用户名: 密码: 验证码:
腔内隔绝术用分支人工血管膜的设计与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涉及到分支血管的主动脉瘤及夹层等扩张性疾病,由于其手术危险系数高,是血管外科治疗研究的重点和难点。然而目前用于治疗该类疾病的腔内隔绝术用人工血管在临床应用中的效果并不理想,主要是由于病变部位离心脏较近,手术难度较大,支架释放较难控制;同时由于涉及分支血管,手术方案复杂,容易导致手术操作不成功,造成治疗失败。因此设计并制备手术操作简单的分支人工血管就成为该领域研究的焦点及重点问题,也成为解决涉及分支血管的主动脉疾病的最佳途径。
     本文针对用于微创治疗的分支人工血管的研究现状和存在的问题,对腔内隔绝术用分支人工血管膜的功能和结构设计、成型以及结构与性能的关系进行了深入研究。
     通过动物实验、有限元分析和流体力学理论计算,设计了一种具有帽型结构和抛物线曲面形状并且不带金属支架的分支人工血管膜的模型。由在体测量猪主动脉弓和分支动脉血压差的动物实验表明,分支动脉在被封堵前存在着明显的血压差,其数值达到压差均值42.78±5.17mmHg,在腔内隔绝术人工血管的实际释放过程中,其瞬时的压差将远远大于实测的数值。因此根据这个血压差可以设计一种不带金属支架的帽型分支人工血管膜,利用血压差自动突入分支动脉。并利用ANSYS模拟软件,通过有限元方法分析不同曲面函数的应力和形变分布,结果表明,抛物线曲面的结果最优。根据流体力学理论,通过沿程能量损失计算和综合有限元分析,选择了抛物线曲面。因此提出后续分支血管膜设计可采用帽型、无金属支架支撑的、抛物线曲面的制备方案。
     根据上述确定的最优抛物线曲面函数模型,通过模压成型的方法制备涤纶(PET)机织分支人工血管膜,探索异形分支人工血管膜的表征方法,并研究其几何结构与顶破、径向拉伸、弹性回复等力学性能的关系。选取PET复丝,采用平纹和斜纹两种织物组织通过织造、退浆/致密化过程得到不同密度的织物,利用抛物线曲面的模具制备“帽形”织物再进行热定型即可得PET分支人工血管膜。同时探索了异形分支血管膜的表征体系,测试了模压成型法人工血管膜的几何结构、聚集态结构和力学性能,并对其释放情况进行了体外模拟。由结果可知,经模压法制备的“帽形”分支血管膜试样从帽底至帽顶密度逐步减小,其厚度、克重、结晶度及顶破强度也随之呈现梯度变化;密度较大的斜纹织物试样体现出较好的力学性能;而体外模拟释放试验也表明模压成型的分支人工血管膜在压力作用下,中间区域能够突入分支动脉,保证分支的血供。
     为了进一步提高分支人工血管膜的力学性能,以及探索新型的加工成型方法,仿真动脉血管的三层结构(内膜、外膜、中膜),内、外膜选用生物相容性较好的多孔聚己内酯(PCL)材料,中膜选用PET网格织物作为增强层,以期提高分支人工血管膜的力学性能。探索了溶液浓度、分子量对多孔膜的影响,SEM结果可知,溶液浓度越小,孔隙率越大:分子量为18万的PCL膜的孔径和孔隙率大于分子量为5万和8万的PCL膜,所有的多孔膜的孔径都在10μm以上,并且是三维贯通的。综合加工工艺,采用了冰乙酸作为PCL材料的溶剂,选择了分子量为18万的PCL作为基材,最大针织网格密度的PET织物作为增强层,用于制备PCL/PET复合分支人工血管膜。采用了压力喷涂和冷冻干燥方法相结合,制备了针织PET网格织物作为中间层以期增强多孔PCL膜的三层分支人工血管膜。同时对成型后PCL分支人工血管膜及PET网格织物增强的复合分支人工血管膜试样进行几何结构,管壁微观结构,顶破强力、径向拉伸、弹性回复、缝合强度等力学性能进行了表征和分析。对比了PCL/PET复合分支人工血管膜与纯PCL分支血管膜的结构与性能,分析了PET网格织物的增强机制,同时比较了单层PET机织分支人工血管膜的研究结果。PCL以及PCL/PET分支人工血管试样的周边区域的管壁厚度值稍大于中央区(帽顶和帽弧)的值,这是由于PCL溶液在重力场的作用下发生微量流延所致,与PET机织分支人工血管膜的结果相似。PCL/PET分支血管膜的SEM照片显示,管壁呈现多孔形貌,并且相互贯穿,孔径10μm以上;同时PCL基体与PET纤维之间相互贯穿,界面相容性较好。由水渗透性实验表明,多孔膜在标准血压下不渗水,因此在植入体内并不发生内漏。人工血管膜材料的力学性能研究结果表明,PCL/PET复合分支人工血管膜的顶破强度、径向拉伸性能、弹性回复性能以及缝合强度均比纯PCL膜材料的性能有明显的提高,网格织物显示了显著的增强作用。同时PCL/PET复合分支人工血管膜的各项力学性能也比单层PET分支人工血管膜有了很大的提高。
     综上所述,本文利用了腔内隔绝手术过程中主动脉弓与分支之间存在的血压差,设计了无需金属支架支撑的帽状分支人工血管膜,优化了分支人工血管的外形设计,并用两种方法制备了分支血管膜,研究了其结构与性能的关系。该分支血管膜可应用于腔内分支血管的重建,达到一次手术释放,可以降低手术的操作难度。同时丰富了腔内分支人工血管的种类,为临床手术方法提供了更多的选择。
There are great challenges to treat the aortic dissection and the aortic arch aneurysm involving its branch vessels. One of those challengeis that it is difficult to design and fabricate a suitable endovascular branched graft. That is because the lesion close to the heart makes the operation more difficult torelease the stent-graft. Meanwhile, the complicated surgical options are easily to lead to unsuccessful surgical operations, resulting in treatment failure. Therefore, the design and preparation of branched graft for simple surgical operation has become the focus and key issues in the field of endovascular graft. It has also become an important branch of the best way to solve the bottlenecks in the clinical application of endovascular graft regarding to the branched vessels.
