用户名: 密码: 验证码:
Thermolysin家族金属蛋白酶的适冷机制及深海适冷菌Pseudoalteromonas sp.SM9913对有机氮的降解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、Thermolysin家族金属蛋白酶的适冷机制
     适冷酶由生存于永久低温环境(如深海、极地和高山地区等)的生物所生产,兼有低温下高的催化效率和高温下的热不稳定性双重特点。虽然对适冷酶的适冷机制有着不同的解释,但目前最流行的解释是,适冷酶在低温下高的催化效率来自于高的酶蛋白柔性,而高的蛋白柔性则源于适冷酶的热不稳定性。但是,这一解释仍有局限性,因为,目前有报道发现适冷酶可以同时具有高的活性和高的热稳定性。在实验室内通过定向进化对酶分子的改造实验也证实,有些情况下,少数氨基酸残基的突变也可以产生同时具备高催化活性和高热稳定性的酶。因此,适冷酶的适冷机制以及适冷的结构基础有待进一步研究。
     嗜热菌蛋白酶家族(thermolysin family,也称M4 family)中的金属蛋白酶多来源于细菌,其中的典型代表有来自嗜热菌Bacillus thermoproteolyticus的嗜热thermolysin和来自Pseudomonas aeruginosa PAO1的中温pseudolysin,以及来自南极细菌643的(适冷)vibriolysin(VAB)。VAB是目前所知的M4家族中唯一来源于永久低温环境的蛋白酶,但是目前关于VAB的信息仅有NCBI公共数据库中的核酸序列(AF272770)和预测的氨基酸序列(AAF78076),对于其来源菌643的生理特征以及VAB的生化性质并没有任何报道。因此,发现Thermolysin家族的(新的)适冷酶并对其性质进行系统研究,对于提高对蛋白质结构—功能之间的关系的认识,以及对蛋白酶温度(低温)适应进化规律的认识具有重要意义。
     适冷菌Pseudoalteromonas sp.SM9913是分离自深海沉积物的一株γ-proteobacterium。P.sp.SM9913能够分泌大量蛋白酶,MCP-02是P.sp.SM9913分泌的一种金属蛋白酶。MCP-02的N端序列与VAB具有很高的同源性(identity为95%),北极海冰细菌P.sp.SM495所分泌的胞外酶E495的N端序列也与VAB具有很高的同源性(identity为93%),表明这两种酶都很可能属于Thermolysin家族。本论文选用金属蛋白酶MCP-02和E495为研究对象,对它们进行了基因克隆和表达、性质研究和序列与结构分析,并以中温的pseudolysin为对照,研究了MCP-02和E495的适冷机制。取得了如下研究结果:
     (一)深海来源和北极海冰来源的Thermolysin家族的新型蛋白酶的基因克隆与表达及其生化和酶学性质研究。
     (1)深海适冷菌P.sp.SM9913所产胞外金属蛋白酶MCP-02的研究。
     本论文通过使用巢式PCR和TAIL PCR等技术手段,克隆了深海适冷菌P.sp.SM9913所产胞外金属蛋白酶MCP-02的全基因序列。mcp-02基因全长2184 bp,编码含有727个氨基酸残基的蛋白酶前体。基因序列已提交GenBank,序列号为EF029091(核酸序列),ABL06977(氨基酸序列)。序列分析表明,MCP-02为Zn金属蛋白酶,属于Thermolysin家族,Vibriolysin亚家族(Vibriolysin subfamily,M04.003)。
     将MCP-02在E.coli中进行异源表达,使用硫酸铵沉淀、阴离子交换层析等技术,从胞外分离纯化得到了电泳纯的重组MCP-02酶。N端测序表明重组酶和野生酶具有相同的N端序列,表明获得的mcp-02基因序列是正确的。MALDI-TOF质谱分析表明,成熟的重组酶MCP-02分子量为33929 Da。综合酶分子量和N端序列,推断MCP-02成熟酶长315氨基酸残基(A205-D519)。以酪蛋白为底物,MCP-02最适催化pH为8.0,最适催化温度为57℃。55℃半衰期t_(1/2)为90 min,60℃半衰期t_(1/2)为23 min。对二肽合成底物的降解(pH 8.0)表明,MCP-02偏好降解P1'位是大的疏水残基的二肽底物,顺序为Phe>Leu>Val。对MCP-02的研究是对深海来源的Thermolysin家族适冷酶生化和酶学性质的首次研究。
     (2)北极海冰细菌P.sp.SM495所产胞外金属蛋白酶EA95的研究。
     本论文通过使用巢式PCR和TAIL PCR等技术手段,克隆了北极海冰细菌P.sp.SM495所产胞外金属蛋白酶E495的全基因序列。蛋白酶E495的基因全长2193 bp,编码含有730个氨基酸残基的蛋白酶前体。基因序列已提交GenBank,序列号为FJ211191(核酸序列),ACI28452(氨基酸序列)。序列分析表明,E495为Zn金属蛋白酶,属于Thermolysin家族的Vibriolysin亚家族。
     将E495在E.coli中进行异源表达,使用超声波破碎、硫酸铵沉淀、阴离子交换层析、Native-PAGE等技术,从周质空间分离纯化得到了电泳纯的重组E495酶。N端测序表明重组酶和野生酶具有相同的N端序列,表明获得的E495基因序列是正确的。MALDI-TOF质谱分析表明,成熟E495分子量为33376 Da。综合酶分子量和N端序列,推测E495成熟酶含有310个氨基酸残基(A207-T516)。E495的酶学性质与MCP-02相似。以酪蛋白为底物,E495最适催化pH为7.5,最适催化温度为57℃。55℃半衰期t_(1/2)为82 min,60℃半衰期t_(1/2)为20 min。对二肽合成底物的降解(pH 8.0)表明,E495偏好降解P1'位是大的疏水残基的二肽底物,顺序为Phe>Leu>Val。对E495性质的研究是对极地海冰来源的Thermolysin家族适冷酶生化和酶学性质的首次研究。
     (二)对Thermolysin家族适冷酶的适冷机制的研究,揭示适冷酶“活性—柔性—稳定性”三者之间的关系。
     以Thermolysin家族的适冷酶——深海MCP-02和北极海冰E495为研究材料,以MCP-02和E495的中温同源酶——来自陆地细菌Pseudomonas aeruginosaPAO1的中温pseudolysin,作为中温对照,研究Thermolysin家族适冷酶的适冷进化机制,以揭示适冷酶“活性—柔性—稳定性”三者之间的关系。
     首先从Pseudomonas aeruginosa PAO1的基因组中克隆了pseudolysin的全基因序列,并将其在E.coli中进行异源表达,分离纯化并获得了电泳纯度的重组pseudolysin,详细研究了pseudolysin的性质。在此基础上,本论文系统比较了pseudolysin、MCP-02和E495的催化效率、热稳定性和柔性。
     结果表明,以合成二肽FA-Gly-Leu-NH_2为底物,在Tris-HCl缓冲液(pH 8.0)中,在低温和中温(10-40℃)条件下,三个蛋白酶的催化效率顺序(k_(cat)/K_m)为pseudolysin<MCP-02<E495,其中在25℃下,pseudolysin的k_(cat)/K_m为0.64±0.01 s~(-1)mM~(-1),MCP-02的k_(cat)/K_m为1.32±0.01 s~(-1) mM~(-1),E495的k_(cat)/K_m为2.55±0.05 s~(-1)mM~(-1),三个酶的催化效率接近1:2:4。可见在低温和中温条件下,三个酶的催化效率随着生存环境温度的降低而升高,表明三个酶因生存环境温度不同而表现不同程度的冷适应性。
     三个酶催化酪蛋白水解的最适酶活温度分别为62℃(pseudolysin),57℃(MCP-02),和57℃(E495)。55℃的半衰期t_(1/2)分别为530 min(pseudolysin),90 min(MCP-02),和82 min(E495);60℃的半衰期t_(1/2)分别为160 min(pseudolysin),23 min(MCP-02)和20 min(E495)。三个酶在55℃下的失活速率常数k_(inact)分别为2.2×10~(-5) s~(-1)(pseudolysin),1.3×10~(-4) s~(-1)(MCP-02)和1.4×10~(-4) s~(-1)(E495);在60℃的失活速率常数k_(inact)分别为7.3×10~(-5) s~(-1)(pseudolysin),5.1×10~(-4) s~(-1)(MCP-02)和5.8×10~(-4) s~(-1)(E495)。使用荧光法监测酶的热变性过程,获得了三个酶的表观变构温度(T_m)分别为75℃(pseudolysin),64℃(MCP-02)和63℃(E495);使用圆二色谱监测α螺旋的解螺旋过程,获得了三个酶的表观变构温度T_m分别为72℃(pseudolysin),65℃(MCP-02)和65℃(E495)。分析最适酶活温度、半衰期(和失活速率常数)和表观变构温度的数据都得到一致的结论,三个酶的热稳定性顺序为pseudolysin>MCP-02≈E495。MCP-02和E495的热稳定性相当,都比pseudolysin降低5~10℃,但是,总体上讲MCP-02和E495的热稳定性仍然很高,如最适酶活温度都约为57℃,仅从热稳定性上判断两酶都类似于中温酶。
     以丙烯酰胺为淬灭剂,研究了三个酶在低温(15℃)和中温(40℃)下的动态荧光淬灭,计算了各酶在不同温度下的Stern-Volmer淬灭常数K_(SV),和不同温度下的K_(SV)的差值,△K_(SV)(40-15℃),并用△K_(SV)(40-15℃)来表征酶的柔性。三个酶的△K_(SV)(40-15℃)分别为2.6±0.1 M~(-1)(pseudolysin),5.3±0.1 M~(-1)(MCP-02)和5.7±0.1 M~(-1)(E495),表明三个酶存在以下柔性顺序,pseudolysin<MCP-02<E495。
     上述结果中三个酶的催化效率和柔性具有相同的顺序,都随生存环境温度的降低而升高,这与已报道的“典型”适冷酶相似。但是,热稳定却并不随生存环境温度的降低而降低,适冷酶E495的催化效率和柔性都高于MCP-02,但是其热稳定性却与MCP-02几乎相同,这表明,至少E495的高的柔性的获得并不是通过降低本身的热稳定性来实现的。这个结论与目前的流行观点“适冷酶在低温下高的催化效率来自于高的柔性,而高的柔性则来源于低的热稳定性”不同。为了进一步研究MCP-02和E495的适冷机制,与解彬彬博士一起对三个酶进行了分子动力学模拟以及模拟过程中的氢键、盐键数目的统计分析(详细结果见解彬彬博士论文)。
