用户名: 密码: 验证码:
强变形诱导铝合金析出相低温回溶现象及应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在强变形过程中合金中第二相质点(或析出相)的低温回溶是一个新的、重要的微观现象,对时效强化型合金制定新的热处理技术原型具有潜在的重要意义。为了对这一现象有更深入细致的了解,本文通过硬度测试,透射电镜(TEM)观察分析,X射线衍射分析(XRD)及小角度X射线散射(SAXS)分析等方法,以Al-Zn-Mg-Cu、Al-Mg-Si、Al-Cu合金为试验材料,对强变形诱导铝合金析出相低温回溶现象及应用基础进行了研究。试验得出:
     铝合金在不同方式下的强烈塑性变形过程中都可发生析出相低温回溶,此现象与温度无关,是一个独立于温度之外的显微组织新变化,但其效果与升温回溶时的析出相回归相同。析出相在低温等径角挤压(ECAP)和多向压缩(MAC)中的演变分四个阶段:析出相与位错的相互作用;析出相形态的改变;析出相破碎;析出相回溶。
     在等径角挤压(ECAP)引起析出相回溶的研究资料中,出现合金硬度变化规律很不一致的现象。本文研究了Al-4.1%Cu合金在室温ECAP,MAC变形时硬度变化规律。得出:在等值应变ε=0.4-8.6范围内,硬度的变化规律有三种。一是在强变形过程中,试样硬度随变形量增大而上升,上升至一定程度后出现下降,下降至硬度谷值后重新上升;二是在强变形过程中,试样硬度随变形量增大不产生硬度下降,但当变形量增至一定程度后硬度将出现饱和值;三是在强变形过程中,试样硬度随变形量增大而一直呈上升趋势,在较大的等值应变范围内,硬度不出现饱和值。试验证实,含析出相的Al-Cu在强变形过程中,其硬度变化是加工硬化与析出相回溶软化的综合结果。由于界面结构各异的析出相在强塑性变形过程中的回溶速度不同,导致硬度变化规律各不相同。
     Al-Cu合金强塑性变形诱导析出相回溶后形成的过饱和固溶体,如果继续进行变形,当变形量增大到一定程度后,将分解出析出相。此时,析出相的析出顺序与常规态过饱和固溶体分解的析出顺序不同,过渡相析出被抑制,直接形成稳定相。Al-Cu合金强塑性变形诱导析出相回溶形成的过饱和固溶体,在变形停止后再时效时,显著加速再时效析出过程,但析出相的析出顺序与加热温度、变形量及变形后的晶粒尺寸相关。当加热温度足够消除变形量产生的高应力,则析出顺序为过渡相→稳定相;当加热温度不能消除大变形产生的高应力,而且晶粒超细化时,则再析出时过渡相被抑制,直接生成稳定相。
     析出相低温回溶速度对铝合金的强塑性变形方法和工艺的选择具有直接的影响,试验得出:无论是在何种强塑性变形方式下,析出相的回溶都需要在一定的变形量下才能发生,相同类型或不同类型的析出相其回溶速度均随变形量的增大而增加;不同类型相界面结构的析出相在相同的变形方式下,回溶所需要的变形量不同。Al-Cu合金三种析出相中,与基体呈共格关系的θ″析出相回溶所需要的应变量最小,呈半共格关系的θ′析出相次之,呈非共格关系的θ相回溶所需要的应变量最大;相同相界面析出相在不同的变形方式下,回溶所需要的变形量不同。采用小角度X射线散射定量分析研究了θ′相在ECAP和MAC变形过程中的有效尺寸及体积分数变化。在两种强变形过程中都发现随着应变量的增加析出相尺寸和体积分数均下降。但θ′相在MAC变形中比在ECAP变形中尺寸及体积分数下降的快。试验表明,变形速率对析出相的回溶速度有影响。高变形速率的多向压缩变形,Al-Cu合金三种析出相回溶需要的变形量比低变形速率所需的变形量小。
     本文在综合大量试验观察与试验数据结果后认为:强变形过程中的应变使析出相的应变能和界面能升高是强变形诱导析出相低温回溶的热力学驱动力。Al-Cu合金在强塑性形变过程中出现的低温回溶现象是强变形下引起析出相的自由能增大值显著大于母相自由能的增大值后,将出现的溶解自发过程。提出“畸变自由能假说”、“临界晶核尺寸说”解释低温强变形过程中硬度变化规律与析出相低温回溶之间的关系。本文研究了Al-Cu合金在多向压缩变形中析出相低温回溶现象对晶粒细化和热稳定性的影响。得出:Al-Cu合金固溶态试样在MAC变形过程中的晶粒细化速度明显高于含析出相的试样,含θ′析出相试样的晶粒细化程度又稍高于含θ析出相的试样。
     强变形后形成的细晶粒Al-Cu合金,当退火温度低于约200℃时,固溶态、含θ′相与含θ相三种相态的试样其晶粒尺寸与高角晶界的百分数基本上没有变化。只有在250℃退火1小时,才引起晶粒尺寸与高角晶界比例的增大。当退火温度低于200℃时,因强变形造成的基体晶格畸变仍然存在,使未分解的过饱和回溶体在晶界上析出颗粒状的θ稳定相;只有当退火温度超过250℃时,消除了基体的晶格畸变,才能在晶内生成细小的介稳定相(θ″、θ′)。
     强变形诱导析出相低温回溶现象在铝合金上的应用基础研究是利用高角晶界超细等轴晶粒与强变形诱导析出相低温回溶后的过饱和固溶体再时效分解来实现应力处理与热处理的配合,使强变形组织与时效组织达到最佳匹配状态的基础研究,以及铝合金获得最佳性能组合的新形变和时效工艺的基础研究,并在此基础上开发出具有我国独立知识产权的热处理新技术。
The re-dissolution of second phase particles during SPD is a new significant micro-phenomenon,which is of significance for developing a new heat-treatment technique of age hardening alloy.In order to investigate the re-dissolution phenomenon of precipitates and Its Application in Al alloy at low temperature during various SPD processes, the experimental materials such as Al-Cu,Al-Mg-Si and Al-Zn-Mg-Cu alloy and corresponding different tempered condition such as supersaturated solid solution,GP-zone,metastable phase(e.g.θ″、θ′)and equilibrium phase(e.g.θ)were employed in this paper.SPD was performed by means of Equal-channel Angular Pressing(ECAP), multi-axial compression(MAC)and Gleeble-1500 simulated tester.The evolution of properties and microstructures was characterized by hardness measurement,optical microscope,transmission electron microscopy, x-ray diffraction analysis and small-angle x-ray scattering(SAXS).