     To deal with the existing problems and make a breakthrough of research status in the endovascular grafts with the branched vessels, this paper focuses on the functional design of a suitable endovascular branched graft and its structure molding as well as the their relationship between structure and properties.
     A hat-like endovascular branched graft model is designed with curved surface, and without metal stent graft,through the results of animal experiments, finite element analysis and computational fluid dynamics. The in vivo measurement of pressure in porcine aortic arch and branched artery have shown that there is a clearly difference in blood pressure before the branched artery was blocked; the value reaches42.78±5.17mmHg. The instantaneous value of the pressure of endovascular branched graft will be far greater than measured in actual release process. Therefore, hat-like endovascular branch graft without metal stent graft can be designed according to the automatic blood pressure difference. The ANSYS simulation software was taken to analyze the stress distribution and displacement of different curve surface by finite element method, and the results showed that the curved arc is optimal. According to the theory of fluid mechanics and the calculation results of energy loss, the parabola curved surface lost the smallest energy. Therefore it is recommended that the hat-like model without metal stents support can be used in the design of endovascular branch graft.
     The woven polyester (PET) endovascular branch graft was prepared by the compression molding, according to the optimal parabolacurved surface model.The characterization ofcurved shaped endovascular branch graftwas explored.The geometric structure and bursting, tensile strength, elastic recovery and other relationshipsbetween structure and properties were studied. PET multifilament was selected to fabricate two kinds of plain and twill weave fabric with different densities obtained by weaving, desizing and densification process, to form PET endovascular branch graft. Then the PET endovascular branch graft membrane could be obtained after the process of heat-set molded asa hat-like fabric with a parabola curved surface compression mold. After the characterization system of various shaped endovascular branch graft membranes was explored, its geometry compression molding, structure and mechanical properties of aggregation state were tested, as well as the in vitro release of situation. According to the results, the density of hat-like branched vascular membrane samples prepared by molding gradually decreased from the bottom to the crowns, the thickness, weight, degree of crystallinity and bursting strength also show gradient. The density compared with the large twill fabric samples reflected the good mechanical properties. In the in vitro release test of artificial vascular membrane molded under pressures, the resultsshowed the intermediate regions could plunge branched artery and ensure the blood supply to the branch.