     根据上述实验结果以及分子动力学模拟结果,我们提出了Thermolysin家族适冷酶的适冷进化机制模型。Thermolysin家族的适冷酶通过提高整体柔性来提高其低温下的催化能力,稳定性的降低并非柔性提高的前提。这是对Thermolysin家族适冷酶适冷机制的首次报道。
     二、深海适冷菌P.sp.SM9913对有机氮的降解
     研究表明,深海中一些γ-proteobacteria通过分泌大量的蛋白酶将环境中的蛋白降解为短肽,并最终运输到胞内为菌体提供能量和碳源。深海适冷菌Pseudoalteromonas sp.SM9913属于γ-proteobacterium。P.sp.SM9913能够分泌大量蛋白酶,目前的研究表明,这些蛋白酶中至少包括两种不同的丝氨酸蛋白酶,MCP-01和MCP-03,和一种金属蛋白酶MCP-02。这些胞外蛋白酶如何协同作用对胞外蛋白进行充分降解目前还不清楚。而这个问题的阐明不仅有助于阐明深海适冷菌P.sp.SM9913对深海极端环境的适应机制,而且对阐明深海沉积物中有机氮的降解和氮循环机制具有重要意义。
     本论文分别以多肽——氧化型的胰岛素B链(insulin B_(ox),含30个氨基酸残基)和大分子蛋白——牛血清白蛋白(BSA,含583个氨基酸残基)为底物,研究了P.sp.SM9913的三种胞外蛋白酶MCP-01、MCP-02和MCP-03对它们的酶切位点,并分析了它们潜在的协同作用,为阐明深海适冷菌P.sp.SM9913对有机氮的酶解机制奠定基础。
     以insulin B_(ox)为底物,首先使用HPLC分离肽段的方法优化了各酶酶解条件,然后将降解后的混合肽段使用MALDI-TOF质谱分析获得产物中的各肽段的分子量信息,通过分析分子量找到丰度高的肽段所对应的序列,从而获得酶切位点。结果表明,以insulin B_(ox)为底物,鉴定到了MCP-01的5个切点,为Gln+His、Leu+Tyr+Leu、Cya+Gly和Phe+Phe,这些切点均与已报道的subtilisin Carlsberg的相应切点一致;鉴定到了MCP-02的7个切点,为Gin+His、Leu+Cya、Ala+Leu+Tyr、Cya+Gly、Arg+Gly和Phe+Phe,其中5个切点与已报道的thermolysin的切点不同;鉴定到了MCP-03的5个切点,为Leu+Cya、Glu+Ala、Leu+Tyr、Gly+Phe+Phe,其中1个切点与subtilisn Carlsberg和Thermitase不同。三种酶在insulin B_(ox)上既有相同的切点,也有不同的切点。将三种酶在insulin B_(ox)上的切点叠加在一起进行分析表明,P.sp.SM9913的三种胞外蛋白酶MCP-01、MCP-02和MCP-03可以将30个残基的insulin B_(ox)切成2~7个残基长度不等的肽段或多种游离氨基酸。
     以BSA为底物,首先用SDS-PAGE技术分离三种酶酶解所产生的大分子肽段,优化了酶解条件,在此基础上,选取高峰度的大分子量肽段,通过使用Edman降解法测定肽段N端序列,分析了三种酶在BSA上的部分酶切位点。结果表明,三种酶在有限降解大分子蛋白BSA时,具有不同的切点。三种酶的切点叠加在一起共有6个,为Thr83+Tyr84,Leu218+Ser219,Glu226+Phe227,Val234+Thr235,Leu422+Val423,Ala489+Leu490,这些切点均位于BSA蛋白质外表面的α-螺旋或者loop上。
     上述结果表明,深海适冷菌P.sp.SM9913所产的三种胞外蛋白酶MCP-01、MCP-02和MCP-03降解蛋白质时既具有相同的酶切位点,又具有不同的酶切位点,表明它们在降解胞外蛋白或多肽底物中可能有协同性,这为进一步研究P.sp.SM9913在深海沉积物中对有机氮的降解机制和生态适应机制奠定了基础。
PartⅠ.Cold Adaptation of Novel Cold-Adapted Metalloproteases MCP-02 and E495 in Thermolysin Family.
     Cold-adapted enzymes,produced by organisms thriving in permanently cold habitats(deep sea,polar regions and alpine regions),are characterized by high catalytic efficiencies at low temperatures and low stabilities at moderate and high temperatures.Different enzymes may adopt different strategies for cold adaptation. The prevailing hypothesis is that cold-adapted enzymes obtain high catalytic efficiencies by increasing conformational flexibility at the expense of stability. However,there are also reports about cold-adapted enzymes that possess both high activities and high stabilities.Laboratory evolution studies also show that high catalytic efficiency and high stability could be obtained simultaneously in a single molecule.Therefore,further studies are needed to gain new insights into the structural basis underlying cold adaptation.
     Thermolysin family(M4) is a family of zinc metalloproteases.The peptidases in this family are mainly produced by bacteria from various habitats.For example, thermolysin,the typical example of this family,is from the thermophilic bacterium Bacillus thermoproteolyticus,pseudolysin is from the mesophilic bacterium Pseudomonas aeruginosa PAO1 and a putative vibriolysin in this family is from the Antarctic bacterium strain 643(VAB).VAB is the only known enzyme in this family from a permanently cold habitat.Though its sequence has been deposited in the public database(GenBank~(TM) Accession # AF272770,NCBI Protein Database Accession # AAF78076),no biochemical data of this vibriolysin has been reported.Therefore, further studies are essential to understand the biomedical properties and cold adaptation strategies of the cold-adapted enzymes in thermolysin family.
     The psychrotrophic bacterial strain,Pseudoalteromonas sp.SM9913,is aγ-proteobacterium,which was isolated from deep-sea sediment.As aγ-proteobacterium,P sp.SM9913 secrets large amounts of extracellular proteases, and the metalloprotease MCP-02 is one of them.N-terminal sequencing showed that MCP-02 and VAB have a very similar N-terminal sequence(identity up to 95%), suggesting that MCP-02 is probably a member of thermolysin family.The metalloprotease E495,secreted by the Arctic sea ice bacterium P.sp.SM495,also has a very similar N-terminal sequence to VAB(identity up to 93%),suggesting that E495 is also a member of thermolysin family.Here,metalloproteases MCP-02 and E495 were used as models to study the biochemical and enzymatic characteristics and the cold adaptation of the cold-adapted metalloproteases in thermolysin family.The results are as follows.
     1.Gene cloning and characterization of novel metalloproteases in thermolysin family from a deep-sea bacterium and an Arctic sea-ice bacterium.
     (1) Gene cloning and characterization of extracellular metalloprotease MCP-02 from deep-sea bacterium P sp.SM9913.