     The results suggested that the re-dissolution phenomenon of precipitates may occur during all different SPD of Al alloys.This phenomenon is a new microstrutures evolution during SPD,independent of deformation temperature.This indicates SPD has the same effect as heating as for re-dissolution of particles.Re-dissolution evolution of precipitates during ECAP and MAC may be devided into four stages: interaction of precipitates with dislocations,the change of morphology of precipitates,breaking of precipitates and re-dissolution of precipitated phases.
     Quite a lot of previous work presented a contradictory behavior of hardness variation due to re-dissolution of second phase during ECAP. Two kinds of severe plastic deformation such as ECAP and MAC of Al-Cu alloy were performed to understand this contradictory behavior in this work.The results suggested that in the equivilent strain range of 0.4 to 8.6 the behaviors of hardness variation coud be divided into three kinds. One is hardness of samples first increases to a peak value with increasing strain,and subsequently reduces to a minimum value with increasing strain,at last followed by a reincrease at the end of SPD.The second is the hardness of samples gradually increases to a saturated value with increasing strain,no reduction of hardness appears during SPD.The third one is the hardness of samples continuously increases with increasing strain,no saturated value of hardness appears in a quite large range of equivalent strain.It is suggested that the hardness variation is due to combined effect of strain hardening and starin softening caused by re-dissolution of precipitates during SPD of aged Al-Cu alloy.Different re-dissolution rate of precipitates in SPD is attributed to different interface structure between pricipitates and matrix(αphase),resulting in different behaviors of hardness evolution.
     In SPD deformation processing of Al-Cu alloys,the supersaturated solid solution formed after re-dissolution of precipitated phase induce by SPD will decompose once again to form new precipitates when the increment of strains achieves a certain degree in following deformation process.Under this condition,the precipitates sequence is not identical with the decomposition of conventional supersaturated solid solution formed by heating,metastable phase are restrained,forming immediately equilibrium phase.During re-aging,the supersaturated solid solution formed by SPD induced re-dissolution of precipitated phase will accelerate remarkably the process of re-aging,but its precipitation sequence is related to heating temperature,strain degree and grain size after deformation.When heating temperature can completely eliminable the micro-distortions of matrix lattices produced by deformation,the precipitation sequence is metastable phases→equilibrium phases.When heating temperature cannot enough remove the high lattice distortion and grain ultra-refinemen,metastable phases will be inhibited,the equilibriμm phases will be directly formed.During the re-aging of Al-Cu alloys in which the re-dissolution of precipitates has generated and supersaturated solid solution has produced after SPD,GP-zone and metastable phases which possess the coherent and semi-coherent relation to parent phase have no the possibility of formation in interior of matrix,because they will lead distortion energy to increase and result in necessarily the volume free energy to arise.A equilibrium phase which is free of coherent relation to parent phase may diminish the strain within matrix and lower the volume free energy.