     To further improve the mechanical properties of endovascular branch graft, and to explore the novel molding method and the simulation of the real three-layer structure artery (intima, adventitia, membrane), the porous polycaprolactone (PCL) material was selected for its biocompatibility to form the inner and outer membrane, andthe PET mesh fabric was select as a reinforcing layer in order to improve the mechanical properties of endovascular branch graft. The influences between the concentration, molecular weight and membrane porous structure were conducted by SEM. The results showed the smaller the concentration with the greater the porosity; pore size and porosity of PCL film with a molecular weight of180,000is greater than50000and80000of PCL films. All three-dimensional pore size in the porous membrane is more than10μm. Through the integrated processing technology, using acetic acid as a solvent, choosing180,000molecular weight of PCL for the substrate, the maximum density of the PET mesh knitted fabric as a reinforcing layer to prepare PCL/PET composite film used in endovascular branch graft. A pressure spray and freeze-drying method were used to combine PET knitted fabric mesh as an intermediate layer with PCL membrane. Meanwhile, the specimen geometry, wall microstructure, bursting strength, radial tensile, elastic recovery, strength and other mechanical properties of the suture were conducted to make characterization and analysis of the PCL membrane and PET fabric reinforced composites. Contrast the structure and properties of PCL/PET composite film and pure PCL membranes, the enhancement mechanism of PET fabric mesh was analyzed. The Wall thickness of PCL and PCL/PET endovascular branch graft surrounding the sample area is slightly larger than the central region's (crowns and caps arc), which is due to occur in trace PCL solution flow under gravity field caused by delay, similar results were found in the PET fabric endovascular branch graft. SEM photographs of PCL/PET composite membrane showed the pore sizewith porouswall is over10μm; the interface compatibility between PCL and PET fiber matrix is good. The water permeability experiment showed that porous membrane is impermeable under the standard pressure, so the leakage will not occur in the in vivo implantation. The result of mechanical properties of the membrane material showed that the bursting strength of PCL/PET composite film branch of artificial blood vessels, radial tensile properties, elastic recovery and suture strength are better than pure PCL membrane materials.The PET fabric mesh showed a significant enhancement to improve the performances. Meanwhile, the mechanical properties of PCL/PET composite endovascular branch graft have also been greatly improved than the monolayer PET film.
     In summary, the hat-like endovascular branch graftwith stent-less was designed according to the difference of blood pressure between the branch and the aortic arch in the endovascular surgical procedures.The branch graft shape was optimized according to finite element analysis and computational fluid dynamics.Two kinds of endovascular branch graft membrane were prepared and relationship between structure and properties was studied. The hat-like endovascular branch graft can reduce the surgery operational difficulty and provide more choices for clinical surgeon.
引文
[1]Kipshidze N, Sahota H, Bukhutashvili I. Experimental and clinical development of aortic stent-grafts and review of contemporary types of devices. Stent-graft updates. Washington (DC):Medical and Engineering Publishers Inc,2000:pp 269-285.
    [2]Volodos NL. Historical Perspective:The first steps in endovascular aortic repair: how it all began. J Endovasc Ther,2013; 20(spp1):1-3-1-23.
    [3]景在平,梅志军,主动脉瘤腔内修复术20年:回顾与展望,外科理论与实践,2011,16(2):109-111。
    [4]王玉琦,史振宇,我国血管外科的现状与展望,中国普外基础与临床杂志,2008,15(6):387-389。
    [5]Guidoin R, Marois Y, Douville Y, King MW, Castonguay M, Traore'A, Formichi M, Staxrud LE, Norgren L, Bergeron P, Becquemin JP, Egana JM, Harris PL. First-generation aortic endografts:analysis of explanted Stentor devices from the EUROSTAR registry. J Endovasc Ther.2000; 7:105-122.
    [6]Desai M, Eaton-Evans J, Hillery C, Bakhshi R, You Z, Lu J, Hamilton G, Seifalian AM. AAA stent-grafts:past problems and future prospects. Am Biomed Eng. 2010; 38:1259-1275.
    [7]朱成明,姚文华,王贵富,张德明,颅内动脉瘤外科治疗的临床疗效对比分析,四川医学,2012,33(8):1400-1403。
    [8]林晨,景在平,腔内隔绝术治疗累及分支的主动脉弓疾病,临床外科杂志,2008,12:851-852。
    [9]Criado FJ. The EVAR landscape in 2011.A status report on AAA therapy. Endovascular Today,2011 March:pp 40-58.
    [10]Reekers JA. The current status of AAA stent-grafting.Sem Intervent Radiol,2007; 24:206-210.
    [11]Torsello G, Troisi N, Donas KP, Austermann M. Evaluation of the Endurant stent graft under instructions for use vs. off-label conditions for endovascular aortic aneurysm repair. J Vasc Surg,2011; 54:300-306.
    [12]Schwarze ML, Shen Y, Hemmerich J, Dale W. Age-related trends in utilization and outcome of open and endovascular repair for abdominal aortic aneurysm in the United States:2001-2006. J Vasc Surg,2009; 50:722-729.
    [13]Arko FR, Filis KA, Seidel SA, Gonzalez J, Lengle SJ, Webb R, Rhee J, Zarins CK. How many patients with infrarenal aneurysms are candidates for endovascular repair? The Northern California experience. J Endovasc Ther,2004; 11:33-40.
    [14]Dotter CT, Transluminally-placed coilspring endarterial tube grafts. Long-term patency in canine popliteal artery. Invest Radiol.1969; 4(5):329-332.
    [15]Balko A, Piasecki GJ, Shah DM et al, Transfemoral placement of intraluminal polyurethane prosthesis for abdominal aortic aneurysm. J Surg Res,1986; 40(4): 305-309.
