罗培林,佟福山,韩芸.屈曲临界应力与疲劳寿命的关系.中国钢结构协会海洋钢结构分会2002年学术会议论文集,2002.5
    [73] 韩芸.疲劳寿命在强度稳定综合理论中的运算.哈尔滨工程大学硕士论文,2003.1
    [74] 罗培林,佟福山,韩芸.切线模量理论的新论证和新应用.钢结构工程研究④.钢结构增刊,2002
    [75] 罗培林,张志平,佟福山.材料衍生比例定律的内涵及用途.钢结构工程研究⑤.钢结构增刊,2004.8
    [76] 周国华.钢材的材料性能与柱子曲线.舰船性能研究.1979.12
    [77] Gerard G. & Becker H. Handbook of Strucmre Stability Part Ⅰ-Buckling of Flat Plates. NACA-TN7381. New York University N.Y. 1957
    [78] 束长庚,周国华.船舶结构的屈曲强度.国防工业出版社.2003.4.
    [79] 沈继红,施久玉,高振滨,张晓威.数学建模.哈尔滨:哈尔滨工程大学出版社,1998.1.
    [80] 蒋泳秋,穆霞英.塑性力学基础.北京:机械工业出版社,1981.5.
    [81] 吕烈武,沈世钊,沈祖炎,胡学仁.钢结构构件稳定理论.北京:中国建筑工业出版社,1983.12.
    [82] 中华人民共和国国家标准.钢结构设计规范GBS0017—2003.中国计划出版社.2003.4.
    [83] 罗培林,佟福山.大深度新型水下耐压结构的研究——球壳承受静水压力的能力.船舶工业科技报告.1991.
    [84] 中华人民共和国国家军用标准.潜艇结构设计计算方法GJB/21A—2001.
    [85] 罗培林.加肋圆柱壳的弹性稳定性.中国人民解放军军事工程学院学报.总第11期Ⅲ—1.1965.
    [86] 李庆芬,胡胜海,朱世范.断裂力学及其工程应用.哈尔滨:哈尔滨工程大学出版社,1998年:1-3页.
    [87] 黄维扬.工程断裂力学.北京:航空工业出版社,1994年:113-116页。
    [88] 郑学祥.船舶与海洋工程结构的断裂与疲劳分析.北京:海洋出版社,1998年:176-178页.
    [89] Krenzke M A. Tests of Machined Deep Spherical Shells Under External Hydrostatic Pressure. DTMB Report 1601.1962
    [90] Fedderson C E. Evaluation and Prediction of the residual Strength of Center Cracked Tension Panels. ASTM. 1971.STP 486:50-78P
    [91] 航空航天研究院.飞机结构耐久性损伤容限设计手册.第三册.北京:国防工业出版社,1989.189—192页
    [92] 李洪升等.金属材料δ_c和J_c值的低温测试的贴片法.机械强度,1986年2月:47-49页.
    [93] 压力容器缺陷评定规范编写组.压力容器缺陷评定规范 CVDA—1984.
    [94] 李志安.压力容器断裂理论与缺陷评定.大连:大连理工大学出版社,1994年8月.
    [95] 杨芳毓,李慧荣.表面延性断裂的双准则法.压力容器,1987年4月:24-31页.
    [96] 郑修麟,金属疲劳的定量理论.西北工业大学出版社.1994年1月:65页
    [97] 吴学仁主编,金属材料力学性能手册,第一卷,静强度疲劳/耐久性.北京:航空工业出版社,1996.6
    [98] 航空工业部科学技术委员会编.应变疲劳分析手册.北京:科学出版社,1987年8月:139-148页.
    [99] 石德新.结构承压能力的研模型试验原理和方法.哈尔滨工程大学博士论文,1990
    [A1] Brock, D. The Practical Use of Fracture Mechanics, Kluwer Academic Publisher, Dordrecht/Boston/London, 1988.
    [A2] 吴清可.防脆断设计,北京:机械工业出版社,1991
    [A3] 徐振兴.断裂力学,湘潭大学,1985
    [A4] 黄克智,余寿文.断裂力学,北京:清华大学出版社,1985
    [A5] 赖祖涵.断裂力学原理,北京:冶金工业出版社,1990
    [A6] 陈篪.金属断裂研究文集,北京:冶金工业出版社,1978
    [A7] Hutchinson, JW. Singular Behavior at the End of Tensile Crack in a Hardening Material, J. Mech. Phys, Solids,1968:13-31P.
    [A8] Hutchinson, JW. Plastic Stress and Strain Fields Crack Tip, J. Mech. Phys, Solids, 1968: 337-347P.
    [A9] Rice, JR, and Rosengren, GF. Plane Strain Deformation Near a Crack Tip in a Power-Law Hardening Material, J. Mech. Phys, Solids,1968: 1-12P.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700