     The full-length mcp-02 gene was cloned from P sp.SM9913 using nested PCR and TAIL PCR techniques.The nucleotide sequence contains 2184 bp,encoding a MCP-02 precursor of 727 amino acid residues.The nucleotide sequence was submitted to the GenBank~(TM) with accession number EF029091,and the amino acid sequence can be accessed through NCBI Protein Database under NCBI accession number ABL06977.Analysis of the amino acid sequence showed that MCP-02 is a zinc metalloprotease that belongs to Vibriolysin subfamily(MEROPS ID:M04.003) of Thermolysin family(M4).
     The full-length mcp-02 gene was cloned into the expression vector pET-22b,and then was transformed into Escherichia coli BL21(DE3).Crude recombinant MCP-02 was obtained by direct addition of solid ammonium sulfate powder to the culture supernatant. Recombinant MCP-02 in the crude proteins was purified using a DEAE Sepharose Fast Flow column with 50 mM Tris-HCl buffer(pH 8.0),and a linear NaCl gradient from 0 to 0.5 M. The purity was determined by 12.5%SDS-PAGE.The mcp-02 gene was confirmed by the N-terminal sequencing of the mature recombinant MCP-02,which showed that the recombinant MCP-02 has the same N-terminal sequence as the wild MCP-02 purified from P. sp.SM9913.
     The molecular mass of mature MCP-02 is 33929 Da,determined using mass spectroscopy.Mature MCP-02 contains 315 residues(A205 to D519),deduced based on its N-terminal sequence and the molecular mass.With casein as the substrate,MCP-02 has a pH optimum 8.0 and a temperature optimum 57℃.The half-life t_(1/2) is 90 min at 55℃,and 23 min at 60℃.Using the synthetic dipeptides as substrates,MCP-02 preferred to catalyze the hydrolysis of the substrate that has a large and hydrophobic residue at the P1' subsite,and the preference order was Phe>Leu>Val.This study represents the first study on the biochemical properties of a protease in thermolysin family from a deep-sea bacterium.
     (2) Gene cloning and characterization of extracellular metalloprotease E495 from Arctic sea-ice bacterium P sp.SM495.
     The full-length E495 gene was cloned from P.sp.SM495 using nested PCR and TAIL PCR techniques.The nucleotide sequence contains 2193 bp,and encodes an E495 precursor of 730 amino acid residues.The nucleotide sequence was submitted to the GenBank~(TM) with accession number FJ211191,and the amino acid sequence can be accessed through NCBI Protein Database under NCBI accession number ACI28452. Analysis of the amino acid sequence showed that E495 is a zinc metalloprotease that belongs to Vibriolysin subfamily(MEROPS ID:M04.003) of Thermolysin family.
     The full-length E495 gene was cloned into the expression vector pET-22b,and then was transformed into E.coli BL21(DE3).Crude recombinant E495 were obtained by disruption of the cells using sonication and precipitation with solid ammonium sulfate. Recombinant E495 in the crude proteins was purified using a DEAE Sepharose Fast Flow column with 50 mM Tris-HCl buffer(pH 8.5),and a linear NaCl gradient from 0 to 0.5 M. The purity was determined by 12.5%SDS-PAGE.The E495 gene was confirmed by the N-terminal sequencing of the mature recombinant E495,which showed that the recombinant E495 has the same N-terminal sequence as the wild E495 purified from P.sp.SM495.
     The molecular mass of mature E495 is 33376 Da,determined using mass spectroscopy. Mature E495 contains 310 residues(A207 to T516),deduced based on its N-terminal sequence and molecular mass.E495 has similar biochemical and enzymatic properties to MCP-02.With casein as the substrate,E495 has a pH optimum 7.5 and a temperature optimum 57℃.The half-life t_(1/2) is 82 min at 55℃,and 20 min at 60℃.Using the synthetic dipeptides as substrates,E495 preferred to catalyze the hydrolysis of the substrate that has a large and hydrophobic residue at the P1' subsite,and the preference order was Phe>Leu>Val. The study on E495 is the first report on the biochemical properties of a protease in thermolysin family from an Arctic sea-ice bacterium.
     2.Cold adaptation of the metalloproteases in thermolysin family.
     To investigate cold adaptation of the metalloproteases in thermolysin family, deep-sea MCP-02 and Arctic sea-ice E495,together with their mesophilic homolog, pseudolysin from terrestrial bacterium Pseudomonas aeruginosa PAO1,were systematically studied and compared.
     The gene of pseudolysin was cloned from Pseudomonas aeruginosa PAO1 genome,and then was expressed in E.coli BL21(DE3) strain.The recombinant pseudolysin was purified and the purity was confirmed by SDS-PAGE.The biochemical and enzymatic properties of pseudolysin was studied.And then the catalytic efficiency,thermostability,and flexibility of terrestrial pseudolysin,deep-sea MCP-02,and Arctic sea-ice E495 were carefully studied and compared.
     The activities of pseudolysin,MCP-02 and E495 toward synthetic FA-Gly-Leu-NH_2 was compared at pH 8.0.In the temperature range 10-40℃,the order of catalytic efficiency k_(cat)/K_m was pseudolysin<MCP-02<E495.The catalytic efficiency k_(cat)/K_m at 25℃was 0.64±0.01 s~(-1) mM~(-1) for pseudolysin,1.32±0.01 s~(-1) mM~(-1) for MCP-02,and 2.55±0.05 s~(-1) mM~(-1) for E495,with a ratio of approximately 1:2:4. The catalytic efficiency at low and medium temperatures increases as the temperature of the habitat decreases,suggesting different degrees of cold adaptation of the three proteases.
     The temperature optimum(T_(opt)) was 62℃for pseudolysin,57℃for MCP-02, and 57℃for E495.The half-life(t_(1/2)) was 530 min for pseudolysin,90 min for MCP-02,and 82 min for E495 at 55℃;and 160 min for pseudolysin,23 min for MCP-02,and 20 min for E495 at 60℃.The inactivation rate constant(k_(inact)) was 2.2×10~(-5) s~(-1) for pseudolysin,1.3×10~(-4) s~(-1) for MCP-02,and 1.4×10~(-4) s~(-1) for E495 at 55℃;and 7.3×10~(-5) s~(-1) for pseudolysin,5.1×10~(-4) s~(-1) for MCP-02,and 5.8×10~(-4) s~(-1) for E495 at 60℃.The heat-induced denaturation was monitored using fluorescence,and the apparent melting temperature(T_m) was 75℃for pseudolysin,64℃for MCP-02, and 63℃for E495.The heat-induced denaturation was also monitored using circular dichroism at 222 nm,and the resultant apparent T_m was 72℃for pseusolysin,65℃for MCP-02,and 65℃for E495.The analysis of T_(opt),t_(1/2)(and k_(inact)),and apparent T_m comes to the same conclusion that the thermostability order is pseudolysin>MCP-02≈E495.MCP-02 and E495 have a similar stability,both 5-10℃lower than pseudolysin.However,though slightly lower than pseudolysin,the relatively high thermostabilities of MCP-02 and E495(e.g.T_(opt) of 57℃) make them look like mesophilic enzymes.
     The fluorescence quenching experiment was used to compare the conformational flexibility of the three proteases.The Stern-Volmer quenching constants(K_(SV)) at 15℃and 40℃for pseudolysin,MCP-02 and E495 were determined,respectively.Because the numbers and local environments of tryptophans in these three enzymes are different,the absolute values of K_(SV) can not be compared directly.Instead,the difference in K_(SV) at different temperatures(40℃and 15℃in this study,i.e.ΔK_(SV)(40 - 15℃)) was used as a parameter to represent the conformational flexibility of the enzyme.TheΔK_(SV)(40℃- 15℃) value was 2.6±0.1 M~(-1) for pseudolysin,5.3±0.1 M~(-1) for MCP-02,and 5.7±0.1 M~(-1) for E495,suggesting that pseudolysin has the most rigid structure,deep-sea MCP-02 has a more flexible structure and Arctic E495 has the most flexible structure.The difference in the flexibility of E495 and MCP-02 from cold habitats suggested that the Arctic E495 underwent further optimization of flexibility compared to deep-sea MCP-02.
     The above results showed that the catalytic efficiency(at low and medium temperatures) and the flexibility have the same order,both of which increase as the environment temperature of the habitat decreases.This result agrees with that of the reported "typical" cold-adapted enzymes.However,the stability of the enzyme does not decrease as the environment temperature of the habitat decreases,strongly suggesting that the increased flexibility(and catalytic efficiency) of the cold adapted vibriolysin(especially E495) is not obtained by sacrificing its stability.This conclusion differs from the prevailing hypothesis that "cold-adapted enzymes obtain high catalytic efficiencies by increasing conformational flexibility at the expense of stability".To further investigate this problem,long molecular dynamics(MD) simulations were conducted and detailed structural analyses were conducted together with Xie Bin-Bin(detailed results shown in the thesis of Xie Bin-Bin).