    [16]Lawrence DD, Gianturco C, Wallace S et al, Self-expanding endovascular graft: an experimental study in dogs. AJR Am J Roentgenol,1988; 151(4):673-676.
    [17]Lazarus HM. Intraluminal graft device, system and method. US Patent No.4,787, 899,1988.
    [18]Parodi J, Palmaz J, Barone H. Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Ann Vasc Surg,1991; 5:491-499.
    [19]O'Donnell ME, Sun Z, Winder RJ, Ellis PK, Lau LL, Blair PH. Suprarenal fixation of endovascular aortic stent grafts:assessment of medium-term to long-term renal function by analysis of juxtarenal stent morphology. J Vasc Surg, 2007; 45:694-700.
    [20]Rosch J, Keller FS, Kaufman J A. The birth, early years, and future of interventional radiology.J Vasc Intervent Radiol,2003; 14:841-853.
    [21]Towne JB. Endovascular treatment of abdominal aortic aneurysms. Ann J Surg, 2005; 189:140-149.
    [22]Kaplan AV, Baim DS, Smith JJ, Feigal DA, Simons M, Jefferys D, Fogarty TJ, Kuntz RE, Leon MB. Medical device development:from prototype to regulatory approval. Circulation,2004; 109:3068-3072.
    [23]赵荟菁,腔内隔绝术用人造血管体外疲劳耐久性能研究及仿生疲劳仪的设计。博士学位论文,东华大学,上海,2009。
    [24]王璐,丁辛,Durand B,人造血管的生物力学性能表征,纺织学报,2003,1:7-9。
    [25]刘肖燕,腔内隔绝术用纺织基人造血管成形及其性能研究,东华大学硕士学位论文,2008。
    [26]相金燕,李毓陵,陈旭炜,人造血管及其在腔内隔绝术中的应用,产业用纺织品,2003,21(155):31-34。
    [27]贾立霞,人造血管水渗透仪的设计及其渗透性表征的实验研究,东华大学硕士学位论文,上海,2004。
    [28]李睿,不同纺织基人造血管的结构特性浅析,纺织科技进展,2007(6):17,47。
    [29]凌凯,王璐,贾立霞,人造血管的纺织设计与加工技术,上海生物医学工程,2003(2):49-51。
    [30]赵学谦,机织血管径向顺应性的改善,东华大学硕士论文,2011。
    [31]Balko A, Piasecki GJ, Shah DM, Carney WI, Hopkins RW, Jackson BT. Trans-femoral placement of intraluminal polyurethane prosthesis for abdominal aortic-aneurysm. J Surg Res,1986; 40:305-309.
    [32]BicknellCD, CheshireNJW, RigaCV, etc. Treatment of Complex Aneurysmal Disease with Fenestrated and Branched Stent Grafts.European Journal of Vascular and Endovascular Surgery.2009; 37(2):175-181.
    [33]Hiramoto JS. Commentary:Multiple chimney grafts for total endovascular revascularization of the visceral arteries in the setting of ruptured TAAA: inventive but let's wait for the smoke to clear on this one. J Endovasc Ther,2010; 17:222-223.
    [34]Joshua D. Adams, Lleowell M. Garcia, John A. Kern. Endovascular Repair of the Thoracic Aorta.Surgical Clinics of North America.2009; 89(4):895-912.
    [35]Kazuo Shimamura, Toru Kuratani, Goro Matsumiya, etc. Hybrid endovascular aortic arch repair using branched endoprosthesis:The second-generation "branched" open stent-grafting technique. The Journal of Thoracic and Cardiovascular Surgery.2009; 138(1):46-53.
    [36]Esposito G, Marullo AG. Hybrid treatment of thoracoabdominal aortic aneurysms with the use of a new prosthesis. Ann Thorac Surg.2008; 85(4): 1443-5.
    [37]Thomas S. Monahan, Darren B. Schneider. Fenestrated and Branched Stent Grafts for Repair of Complex Aortic Aneurysms.Seminars in Vascular Surgery. 2009; 22(3):132-139.
    [38]TAM Chuter, DB Schneider, LM Reilly. Modular branched stent graft for endovascular repair of aortic arch aneurysm and dissection. Journal of Vascular Surgery,2003; 38(4):859-863.
    [39]Esposito G, Marullo AG. Hybrid treatment of thoracoabdominal aortic aneurysms with the use of a new prosthesis. Ann Thorac Surg.2008; 85(4): 1443-5.
    [40]Verhoeven EL, Muhs BE. Fenestrated and branched stent-grafting after previous surgery provides a good alternative to open redo surgery. Eur J Vasc Endovasc Surg.2007; 33(1):84-90.