     The re-dissolution rate of precipitated phases at low temperature effects immediately on the selection of procedure and technology of SPD of Al alloy.The research on this question has obtained that only when the strain attain to a definite quantity,the re-dissolution of precipitated phases can occur on matter what methods of SPD.All re-dissolution rate of each precipitated phase increases with increasing the strain.Under same deformation processing,the strain required by the re-dissolution of unlike precipitated phase is dissimilar because various precipitated phases have different interface between precipitate and matrix.For Al-Cu alloy, the strain needed by the re-dissolution ofθ″-phase with coherent relation to matrix is minimal,that ofθ′-phase with semi-coherent relation to matrix is second,and that ofθ-phase without coherent rotation to matrix is maximal.The strain required by re-dissolution is also unlike for the phases with similar interface under various SPD methods.The evolution of efficacious size and volume fraction ofθ′-phase in ECAP and MAC processes were quantitatively investigated using a small angle X-ray diffraction.The size and volume fraction all fall with an increase in the strains of two SPD processing,but the lowering of size and volume fraction of precipitated phases forθ′-phase is rapider in MAC deformation than in ECAP deformation.Here the experimental results indicated that the strain rates have a effect on the re-dissolution rate of precipitated.The strain needed by the re-dissolution rate of three precipitated phase in Al-Cu alloy is smaller at high strain rate than at low strain rate in double-axial compression.
     On the basis of a great deal of observation and examination data,the authors considered that the thermal driving force of SPD induced re-dissolution at low temperature was the enhancement of strain and interface energies of precipitates.The re-dissolution phenomenon of Al-Cu alloy at low temperature caused by SPD is a spontaneous process when the increment of volume free energy of precipitated phases is larger than that of matrix.“deformation free energy hypothesis”and“A critical nuclei size hypothesis”are provided to interpret the relationship between the evolution of hardness and the re-dissolution of precipitates during SPD at room temperature,the difference between The re-dissolving of precipitated phases by SPD and Heating retrogression was analyzed according to the experiment results.
     SPD induced re-dissolution of precipitated phases at low temperature is new important micro-phenomenon,and is a solution process under preserving simultaneously the SPD micro-structures.Therefore the parameters of size,shape and distribution of precipitated phases during following aging after SPD are different with that during conventional aging.If this phenomenon is utilized to strain processing and heat-treatment,strain strengthening and dispersion strengthening will attain to give fully play,and a new SPD and heat-treatment techniques with high properties of alloys or simple working technologies will been developed.We have do the research on that the phenomenon of re-dissolution of precipitated phases at low temperature effects on the refinement and thermo-stability of grains in MAC deformation of Al-Cu alloy.It was obtained in the investigation that the rate of grain refinement of solid solutioned specimen is higher than that of specimen containing precipitated phases,and that of specimen containingθ′-phases is slightly faster than that of specimen containingθ-phases.
     The plasticity and toughness of ultra-finegrained structures may been improved inasmuch as the decrease of piled-up dislocations density and the abundant deformation of cellular structure resulted from the re-dissolution of precipitates in supersaturate solid solution and two phases alloy.Consequently,the re-dissolution of precipitates in SPD deformation is conducive to acquire a homogeneous ultra-fine equiaxed grains with high-angle boundaries,and leads the comprehensive mechanical properties of materials to reach a new level.When ultra-finegrained Al-Cu alloy produced by SPD are annealed at a temperature below 200℃,the grain size and high-angle boundary percentage are basically unchanging,it is only when annealing temperature surpasses 250℃that grain size and high-angle boundary percentage are all increased.When annealing temperature is below 200℃, supersaturated solid solution which has not occurred to decompose will precipitate into the granular particles of equilibriumθphase at grain boundary because the lattice distortion of matrix led by SPD still exists.It is only when the annealing temperature is high 250℃that the fine directional distribution of metastable phases(θ″、θ′)will form in the interior of grains inasmuch as the micro-distortion of matrix lattices has be completely eliminated.