     The above results of experiments and the MD simulations suggest that the cold-adapted enzymes in thermolysin family obtain high catalytic efficiencies(at low temperature) by increasing the global conformational flexibility,and the increased conformational flexibility was not obtained at the expense of the stability.Finally,we proposed a model for cold adaptation of the cold-adapted enzymes in thermolysin family.This represents the first study on the cold adaptation strategy of the enzymes in thermolysin family.
     PartⅡ,Enzymatic Hydrolysis of Organic Nitrogen by Deep-Sea Psychrotrophic Bacterium Pseudoalteromonas sp.SM9913
     Studies showed that someγ-proteobacteria secret large amounts of extracellular proteases to degrade environmental proteins or peptides to provide energy and carbon resources for the bacteria.The psychrotrophic bacterial strain,Pseudoalteromonas sp. SM9913 is aγ-proteobacterium.P.sp.SM9913 secrets several kinds of proteases, including serine protease MCP-01,metalloprotease MCP-02,and another kind of serine protease MCP-03.Currently,it is unclear how these proteases cooperate to degrade the environmental proteins.The study of this problem would facilitate our understanding of the adaptation mechanism of P.sp.SM9913 to the deep-sea environment and provide new insights into the biological degradation of deep-sea sedimentary organic nitrogen by bacteria.
     In this study,the oxidized insulin B chain(insulin B_(ox)) and bovine serum albumin (BSA) were used as substrates to identify the cleavage sites of the three extracellular proteases(MCP-01,MCP-02,and MCP-03) of P.sp.SM9913.
     The hydrolysis conditions were firstly optimized with the help of HPLC when using insulin B_(ox) as the substrate.Then,the hydrolysis products were analyzed using MALDI-TOF mass spectroscopy.The resultant molecular masses were then analyzed to find the corresponding cleavage sites.Five cleavage sites were identified for MCP-01 on insulin B_(ox,) and they were Gln(?)His,Leu(?)Tyr(?)Leu,Cya(?)Gly,and Phe(?)Phe,all of which are consistent with the reported corresponding sites of MCP-01 homolog subtilisin Carlsberg on insulin B_(ox·) Seven cleavage sites were identified for MCP-02 on insulin B_(ox,) and they were Gln(?)His,Leu(?)Cya,Ala(?)Leu(?)Tyr,Cya(?)Gly, Arg(?)Gly,and Phe(?)Phe,five of which are different from the reported sites of MCP-02 homolog thermolysin on insulin B_(ox·) Five cleavage sites were identified for MCP-03 on insulin B_(ox,,) and they were Leu(?)Cya,Glu(?)Ala,Leu(?)Tyr,Gly(?)Phe(?)Phe,one of which is different from the reported sites of MCP-03 homolog thermitase on insulin B_(ox·) It is noted that each enzyme has its distinctive cleavage site(s) on insulin B_(ox,) implying that each enzyme has its role in the degradation of the environmental proteins.Based on these results,it can be deduced that insulin B_(ox) can be degraded into oligopeptides of 2-7 amino acid residues and many single amino acids.
     When using BSA as the substrate,the hydrolysis products were firstly separated using SDS-PAGE,and then some clearly-separated peptide bands were identified by N-terminal sequencing.The results showed that different proteases tend to cleave different sites on BSA,and the three enzymes together could hydrolyze the BSA at the following sites,Thr83(?)Tyr84,Leu218(?)Ser219,Glu226(?)Phe227,Val234(?)Thr235, Leu422(?)Val423,Ala489(?)Leu490,all of which are exposed at the surface of the BSA molecule.
     The above results show that the extracellular proteases of P.sp.SM9913 have both same cleavage sites and distinctive cleavage sites on proteins,suggesting that they can collaborate with each other in degrading the environmental proteins.This study would facilitate our understanding on the adaptation mechanism of P.sp. SM9913 to the deep sea environment.
引文
1.陈秀兰,张玉忠,栾锡武,高培基.深海适冷菌Pseudomonas sp.SM9913的适冷生长机制探讨.高技术通讯,2002,12(5):95-98.
    2.李建武.生物化学实验原理和方法.北京大学出版社,1994.
    3.李会荣,俞勇,曾胤新,陈波,任大明.北极太平洋扇区海洋沉积物细菌多样性的系统发育分析.微生物学报,2006,46(2):177-183.
    4.汪家政,范明.蛋白质技术手册.科学出版社,2000.
    5.解彬彬.博士学位论文,2009.
    6.张树政.酶制剂工业(下册).科学出版社,1998.
    7.萨姆布鲁克,拉塞尔著,黄培堂,等译,分子克隆实验指南(第三版).科学出版社,2002.
    8.Abyzov,S.,Mitskevich,I.,and Poglasova,M.(1998) Microflora of the deep glacier horisonts of central Africa.Microbiology 67:451-458.
    9.Adekoya,O.A.,Helland,R.,Willassen,N.P.,and Sylte,I.(2006) Comparative sequence and structure analysis reveal features of cold adaptation of an enzyme in the thermolysin family.Proteins 62:435-449.
    10.Aghajari,N.,Van,P.F.,Villeret,V.,Chessa,J.P.,Gerday,C.,Haser,R.,and Van,B.J.(2003) Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases.Proteins 50:636-647.
    11.Authier,F.,Metioui,M.,Fabrega,S.,Kouach,M.,and Briand,G.(2002)Endosomal proteolysis of internalized insulin at the C-terminal region of the B chain by cathepsin D.J Biol Chem 277:9437-9446.
    12.Bae,E.,and Phillips,G.N.,Jr.(2004) Structures and analysis of highly homologous psychrophilic,mesophilic,and thermophilic adenylate kinases.J Biol Chem 279:28202-28208.
    13.Banbula,A.,Potempa,J.,Travis,J.,Femandez-Catalan,C.,Mann,K.,Huber,R.et al.(1998) Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 A resolution.Structure 6:1185-1193.
    14.Barrett,A.,Rawlings,N.,and Woessner,J.(2004) HANDBOOK OF Proteolytic Enzymes.
    15.Bauvois,C.,Jacquamet,L.,Huston,A.L.,Borel,F.,Feller,G.,and Ferrer,J.L.(2008)Crystal structure of the cold-active aminopeptidase from Colwellia psychrerythraea, a close structural homologue of the human bifunctional leukotriene A4 hydrolase. J Biol Chem 283: 23315-23325.
    
    16. Bendt,A., Huller,H., Kammel,U., Helmke,E., and Schweder,T. (2001) Cloning, expression, and characterization of a chitinase gene from the Antarctic psychrotolerant bacterium Vibrio sp. strain Fi:7. Extremophiles 5: 119-126.
    17. Bendtsen,J.D., Nielsen,H., von,H.G., and Brunak,S. (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783-795.
    18. Benediktsdottir,E., Verdonck,L., Sproer,C, Helgason,S., and Swings,J. (2000) Characterization of Vibrio viscosus and Vibrio wodanis isolated at different geographical locations: a proposal for reclassification of Vibrio viscosus as Moritella viscosa comb. nov. Int J Syst Evol Microbiol 50 Pt 2: 479-488.
    19. Bentahir,M., Feller,G., Aittaleb,M., Lamotte-Brasseur,J., Himri,T., Chessa,J.P., and Gerday,C. (2000) Structural, kinetic, and calorimetric characterization of the cold-active phosphoglycerate kinase from the antarctic Pseudomonas sp. TACII18. J Biol Chem 275: 11147-11153.
    20. Bever,R.A., and Iglewski,B.H. (1988) Molecular characterization and nucleotide sequence of the Pseudomonas aeruginosa elastase structural gene. J Bacteriol 170:4309-4314.
    21. Bjornsdottir,B., Fridjonsson,O.H., Magnusdottir,S., Andresdottir,V., Hreggvidsson,G.O., and Gudmundsdottir,B.K. (2008) Characterisation of an extracellular vibriolysin of the fish pathogen Moritella viscosa. Vet Microbiol.
    22. Bowman,J.P., McCammon,S.A., Brown,M.V, Nichols,D.S., and McMeekin,T.A. (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63: 3068-3078.
    23. Bowman,J.P., Rea,S.M., McCammon,S.A., and McMeekin,T.A. (2000) Diversity and community structure within anoxic sediment from marine salinity meromictic lakes and a coastal meromictic marine basin, Vestfold Hilds, Eastern Antarctica. Environ Microbiol 2: 227-237.