    [41]陈良万,卢琳,戴小幅,张贵灿,曹华,杨国锋,单分支支架血管植入技术在急性A型主动脉火层全弓替换加支架象异鼻植入术中的应用,中华医学杂志,2011,91(48):3435-3437。
    [42]GErich J, Asquan Y, Seifarth H, et al. Initial Experience with Intentional Stent-Graft Coverage of the Subclavian Artery during Endovascular Thoracic Aortic Repairs. J Endovasc Ther,2002; 9 (Supp 12):1139-1143.
    [43]陆清声,景在平,开窗移植物腔内隔绝术治疗胸主动脉火层动脉瘤,中华普通外科杂志,2006,21(2):141。
    [44]Criado FJ. The TEVAR Landscape in 2012:A status report on thoracic endovascular aortic repair. Endovascular Today,2011 November:pp 34-47.
    [45]刘建平.何几军.张永恒,周海宁,马蓉,覆膜支架腔内隔绝术治疗Stanford B型主动脉夹层的临床分析,中国医药指南,2013,11(5):19-21。
    [46]McWilliams RG, Murphy M, Hartley D, Lawrence-Brown MMD, Harris PL. In situ stent-graft fenestration to preserve the left subclavian artery. J Endovasc Ther,2004; 11:170-174.
    [47]Oderich GS, Ricotta JJ. Modified fenestrated stent grafts:device design, modifications, implantation, and current applications. Perspect Vasc Surg Endovasc Ther,2009; 21:157-167.
    [48]Tomas Ohrlander, Bjo'rn Sonesson, Krasnodar Ivancev, Timothy Resch, Nuno Dias, Martin Malina. The Chimney Graft:A Technique for Preserving or Rescuing Aortic Branch Vessels in Stent-Graft Sealing Zones. J ENDOVASC THER,2008; 15:427-432.
    [49]Hiramoto JS. Commentary:Multiple chimney grafts for total endovascular revascularization of the visceral arteries in the setting of ruptured TAAA: inventive but let's wait for the smoke to clear on this one. J EndovascTher,2010; 17:222-223.
    [50]Moulakakis KG, Mylonas SN, Dalainas I, Sfyroeras GS, Markatis F, Kotsis T, Kakisis J, Liapis CD. The chimney-graft technique for preserving supra-aortic branches:a review. Ann CardiothoracSurg,2013; 2:339-346.
    [51]冯睿,景在平,赵志青,魏小龙,陆华,王亮,主动脉弓上病变的双烟囱法腔内隔绝术,介入放射学杂志,2011,20(7):510-512。
    [52]杨剑,郭伟,Chimney技术在主动脉腔内修复的研究现状,转化医学杂志,2013,2(3):178-181。
    [53]Ricotta II JJ, Tsilimparis N. Surgeon-modified fenestrated and branched stent grafts-an alternative method for treating complex aortic emergencies in patients who are unfit for surgery. Endovascular Today,2011; 11:55-60.
    [54]Bakoyiannis CN, et al., Fenestrated and branched endografts for the treatment of thoracoabdominal aortic aneurysms:a systematic review. Journal of Endovascular Therapy,2010; 17(2):201-209.
    [55]于长江,范瑞新,罗建方,马少鸿,范小平,黄文晖,刘媛,庄建,分站式杂交手术治疗老年Stanford A型主动脉夹层,岭南心血管病杂志,2012,18(6):598-600。
    [56]邱罕凡,张振龙,林峰,陈良万,陈道中,杂交技术治疗主动脉弓降部病变的临床研究,中国普通外科杂志,2012,21(6):645-649。
    [57]Verhoeven E, et al., Present and future of branched stent grafts in thoraco-abdominal aortic aneurysm repair:a single-centre experience. European journal of vascular and endovascular surgery,2009; 38(2):p.155-161.
    [58]刘胜中,陈良万,应用分支型主动脉弓覆膜支架重建弓部治疗急性Stanford A型主动脉夹层,西部医学,2013,25(6):843-848。
    [59]Chuter TAM, Affiliations Address correspondence to T.A.M.C. Hiramoto JS, Chang C, Wakil L, Schneider DB, Rapp JH, Reily LM. Branched stent-grafts: will these become the new standard?.J Vasc Intervent Radiol,2008; 19:57-62.
    [60]Chuter TAM. Branched stent-grafts for endovascular repair of aortic and iliac aneurysms. Tech VascInterventRadiol,2005; 8:56-60.
    [61]Abraham CZ, Reilly LM, Schneider DB, Dwyer S, Sawhney R, Messina LM, Chuter TAM. A modular multi-branched system for endovascular repair of bilateral common iliac artery aneurysms. J EndovascTher,2003; 10:203-207.
    [62]Mastracci TM, Greenberg RK, Eagleton MJ, Hernandez AV. Durability of branches in branched and fenestrated endografts. J VascSurg.2013; 57:926-933.
    [63]Inoue K, Hosokawa K, Iwase T, et al. Aortic Arch Reconstruction by Transluminally Placed Endovascular Branched Stent Graft. Circulation,1999; 100(19 Supp 1):11316-11321.
    [64]Saito N, Kimura T, Odashiro K, et al. Feasibility of the Inoue Single-Branched Stent-Graft Implantation for Thoracic Aortic Aneurysm or Dissection Involving the Left Subclavian Artery:Short-to Medium-Term Results in 17 Patients. Jvasc Surg,2005; 41(2):206-212.
    [65]Dunning J, Martin JE. Is it safe to cover the left subclavian artery when placing an endovascular stent in the descending thoracic aorta? Interact Cardiovasc Thorac Surg,2008; 7(4):690-7.
    [66]Galili O, Fajer S, Left subclavian artery occlusion by thoracic aortic stent graft: long-term clinical and duplex follow-up. Isr Med Assoc J.2007; 9(9):668-70.
    [67]King MW. Designing fabrics for blood vessel replacement, Canadian Textile Jounral,1991; 108(4):24-30.
    [68]Wang Lu, Ding Xin. Influence of Manufacturing Process of Warp-knitted Vascular Prosthesis on the Wall Homogeneity, Donghua University Journal,2003; 20(2):9-13.
    [1]Dunning J, Martin JE. Is it safe to cover the left subclavian artery when placing an endovascular stent in the descending thoracic aorta?. Interact Cardiovasc Thorac Surg,2008; 7(4):690-6977.
    [2]Galili O, Fajer S. Left subclavian artery occlusion by thoracic aortic stent graft: long—term clinical and duplex follow-up. Isr Med Assoc J,2007; 9(9):668-70.
    [3]邓国瑜,压差介导开窗式主动脉腔内移植物系统的实验研究,第二军医大学博士论文,2012。
    [4]王大明,凌峰,李萌,中国实验小型猪头颈血管造影影像及在介入神经放射学中的意义,中华实验外科杂志,1999,16(2):166-168。
    [5]WANG Fu-jun, ZHANG Lei, WANG Lu, LI Chaojing, GE Peng, LIAN Mingqiang, LI Xuan. Finite Element Analysis for the Design of Branched Artificial Blood Vessel of Aortic Arch. Applied Mechanics and Materials, 2013;302:550-555.
    [6]ZHANG Lei, WANG Fu-jun, WANG Lu. The Numerical Simulation of Pulsatile Flow in Curved-shape Branch Vessel. Proceedings of 2011 International Forum on Biomedical Textile Materials,2011:449-453.
    [7]浦广益,ANSYS Workbench 12基础教程与实例详解,北京,中国水利水电出版社,2010,49-64。
    [8]博嘉科技编,有限元分析软件:ANSYS融会与贯通,北京,中国水利水电出版社,2002。
    [9]顾媛,郦鸣阳,沈力行等,狭窄动脉流固耦合模型Ansys/CFX数值的有限元分析,中国组织工程研究与临床康复,2008,12(52):10293-10296。
    [10]王芙昱.基于计算流体力学技术的个体化颅内动脉瘤的血液动力学模型与实验,博士论文,中国人民解放军军医进修学院神经外科,2008。
    [11]Hypertens J. Guidelines for Management of Hypertension,1999 World Health Organization-International Society of Hypertension Guidelines for the Management of Hypertension,1999; 17:151-183.
    [12]Fujun Wang, Lei Zhang, Lu Wang, Yuling Li. Preliminary Numerical Simulation of Pulsatile Flow in Aortic Arch with Left Subciavian Artery. The 4th International Conference on Biomedical Engineering and Informatics,2011: 1157-1159.
    [13]A.Quarteroni, M.Tuveri, A.Veneziani. Computational vascular fluid dynamic: problems, models and methods. Comp.Vis.Sci.,2000;2:163-197.
    [14]张雷,复合纺织基分支人造血管的设计与制备,东华大学硕士论文,2011。
    [15]于萍,工程流体力学,北京,科学出版社,2008,119-122。
    [16]刘向军,[程流体力学,北京,中国电力出版社,2007,75-77。
    [17]白扩社,流体力学泵与风机,北京,机械工业出版社,2005,74-78。
    [18]Ku DN, Giddens DP, Zarins CK,Glagov S. Pulsatile flow and atherosclerosis in the humsn carotid bifurcation. Arteriosclerosis,1985; 5 (3):293-302.
    [19]柳兆荣,李惜惜,血液动力学原理和方法,上海,复旦大学出版社,1997,52-53。
    [20]Juan C Lasheras.The Biomechanics of Arterial Aneurysms. Annual Review of Fluid Mechanics,2007; 39 (1):293-319.