    24. Brambilla,E., Hippe,H., Hagelstein,A., Tindall,B.J., and Stackebrandt,E. (2001) 16S rDNA diversity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica. Extremophiles 5: 23-33.
    25. Brandsdal,B.O., Smalas,A.O., and Aqvist, J. (2001) Electrostatic effects play a central role in cold adaptation of trypsin. FEBS Lett 499: 171-175.
    26. Brunnegard,J., Grandel,S., Stahl,H., Tengberg,A., and Hall,P. (2004) Nitrogen cycling in deep-sea sediments of the Porcupine Abyssal Plain. NE Atlantic Prog Oceanogr: 159-181.
    27. Cavicchioli,R. (2006) Cold-adapted archaea. Nat Rev Microbiol 4: 331-343.
    28. Chang,A.K.,Kim,H.Y.,Park,J.E.,Acharya,P.,Park,I.S., Yoon,S.M. et al. (2005) Vibrio vulnificus secretes a broad-specificity metalloprotease capable of interfering with blood homeostasis through prothrombin activation and fibrinolysis. J Bacteriol 187: 6909-6916.
    29. Chen,X.L., Xie,B.B., Lu,J.T., He,H.L., and Zhang,Y. (2007) A novel type of subtilase from the psychrotolerant bacterium Pseudoalteromonas sp. SM9913: catalytic and structural properties of deseasin MCP-01. Microbiology 153: 2116-2125.
    30. Chen,X.L., Zhang,Y.Z., Gao,P.J., and Luan,X.W. (2003) Two different proteases produced by a deep-sea psychrotrophic strain Pseudoaltermonas sp. SM9913. Marine Biol 143: 989-993.
    31. Chessa,J.P., Petrescu,I., Bentahir,M., Van,B.J., and Gerday,C. (2000) Purification, physico-chemical characterization and sequence of a heat labile alkaline metalloprotease isolated from a psychrophilic Pseudomonas species. Biochim Biophys Acta 1479: 265-274.
    32. Coffey,A., van den,B.B., Veltman,R., and Abee,T. (2000) Characteristics of the biologically active 35-kDa metalloprotease virulence factor from Listeria monocytogenes. J Appl Microbiol 88: 132-141.
    33. Collins,T., Meuwis,M.A., Gerday,C., and Feller,G. (2003) Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J Mol Biol 328: 419-428.
    34. Colman,P.M., Jansonius,J.N., and Matthews,B.W. (1972) The structure of thermolysin: an electron density map at 2-3 A resolution. J Mol Biol 70: 701-724.
    35. Creighton,T.E. (1991) Characterizing intermediates in protein folding. Curr Biol 1: 8-10.
    36. D'Amico,S., Claverie,P, Collins,T., Georlette,D., Gratia,E., Hoyoux,A. et al. (2002a) Molecular basis of cold adaptation. Philos Trans R Soc Lond B Biol Sci 357: 917-925.
    37. D'Amico,S., Gerday,C., and Feller,G. (2001) Structural determinants of cold adaptation and stability in a large protein. J Biol Chem 276: 25791-25796.
    38. D'Amico,S., Gerday,C., and Feller,G. (2002b) Dual effects of an extra disulfide bond on the activity and stability of a cold-adapted alpha-amylase. J Biol Chem 277:46110-46115.
    39. D'Amico,S., Gerday,C, and Feller,G. (2003a) Temperature adaptation of proteins: engineering mesophilic-like activity and stability in a cold-adapted alpha-amylase. J Mol Biol 332: 981-988.
    40. D'Amico,S., Marx,J.C., Gerday,C., and Feller,G. (2003b) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278: 7891-7896.
    41. Davail,S., Feller,G., Narinx,E., and Gerday,C. (1994) Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the antarctic psychrophile Bacillus TA41. J Biol Chem 269: 17448-17453.
    42. Dayhoff,M., Schwartz,R., and Orcutt,B. (1978) A Model of Evolutionary Change in Proteins. In Atlas of protein sequence and structure. Dayhoff,M. (ed). Washington, DC: National Biomedical Research Foundation, pp. 345-358.
    43. de Kreij,A., van den Burg,B., Veltman,O.R., Vriend,G., Venema,G., and Eijsink,V.G (2001) The effect of changing the hydrophobic S1' subsite of thermolysin-like proteases on substrate specificity. Eur J Biochem 268: 4985-4991.
    44. de Kreij,A., van den Burg,B., Venema,G., Vriend,G., Eijsink,V.G., and Nielsen,J.E. (2002) The effects of modifying the surface charge on the catalytic activity of a thermolysin-like protease. J Biol Chem 277: 15432-15438.
    45. de Kreij,A., Venema,G., and van den Burg,B. (2000) Substrate specificity in the highly heterogeneous M4 peptidase family is determined by a small subset of amino acids. JBiol Chem 275: 31115-31120.
    48. Deegenaars,M.L., and Watson,K. (1998) Heat shock response in psychrophilic and psychrotrophic yeast from Antarctica. Extremophiles 2: 41-49.
    49. Denkin,S.M., and Nelson,D.R. (2004) Regulation of Vibrio anguillarum empA metalloprotease expression and its role in virulence. Appl Environ Microbiol 70: 4193-4204.
    50. Desmazeaud,M. J. (1974) General properties and specificity of action of a neutral intracellular endopeptidase from Streptococcus thermophilus. Biochimie 56: 1173-1181.
    51. Dhanaraj,V., Ye,Q.Z., Johnson,L.L., Hupe,D.J., Ortwine,D.F., Dunbar,J.B., Jr. et al. (1996) X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily. Structure 4: 375-386.
    52. Durham,D.R., Fortney,D.Z., and Nanney,L.B. (1993) Preliminary evaluation of vibriolysin, a novel proteolytic enzyme composition suitable for the debridement of burn wound eschar. J Burn Care Rehabil 14: 544-551.
    53. Endo,S. (1962) The protease produced by thermophilic bacteria. Hakko Kogaku Zashi 40:346-347.
    54. Feder,J. (1967) Studies on the specificity of Bacillus subtilis neutral protease with synthetic substrates. Biochemistry 6: 2088-2093.
    55. Feder,J. (1968) A spectrophotometric assay for neutral protease. Biochem Biophys Res Commun 32:326-332.
    56. Feder,J, Keay,L., Garrett,L.R., Cirulis,N., Moseley,M.H., and Wildi,B.S. (1971) Bacillus cereus neutral protease. Biochim Biophys Acta 251: 74-78.
    57. Feder,J., and Schuck,J.M. (1970) Studies on the Bacillus subtilis neutral-protease- and Bacillus thermoproteolyticus thermolysin-catalyzed hydrolysis of dipeptide substrates. Biochemistry 9: 2784-2791.
    58. Fedoy,A.E., Yang,N., Martinez,A., Leiros,H.K., and Steen,I.H. (2007) Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. J Mol Biol 372: 130-149.
    59. Feller,G., d'Amico,D., and Gerday,C. (1999) Thermodynamic stability of a cold-active alpha-amylase from the Antarctic bacterium Alteromonas haloplanctis. Biochemistry 38: 4613-4619.
    60. Feller,G, and Gerday,C. (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1: 200-208.
    61. Fields,P.A., and Somero,G.N. (1998) Hot spots in cold adaptation: localized increases in conformational flexibility in lactate dehydrogenase A4 orthologs of Antarctic notothenioid fishes. Proc Natl Acad Sci USA 95: 11476-11481.
    62. Fontana,A. (1988) Structure and stability of thermophilic enzymes. Studies on thermolysin. Biophys Chem 29: 181-193.
    63. Fridmann,E. (1980) Endolithic microbial life in hot and cold deserts. Orig Life 10: 223-235.
    64. Fujii,M., Takagi,M., Imanaka,T., and Aiba,S. (1983) Molecular cloning of a thermostable neutral protease gene from Bacillus stearothermophilus in a vector plasmid and its expression in Bacillus stearothermophilus and Bacillus subtilis. J Bacteriol 154: 831-837.
    65. Fukushima,J., Yamamoto,S., Morihara,K., Atsumi,Y., Takeuchi,H., Kawamoto,S., and Okuda,K. (1989) Structural gene and complete amino acid sequence of Pseudomonas aeruginosa IFO 3455 elastase. J Bacteriol 171: 1698-1704.
    66. Galloway,D.R. (1991) Pseudomonas aeruginosa elastase and elastolysis revisited: recent developments. Mol Microbiol 5: 2315-2321.
    67. Garsoux,G., Lamotte,J., Gerday,C., and Feller,G. (2004) Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Biochem J 384: 247-253.