    [21]Egelhoff CJ,Buduing RS, Elger DF, Khraishi TA, Model studies of the flow in abdominal aortic aneurysms during resting and exercise conditions. Journal of Biomechanics,1999; 32:1319-1329.
    [22]Nerem RM, Seed WA, Wood NB, An experitmental study of the velocity distribution and transition to turbulence in the aorta. Journal of Fluid Mechanics, 1972;52:137-160.
    [23]Roberson JA, Crowe CT. Engineering Fluid Mechanics. New York:Mcgraw-Hill, 1997.
    [24]Tamer Hassan et al. A proposed parent vessel geometry-based categorization of saccular intracranial aneurysms:computational flow dynamics analysis of the risk factors for lesion rupture. J Neurosurg,2005; 103 (4):662-680.
    [25]Martino ES et al. Fluid-structure interaction within realistic three-dimensional models of the aneuysmatic aorta as a guidance to assess the risk of eupture of the aneurysm.Medical Engineering and Physics,2001; 23:647-655.
    [26]Zamir, M. The Physics of Pulsatile Flow. Springer-Verlag Inc, New York,2000: 667-685.
    [1]姚穆,纺织材料学,2000,第二版.中国纺织出版社,北京。
    [2]王英梅,覆膜支架用超薄织物膜的研制与性能研究,上海:东华大学硕士学位论文,2010。
    [3]刘肖燕,腔内隔绝术用纺织基人造血管成形及其性能研究,上海:东华大学硕士学位论文,2008。
    [4]霍芷晨,腔内隔绝术用人造血管管壁结构及其疲劳性能研究,上海:东华大学硕士学位论文,2010。
    [5]许碌,纺织基人造血管管壁不均匀特性与破损现象的研究,上海:东华大学硕士学位论文,2009。
    [6]朱苏康,高卫东,机织学,2008,第一版.中国纺织出版社,北京。
    [7]蔡陛霞,织物结构与设计,2008,第四版.中国纺织出版社,北京。
    [8]黄故,棉织原理,1995,第一版.中国纺织出版社,北京。
    [9]相金燕,李毓陵,陈旭炜,人造血管及其在腔内隔绝术中的应用,产业用纺织品,2003(8):31-32。
    [10]Kim Anderson. Seamless textiles with inherent shape.Doctor Thesis of North Carolina State University,2004.
    [11]陈友波,PVA浆料的退除工艺,印染,2006(3):13-15。
    [12]范雪荣,荣瑞萍,纪惠军,纺织浆料检测技术,2006,第一版.中国纺织出版社,北京。
    [13]缪旭红,纺织品的模压成型,产业用纺织品,2004,32(6):40,41。
    [14]Fabric Molding, United States Patent,3713936, Jan.30,1973.
    [15]YANG Ting-hui, LI Yu-ling, CHEN Xu-wei, The technics and property of curve skeleton materials for rubber bowl, Technical Textiles,2006(2):8-11.
    [16]于伟东,纺织材料学,2007,第一版.中国纺织出版社,北京。
    [17]杨廷辉,深皮碗用曲面骨架织物的制备及性能研究,上海:东华大学硕士学位论文,2005。
    [18]于伟东,储才元,纺织物理,2002,第一版.东华大学出版社,上海。
    [19]JWS.赫尔,LWC.米利斯.纤维和织物的定型,1981,第一版.纺织工业出版社,北京。
    [1]American society for testing and materials. ASTM D 3887-96 Standard specification for tolerance for knitted fabrics. Annual book of ASTM standards. Vol 07.02. Pennsylvania:American Soc for Testing and Materials,2001; 169-172.
    [2]ISO/DIS 7198, Cardiovascular implants-Tubular vascular prostheses,1996.
    [3]刘肖燕,腔内隔绝术用纺织基人造血管成形及其性能研究,上海:东华大学硕士学位论文,2008。
    [4]林婧,T品牌腔内隔绝术用人造血管老化性能及其机理研究,上海:东华大学硕士学位论文,2010。
    [5]Zhao HJ, Wang L, King MW et al, Predicating the fatigue performance of endovascular prostheses, Forth international conference and exhibition on healthcare and medical textiles, Proceedings of Fourth International Conference on Healthcare and Medical Textiles, Bolton University, UK. July 16-18,2007.
    [6]于伟东,纺织材料学,2007,第一版.中国纺织出版社,北京。
    [7]LIU Bing, WANG Si-jia, WANG Lu, et al. Comparative aging failing mechanism in four different types of stent-grafts [C], Proceedings of 2011 International Forum on Biomedical Textile Materials, Donghua University, Shanghai, Jun, 7-8,2011, Shanghai, China,269-277.