    68. Georlette,D., Blaise,V., Collins,T., D'Amico,S., Gratia,E., Hoyoux,A. et al. (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28: 25-42.
    69. Georlette,D., Damien,B., Blaise,V., Depiereux,E., Uversky,V.N., Gerday,C, and Feller,G. (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J Biol Chem 278: 37015-37023.
    70. Gianese,G., Bossa,F., and Pascarella,S. (2002) Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins 47: 236-249.
    71. Gouet,P., Courcelle,E., Stuart,D.I., and Metoz,F. (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15: 305-308.
    72. Griffin,T.B., and Prescott,J.M. (1970) Some physical characteristics of a proteinase from Aeromonas proteolytica. J Biol Chem 245: 1348-1356.
    73. Gunwar,S., Ballester,F., Noelken,M.E., Sado,Y., Ninomiya,Y., and Hudson,B.G. (1998) Glomerular basement membrane. Identification of a novel disulfide-cross-linked network of alpha3, alpha4, and alpha5 chains of type IV collagen and its implications for the pathogenesis of Alport syndrome. J Biol Chem 273: 8767-8775.
    74. Hangauer,D.G., Monzingo,A.F., and Matthews,B.W. (1984) An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides. Biochemistry 23: 5730-5741.
    75. Hasegawa,H., Lind,E.J., Boin,M.A., and Hase,C.C. (2008) The extracellular metalloprotease of Vibrio tubiashii is a major virulence factor for pacific oyster (Crassostrea gigas) larvae. Appl Environ Microbiol 74: 4101-4110.
    76. Heck,L. W., Morihara,K., and Abrahamson,D.R. (1986a) Degradation of soluble laminin and depletion of tissue-associated basement membrane laminin by Pseudomonas aeruginosa elastase and alkaline protease. Infect Immun 54: 149-153.
    77. Heck,L.W., Morihara,K., McRae,W.B., and Miller,E.J. (1986b) Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase. Infect Immun 51: 115-118.
    78. Heinrikson,R.L. (1977) Applications of thermolysin in protein structural analysis. Methods Enzymol 47: 175-189.
    79. Held,K.G, LaRock,C.N., D'Argenio.D.A., Berg,C.A., and Collins,C.M. (2007) A metalloprotease secreted by the insect pathogen Photorhabdus luminescens induces melanization. Appl Environ Microbiol 73: 7622-7628.
    80. Hiraga,K., Seeram,S.S., Tate,S., Tanaka,N., Kainosho,M., and Oda,K. (1999) Mutational analysis of the reactive site loop of Streptomyces metalloproteinase inhibitor, SMPI. J Biochem 125: 202-209.
    81. Holmes,M.A., and Matthews,B.W. (1982) Structure of thermolysin refined at 1.6 A resolution. J Mol Biol 160: 623-639.
    82. Holmquist,B. (1977) Characterization of the "microprotease" from Bacillus cereus. A zinc neutral endoprotease. Biochemistry 16: 4591-4594.
    83. Holmquist,B., and Vallee,B.L. (1974) Metal substitutions and inhibition of thermolysin: spectra of the cobalt enzyme. J Biol Chem 249: 4601-4607.
    84. Holmquist,B., and Vallee,B.L. (1976) Esterase activity of zinc neutral proteases. Biochemistry 15: 101-107.
    85. Hou,S., Saw,J.H., Lee,K.S., Freitas,T.A., Belisle,C., Kawarabayasi,Y. et al. (2004) Genome sequence of the deep-sea gamma-proteobacterium Idiomarina loihiensis reveals amino acid fermentation as a source of carbon and energy. Proc Natl Acad Sci U S A 101: 18036-18041.
    86. Hoyoux,A., Jennes,I., Dubois,P., Genicot,S., Dubail,F., Francois,J.M. et al. (2001) Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67: 1529-1535.
    87. Ichinose,Y., Ehara,M., Honda,T., and Miwatani,T. (1994) The effect on enterotoxicity of protease purified from Vibrio cholerae O1. FEMS Microbiol Lett 115: 265-271.
    88. Jaenicke,R. (1991) Protein stability and molecular adaptation to extreme conditions. Eur JBiochem 202: 715-728.
    89. Jaenicke,R. (1996) Protein folding and association: in vitro studies for self-organization and targeting in the cell. Curr Top Cell Regul 34: 209-314.
    90. Johansen,J.T., Ottesen,M., Svendsen,I., and Wybrandt,G. (1968) The degradation of the B-chain of oxidized insulin by two subtilisins and their succinylated and N-carbamylated derivatives. C R Trav Lab Carlsberg 36: 365-384.
    91. Junge,K., Imhoff,F., Staley,T., and Deming,J.W. (2002) Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperature. Microb Ecol 43: 315-328.
    92. Kanoh,S., Ito,M., Niwa,E., Kawano,Y., and Hartshorae,D.J. (1993) Actin-binding peptide from smooth muscle myosin light chain kinase. Biochemistry 32: 8902-8907.
    93. Katsushiro Miyamoto, Eiji Nukui, Mariko Hirose, Fumi Nagai, Takaji Sato, Yoshihiko Inamori, and Hiroshi Tsujibo* (2002) A Metalloprotease (MprIII) Involved in the Chitinolytic System of a Marine Bacterium, Alteromonas sp. Strain O-7. Appl Environ Microbiol 68: 5563-5570.
    94. Kessler,E., Israel,M., Landshman,N., Chechick,A., and Blumberg,S. (1982) In vitro inhibition of Pseudomonas aeruginosa elastase by metal-chelating peptide derivatives. Infect Immun 38: 716-723.
    95. Kessler,E., Kennah,H.E., and Brown,S.I. (1977) Pseudomonas protease. Purification, partial characterization, and its effect on collagen, proteoglycan, and rabbit corneas. Invest Ophthalmol Vis Sci 16: 488-497.
    96. Kessler,E., Safrin,M., Peretz,M., and Burstein,Y. (1992) Identification of cleavage sites involved in proteolytic processing of Pseudomonas aeruginosa preproelastase. FEES Lett 299: 291-293.
    97. Kester,W.R., and Matthews,B.W. (1977) Crystallographic study of the binding of dipeptide inhibitors to thermolysin: implications for the mechanism of catalysis. Biochemistry 16: 2506-2516.
    98. Kobayashi,T., Lu,J., Li,Z., Hung,V.S., Kurata,A., Hatada,Y et al. (2007) Extremely high alkaline protease from a deep-subsurface bacterium, Alkaliphilus transvaalensis. Appl Microbiol Biotechnol 75: 71-80.
    99. Koma,D., Yamanaka,H., Moriyoshi,K., Ohmoto,T., and Sakai,K. (2007) Overexpression and characterization of thermostable serine protease in Escherichia coli encoded by the ORF TTE0824 from Thermoanaerobacter tengcongensis. Extremophiles 11: 769-779.
    100. Kraus,E., Kiltz,H.H., and Femfert,U.F. (1976) The specificity of proteinase K against oxidized insulin B chain. Hoppe Seylers Z Physiol Chem 357: 233-237.
    101. Kuhn,S., and Fortnagel,P. (1993) Molecular cloning and nucleotide sequence of the gene encoding a calcium-dependent exoproteinase from Bacillus megaterium ATCC 14581. J Gen Microbiol 139: 39-47.
    102. Kunugi,S., Hirohara,H., and Ise,N. (1982) pH and temperature dependences of thermolysin catalysis. Catalytic role of zinc-coordinated water. Eur J Biochem 124: 157-163.
    103. Kunugi,S., Koyasu,A., Kitayaki,M., Takahashi,S., and Oda,K. (1996) Kinetic characterization of the neutral protease vimelysin from Vibrio sp. T1800. Eur J Biochem 241: 368-373.
    104. Kwon,Y.T., Lee,H.H., and Rho,H.M. (1993) Cloning, sequencing, and expression of a minor protease-encoding gene from Serratia marcescens ATCC21074. Gene 125: 75-80.
    105. Larkin,M.A., Blackshields,G., Brown.N.P., Chenna,R., McGettigan,P.A., McWilliam,H. et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.
    106. Lee,S.O., Kato,J., Nakashima,K., Kuroda,A., Ikeda,T., Takiguchi,N., and Ohtake,H. (2002) Cloning and characterization of extracellular metal protease gene of the algicidal marine bacterium Pseudoalteromonas sp. strain A28. Biosci Biotechnol Biochem 66: 1366-1369.
    107. Leiros,H.K., Pey,A.L., Innselset,M., Moe,E., Leiros,I., Steen,I.H., and Martinez,A. (2007) Structure of phenylalanine hydroxylase from Colwellia psychrerythraea 34H, a monomeric cold active enzyme with local flexibility around the active site and high overall stability. J Biol Chem 282: 21973-21986.
    108. Lennarz,W.J., and Strittmatter,W.J. (1991) Cellular functions of metallo-endoproteinases. Biochim Biophys Acta 1071: 149-158.
    109. Liu,Y.G., and Whittier,R.F. (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25: 674-681.
    110. Lonhienne,T., Gerday,C., and Feller,G. (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543: 1-10.
    111. Lonhienne,T., Baise,E., Feller,G., Bouriotis,V., and Gerday,C. (2001a) Enzyme activity determination on macromolecular substrates by isothermal titration calorimetry: application to mesophilic and psychrophilic chitinases. Biochim Biophys Acta 1545: 349-356.
    112. Lonhienne,T., Zoidakis,J., Vorgias,C.E., Feller,G., Gerday,C., and Bouriotis,V. (2001b) Modular structure, local flexibility and cold-activity of a novel chitobiase from a psychrophilic Antarctic bacterium. J Mol Biol 310: 291-297.
    113. LOWRY,O.H., ROSEBROUGH,N.J., FARR,A.L., and RANDALL,R.J. (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.
    114. Makhatadze,GI., and Privalov,P.L. (1995) Energetics of protein structure. Adv Protein Chem 47: 307-425.
    115. Marchler-Bauer,A., Anderson,J.B., Derbyshire,M.K., Weese-Scott,C., Gonzales,N.R., Gwadz,M. et al (2007) CDD: a conserved domain database for interactive domain family analysis. Nucleic Acids Res 35: D237-D240.
    116. Margaretten,W., Nakai,H., and Landing,B.H. (1961) Significance of selective vasculitis and the "bone-marrow" syndrome in Pseudomonas septicemia. N Engl J Med 265:773-776.
    117. Marx,J.C., Collins,T., D'Amico,S., Feller,G., and Gerday,C. (2007a) Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotechnol (NY) 9: 293-304.
    118. Marx,J.C., CollinsJ., D'Amico,S., Feller,G., and Gerday,C. (2007b) Cold-adapted enzymes from marine Antarctic microorganisms. Mar Biotechnol (NY) 9: 293-304.
    119. Matsubara,H., Sasaki,R., Singer,A., and Jukes,T.H. (1966) Specific nature of hydrolysis of insulin and tobacco mosaic virus protein by thermolysin. Arch Biochem Biophys 115: 324-331.
    120. Matthews,B.W., Jansonius,J.N., Colman,P.M., Schoenborn,B.P, and Dupourque,D. (1972) Three-dimensional structure of thermolysin. Nat New Biol 238:37-41.
    121. Matthews,B.W., Weaver,L.H., and Kester,W.R. (1974) The conformation of thermolysin. J Biol Chem 249: 8030-8044.
    122. Matthews.B.W. (1988) structural basis of the action of thermolysin and related zinc peptidase. Acc Chem Res 21: 333-340.
    123. McIver,K., Kessler,E., and Ohman,D.E. (1991) Substitution of active-site His-223 in Pseudomonas aeruginosa elastase and expression of the mutated lasB alleles in Escherichia coli show evidence for autoproteolytic processing of proelastase. J Bacteriol 173: 7781-7789.
    124. Merkel,J.R., Traganza,E.D., Mukherjee,B.B., Griffin,T.B., and Prescott,J.M. (1964) Proteolytic activity and general characteristics of a marine bacterium, Aeromonas proteolytica sp. N. J Bacteriol 87: 1227-1233.
    125. Methe,B.A., Nelson,K.E., Deming,J.W., Momen,B., Melamud,E., Zhang,X. et al. (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 102: 10913-10918.
    126. Milton,D.L., Norqvist,A., and Wolf-Watz,H. (1992) Cloning of a metalloprotease gene involved in the virulence mechanism of Vibrio anguillarum. J Bacteriol 174: 7235-7244.
    127. Miyamoto,K., Tsujibo,H., Nukui,E., Itoh,H., Kaidzu,Y., and Inamori,Y. (2002) Isolation and characterization of the genes encoding two metalloproteases (MprI and MprII) from a marine bacterium, Alteromonas sp. strain O-7. Biosci Biotechnol Biochem 66:416-421.
    128. Miyazaki,K., Wintrode.P.L., Grayling,R.A., Rubingh,D.N., and Arnold,F.H. (2000) Directed evolution study of temperature adaptation in a psychrophilic enzyme. J Mol Biol 297: 1015-1026.
    129. Miyoshi,S. (2006) Vibrio vulnificus infection and metalloprotease. J Dermatol 33: 589-595.
    130. Miyoshi,S., Kawata,K., Tomochika,K., and Shinoda,S. (1999) The hemagglutinating action of Vibrio vulnificus metalloprotease. Microbiol Immunol 43: 79-82.
    131. Miyoshi,S., Kawata,K., Tomochika,K., Shinoda,S., and Yamamoto,S. (2001) The C-terminal domain promotes the hemorrhagic damage caused by Vibrio vulnificus metalloprotease. Toxicon 39: 1883-1886.
    132. Miyoshi,S., and Shinoda,S. (2000) Microbial metalloproteases and pathogenesis. Microbes Infect 2: 91-98.
    133. Miyoshi,S., Sonoda,Y., Wakiyama,H., Rahman,M.M., Tomochika,K., Shinoda,S. et al. (2002) An exocellular thermolysin-like metalloprotease produced by Vibrio fluvialis: purification, characterization, and gene cloning. Microb Pathog 33: 127-134.
    134. Miyoshi,S., Wakae,H., Tomochika,K., and Shinoda,S. (1997) Functional domains of a zinc metalloprotease from Vibrio vulnificus. J Bacteriol 179: 7606-7609.
    135. Moe,E., Leiros,I., Riise,E.K., Olufsen,M., Lanes,O., Smalas,A., and Willassen,N.P. (2004) Optimisation of the surface electrostatics as a strategy for cold adaptation of uracil-DNA N-glycosylase (UNG) from Atlantic cod (Gadus morhua). J Mol Biol 343: 1221-1230.
    136. Morihara,K. (1995) Pseudolysin and other pathogen endopeptidases of thermolysin family. Methods Enzymol 248: 242-253.
    137. Morihara,K., and Homma,J.Y. (1985) Pseudomonas proteases. In Bacterial Enzymes and Virulence. Holder,I.A. (ed). Baca Raton, FL: CRC Press., pp. 41-79.
    138. Morihara,K., Tsuzuki,H., Oka,T., Inoue,H., and Ebata,M. (1965) Pseudomonas aeruginosa elastase. Isolation, crystallization, and preliminary characterization. J Biol Chem 240: 3295-3304.
    139. Narinx,E., Baise,E., and Gerday,C. (1997) Subtilisin from psychrophilic antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng 10: 1271-1279.
    140. Narukawa,H., Miyoshi,S., and Shinoda,S. (1993) Chemical modification of Vibrio vulnificus metalloprotease with activated polyethylene glycol. FEMS Microbiol Lett 108: 43-46.
    141. Ogino,H., Uchiho,T., Doukyu,N., Yasuda,M., Ishimi,K., and Ishikawa,H. (2007) Effect of exchange of amino acid residues of the surface region of the PST-01 protease on its organic solvent-stability. Biochem Biophys Res Commun 358: 1028-1033.
    142. Ogino,H., Uchiho,T., Yokoo,J., Kobayashi,R., Ichise,R., and Ishikawa,H. (2001) Role of intermolecular disulfide bonds of the organic solvent-stable PST-01 protease in its organic solvent stability. Appl Environ Microbiol 67: 942-947.
    143. Ogino,H., Yokoo,J., Watanabe,F., and Ishikawa,H. (2000) Cloning and sequencing of a gene of organic solvent-stable protease secreted from Pseudomonas aeruginosa PST-01 and its expression in Escherichia coli. Biochem Eng J 5: 191-200.
    144. Oikawa,T., Yamanaka,K., Kazuoka,T., Kanzawa,N., and Soda,K. (2001) Psychrophilic valine dehydrogenase of the antarctic psychrophile, Cytophaga sp. KUC-1: purification, molecular characterization and expression. Eur J Biochem 268: 4375-4383.
    145. Olufsen,M., Smalas,A.O.,Moe,E., and Brandsdal,BO. (2005)Increased flexibility as a strategy for cold adaptation: a comparative molecular dynamics study of cold- and warm-active uracil DNA glycosylase. J Biol Chem 280: 18042-18048.
    146. Ooshima,H., Mori,H., and Harano,Y. (1985) Synthesis of aspartame precursor by thermolysin solid in organic solvent. Biotechnol Lett 7: 789-792.