    [8]高家武,高分子材料近代测试技术,第1版.北京:北京航空航天大学出版社,1994。
    [9]余序芬,纺织材料实验技术,第1版.北京:中国纺织出版社,2004。
    [10]郭永强,高收缩涤纶长丝的热收缩、热定型及染色性能的研究,广东化纤,1993,3(1):5-8。
    [11]凌凯,人造血管体外承载性能的测试装置设计及实验研究,上海:东华大学硕士学位论文,2004。
    [12]ISO 25539-1, Cardiovascular implants-endovascular devices-endovascular prostheses.
    [1]顾晓松,系统解剖学,科学出版社,2008。
    [2]来源http://netclass.csu.edu.cn/jpkc2005/bingsheng/xxfd/jxfdgp/13.htmo
    [3]Erman Pektok, Benjamin Nottelet, Jean-Christophe Tille, Robert Gurny, Afksendiyos Kalangos, Michael Moeller, Beat H. Walpoth. Degradation and Healing Characteristics of Small-Diameter Poly(ε-Caprolactone) Vascular Grafts in the Rat Systemic Arterial Circulation. Circulation,2008; 118:2563-2570.
    [4]Michael J. McClure, Scott A. Sell, David G. Simpson, Beat H. Walpoth, Gary L. Bowlin. A three-layered electrospun matrix to mimic native arterial architecture using polycaprolactone, elastin, and collagen:A preliminary study. Acta Biomaterialia,2010; 6(7):2422-2433.
    [5]Sarra de Valence, Jean-Christophe Tille, Damiano Mugnai, Wojciech Mrowczynski, Robert Gurny, Michael Moller, Beat H. Walpoth. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials,2012; 33(1):38-47.
    [6]Rahman, Mashiur. In vitro study of poly(ethylene terephthalate) implants for long-term durability. Textile Research Journal,2013; 83(9):893-903.
    [7]Panadero J A, Vikingsson L, Gomez Ribelles JL, Sencadas V, Lanceros-Mendez S. Fatigue prediction in fibrin poly-epsilon-caprolactone macroporous scaffolds.Journal of the mechanical behavior of biomedical materials,2013; 28: 55-61.
    [8]Zhang Xinchao, Cai Guoping, Xu Jie, Wang Kun. A minimally invasive postero-medial approach with suture anchors for isolated tibial avulsion fracture of the posterior cruciate ligament. KNEE,2012; 20(2):96-99.
    [9]Kanungo Ivy, Fathima Nishter Nishad, Rao Jonnalagadda Raghava, Nair Balachandran Unni. Influence of PCL on the material properties of collagen based biocomposites and in vitro evaluation of drug release. Materials science & engineering. C, Materials for biological applications,2013; 33(8):4651-4659.
    [10]Peter J. Schmitt. Three-dimension braided soft tissue prosthesis. Medical Textile, 1999; (1):9-10.
    [11]Mohammed Abedalwafa, Relationship between the structure and mechanical properties of PCL prototype vascular graft reinforced with knitted fabric,东华大学硕士论文,2013。
    [1]Li CJ, Mohammed A, Wang FJ, Wang L. Effect of Molecular Weight of PCL on the Structure and Mechanical Properties of PCL/PET Composite Vascular Scaffold Prototype. Journal of Donghua University,2013; 30(5):451-454.
    [2]王璐,贾立霞,纺织型人造血管水渗透性测试装置及其测试方法,ZL03129179.1,2003。
    [3]贾立霞,人造血管水渗透仪的设计及其渗透性表征的实验研究,东华大学硕士学位论文,2004。
    [4]Mohammed Abedalwafa, Relationship between the structure and mechanical properties of PCL prototype vascular graft reinforced with knitted fabric,东华大学硕士论文,2013。
    [5]WangFJ, LiCJ,WangL, LiCong, LiYL, LinJ, JingZP,Douglas G, NutleyM, GuidoinR. Flared Textile Cuff To Be Apposed On The Proximal Sealing Zone In Fenestrated Stent-Grafts. Textiles Reseach Jounal,2014:84 (3):279-289.
    [6]Ji X. The Analysis of Wall Structure and Properties of Small Diameter ePTFE Vascular Prosthesis. Shanghai, China:Donghua University,2010.
    [7]ISO7198. Cardiovascular implants-Tubular vascular prosthesis.
    [8]FJ Wang, L Zhang, L Wang, HF Luo, CY Zhao, ZX Cao and H Jia. Biomechanical Properties of Cone Shaped PCL Endovascular Graft Tubular Prototypes Reinforced with Knitted PET Fabric.9th World Biomaterials Congress,2012.
    [9]ISO25539-1. Cardiovascular implants-Endovascular devices-Part 1: Endovascular prostheses.
    [10]Mine Y, Mitsui H, Oshima Y, Noishiki Y, Nakai M,Sano S. Suture Retention Strength of ePTFE Graft. Acta Med Okayama,2010; 64:121-121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700