    147. Pangburn,M.K., and Walsh,K.A. (1975) Thermolysin and neutral protease: mechanistic considerations. Biochemistry 14: 4050-4054.
    148. Pank M., Kirret O., Paberit N., and Aaviksaar A. (1982) Hydrophobic interaction in thermolysin specificity. FEBS Lett 142: 297-300.
    149. Petrescu,I., Lamotte-Brasseur,J., Chessa,J.P., Ntarima,P., Claeyssens,M., Devreese,B. et al. (2000) Xylanase from the psychrophilic yeast Cryptococcus adeliae. Extremophiles 4: 137-144.
    150. Polverino de,L.P., De,F., V, Di,B.M., Zambonin,M., and Fontana,A. (1995) Probing the molten globule state of alpha-lactalbumin by limited proteolysis. Biochemistry 34: 12596-12604.
    151. Priscu,J.C., Fritsen,C.H., Adams,E.E., Giovannoni,S.J., Paerl,H.W., McKay,C.P. et al. (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280: 2095-2098.
    152. Privalov,P.L. (1990) Cold denaturation of proteins. Crit Rev Biochem Mol Biol 25: 281-305.
    153. Qin,G., Zhu,L., Chen,X., Wang.P.G., and Zhang,Y. (2007) Structural characterization and ecological roles of a novel exopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913. Microbiology 153: 1566-1572.
    154. Rawlings,N.D., Morton,F.R., and Barrett,A.J. (2006) MEROPS: the peptidase database. Nucleic Acids Res 34: D270-D272.
    155. Rawlings,N.D., Morton,F.R., Kok,C.Y., Kong,J., and Barrett,A.J. (2008) MEROPS: the peptidase database. Nucleic Acids Res 36: D320-D325.
    156. Roche,R.S., and Voordouw,G (1978) The structural and functional roles of metal ions in thermolysin. CRC Crit Rev Biochem 5: 1-23.
    157. Russell,R.J., Gerike,U., Danson,M.J., Hough,D.W., and Taylor,GL. (1998) Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure 6: 351-361.
    158. Sabri,A., Bare,G, Jacques,P, Jabrane,A., Ongena,M., Van Heugen,J.C. et al. (2001) Influence of moderate temperatures on myristoyl-CoA metabolism and acyl-CoA thioesterase activity in the psychrophilic antarctic yeast Rhodotorula aurantiaca. J Biol Chem 276: 12691-12696.
    159. Sahm,K., Knoblauch,C., and Amann,R. (1999) Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments. Appl Environ Microbiol 65: 3976-3981.
    160. Sali,A., and Blundell,T.L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234: 779-815.
    161. Saul,D.J., Williams,L.C., Toogood,H.S., Daniel,R.M., and Bergquist,P.L. (1996) Sequence of the gene encoding a highly thermostable neutral proteinase from Bacillus sp. strain EA1: expression in Escherichia coli and characterisation. Biochim Biophys Acta 1308: 74-80.
    162. Secades,P., Alvarez,B., and Guijarro,J.A. (2001) Purification and characterization of a psychrophilic, calcium-induced, growth-phase-dependent metalloprotease from the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 67: 2436-2444.
    163. Siddiqui,K.S., and Cavicchioli,R. (2006) Cold-Adapted Enzymes. Annu Rev Biochem.
    164. Smith,P.K., Krohn,R.I., Hermanson,GT., Mallia,A.K., Gartner,F.H., Provenzano,M.D. et al. (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76-85.
    165. Staley,J.T., and Gosink,J.J. (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53: 189-215.
    166. Stark,W., Pauptit,R.A., Wilson,K.S., and Jansonius,J.N. (1992) The structure of neutral protease from Bacillus cereus at 0.2-nm resolution. Eur J Biochem 207: 781-791.
    167. Stoeva,S., and Kleinschmidt,T. (1989) Proteolytic specificity of the neutral zinc proteinase from Bacillus mesentericus strain 76 determined by digestion of an alpha-globin chain. Biol Chem Hoppe Seyler 370: 1139-1143.
    168. Svingor,A., Kardos,J., Hajdu,I., Nemeth,A., and Zavodszky,P. (2001) A better enzyme to cope with cold. Comparative flexibility studies on psychrotrophic, mesophilic, and thermophilic IPMDHs. J Biol Chem 216: 28121-28125.
    169. Tamura,K., Dudley,J., Nei,M., and Kumar,S. (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596-1599.
    170. Tanaka,M., Okuyama,H., and Morita,N. (2001) Characterization of the gene encoding the beta-lactamase of the psychrophilic marine bacterium Moritella marina strain MP-1. Biosci Biotechnol Biochem 65: 666-669.
    171. Thayer,M.M., Flaherty,K.M., and McKay,D.B. (1991) Three-dimensional structure of the elastase of Pseudomonas aeruginosa at 1.5-A resolution. J Biol Chem 266: 2864-2871.
    172. Thomas A.Hall (1999) BioEdit:a user-friendly biological sequence aligment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95-98.
    173. Thompson,M.R., Miller,R.D., and Iglewski,B.H. (1981) In vitro production of an extracellular protease by Legionella pneumophila. Infect Immun 34: 299-302.
    174. Titani,K., Hermodson,M.A., Ericsson,L.H., Walsh,K.A., and Neurath,H. (1972) Amino-acid sequence of thermolysin. Nat New Biol 238: 35-37.
    175. Toogood,H.S., Bunn,R., and Daniel,R.M. (2004) Bacillus strain AK.1 protease. In Handbook of Proteolytic Enzymes. Barrett,A.J., Rawlings,N.D., and Woessner,J.F. (eds). London: Elsevier, pp. 1801-1802.
    176. Tran,L., Wu,X.C, and Wong,S.L. (1991) Cloning and expression of a novel protease gene encoding an extracellular neutral protease from Bacillus subtilis. J Bacteriol 173: 6364-6372.
    177. Tronrud,D.E., Monzingo,A.F., and Matthews,B.W. (1986) Crystallographic structural analysis of phosphoramidates as inhibitors and transition-state analogs of thermolysin. Eur J Biochem 157: 261-268.
    178. Tutino,M.L., Duilio,A., Parrilli.R., Remaut,E., Sannia,G., and Marino,G. (2001) A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 5: 257-264.
    179. Vecerek,B., and Kyslik,P. (1995) Cloning and sequencing of the neutral protease-encoding gene from a thermophilic strain of Bacillus sp. Gene 158: 147-148.
    180. Veltman,O.R., Vriend,G., Middelhoven,P.J., van den,B.B., Venema,G., and Eijsink,V.G. (1996) Analysis of structural determinants of the stability of thermolysin-like proteases by molecular modelling and site-directed mutagenesis. Protein Eng 9: 1181 -1189.
    181. Weaver,L.H., Kester,W.R., and Matthews,B.W. (1977) A crystallographic study of the complex of phosphoramidon with thermolysin. A model for the presumed catalytic transition state and for the binding of extended substances. J Mol Biol 114: 119-132.
    182. Wetmore,D.R., Wong,S.L., and Roche,R.S. (1992) The role of the pro-sequence in the processing and secretion of the thermolysin-like neutral protease from Bacillus cereus. Mol Microbiol 6: 1593-1604.
    183. Wintrode,P.L., and Arnold,F.H. (2000) Temperature adaptation of enzymes: lessons from laboratory evolution. Adv Protein Chem 55: 161-225.
    184. Wretlind,B., and Pavlovskis,O.R. (1983) Pseudomonas aeruginosa elastase and its role in pseudomonas infections. Rev Infect Dis 5 Suppl 5: S998-1004.
    185. Xu,Y., Feller,G., Gerday,C., and Glansdorff,N. (2003) Metabolic enzymes from psychrophilic bacteria: challenge of adaptation to low temperatures in ornithine carbamoyltransferase from Moritella abyssi. J Bacteriol 185: 2161-2168.
    186. Yan,B., Chen,X., Hou,X., He,H., Zhou BC, and Zhang YZ (2009) Molecular Analysis of the Gene Encoding a Cold-Adapted Halophilic Subtilase from Deep-sea Psychrotolerant Bacterium Pseudoalteromonas sp. SM9913: Cloning, Expression, Characterization and Function Analysis of the C-terminal PPC Domains. Extremophiles accepted.
    187. Zhao,GY., Chen,X.L., Zhao,H.L., Xie,B.B., Zhou,B.C., and Zhang,Y.Z. (2008) Hydrolysis of insoluble collagen by deseasin MCP-01 from deep-sea Pseudoalteromonas sp. SM9913: collagenolytic characters, collagen-binding ability of C-terminal polycystic kidney disease domain, and implication for its novel role in deep-sea sedimentary particulate organic nitrogen degradation. J Biol Chem 283: 36100-36107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700