     Along with SPD techniques move towards industrial application from experimental room,acquiring the aluminum alloys with excellent comprehensive mechanical property will promote the utilization of ultra-fine grained Al alloys.The tendency of applied basic research of SPD induced re-dissolving phenomenon of precipitates at low temperature is to utilize the combination of stress-treatment and heat-treatment which produces ultrafine equiaxed grains separated by high-angle boundaries and the re-dissolution of precipitated phases and re-decomposition of supersaturated solid solution at re-aging after SPD, achieving the optimum matching of microstructure under severe plastic deformation with aging microstructure,and yielding a new technologies of strain and aging attained to optimum combination of mechanical properties.On this basis,stress-heat treatment which possesses a independent intellectual property right in our country will been developed.
引文
[1]R.Z.Valiev,R.K.Islamgaliev,I.V.Alexandrov.Bulk nanostructured materials from severe plastic deformation[J].Progress in Materials Science 2000,45(2):103-189
    [2]Oh-Ishi K,Horita Z,Furukawa M,et al.Optimizing the rotation conditions for grain refinement in equal—channel angular pressing[J].Metal Mater Trans A,1998,29(7):2011-2013
    [3]Nakashima K,Horita Z,Furukawa M,et al.Influence of channel angle on the development of ultrafine grains in equal-channel angular pressing[J].Acta Mater,1998,46(5):1589-1599
    [4]Hong M H,Reynolds W T,Tari T,etal.Atom probe and transmission electron microscopy investigations of heavily drawn pearlitic steel wire[J].Metal Mater Trans,1999,30A(3):717-727
    [5]M.Furukawa,Z.Horita,A.P.Zhilyaev,et al.Developing ultrafine-grained microstructures through the use of severe plastical deformation[J].Mater Sci Forμm,2003,42(6):2631-2636
    [6]I.V.Alexandrov,K.Zhang,A.R.Kilmametov,et al.The X-ray characterization of the ultrafine-grained Cu processed by different methods of severe plastic deformation[J].Mater Sci Eng A,1997,234-236:331-334
    [7]Ruslan Z.Valiev.Recent developments of SPD processing for fabricationg of bulk nanostructured materials[J].Materials Science Forum.2003,426-432(1):237-244
    [8]Lee S H,Saito Y,Tsuji N,et al.Role of shear strain in ul—tragrain refinement by accμmulative roll—bonding(ARB)process[J].Scripta Mater,2002,46(4):281-293
    [9]Seong—Hee I ee,Tetsuo Sakai,Yoshihiro Saito,et al.Strenthening of sheath-rolled aluminum based MMC by the ARB process[J].Mater Trans A,1999,40(12):1422-1433
    [10]赵新奇,张俊宝,徐政,等.累积轧制备超细晶IF钢微观组织与力学性能[J].上海有色金属,2002,23(3):107-110
    [11]B.Cherukuri,R.Srinivasan P.Properties of AA6061 Processed by Multi-Axial Compressions/Forging(MAC/F)[J].Materials and Manufacturing Processes,2006,21(5):519-525
    [12]Riehert J,Maria Richert,Krakow.A new method for unlimited deformation of metals and alloys[J].Aluminium,1986,8:604
    [13]Richert M,Stuwe H P,Zehetbauer M J,et al.Work hardening and micicrostructure of AlMg5 after severe plastic deformation by cyclic extrusion and compression[J].Mater Sci Eng A,2003,355(1-2):180-191
    [14]Jien Wei Yeh,Shi Ying Yuan,Chao Huang Peng.Microstructure and tensile properties of an Al-12wt%Si alloy produced by reciprocating extrusion[J].Metall Mater Trans A,1999,30(9):2503-2512
    [15]Huang J Y,Zhu Y T,Jiang H,et al.Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening[J].Acta Mater,2001,49(9):1497-1505
    [16]高山善匡,西乡宜恭.工业钛因连续反复弯曲加工和退火所引起的组织和晶体取向的变化[J].轻金属,2002,52(11):566-570
    [17]Huang J Y,Zhu Y T,Alexander D J,et al.Development of repetitive corrugation and straightening[J].Mater Sci Eng A,2004,371(1-2):35-39
    [18]Dobakin S V.On the increase of thermal stability of ultra fine grained material obtained by severe plastic deformation[J].Mater Sci Forμm,2003,426-432:2699-2704
    [19]Murayama M,Horita Z,Hono K.Microstructure of two-phase Al-1.7at%Cu Alloy deformed by equal-channel angular pressing[J].Acta Mater,2001,49(1):21-29
    [20]Suk Bong Kang,Cha Yong Lim,Hyoung Wook,etal.Microstructure Evolution and Hardening Behavior of 2024 Aluminum Alloy Processed by Severe Plastic Deformation[J].Materials Science Forμm,2002,396-402(2):1163-1168
    [21]Yuntian Theodore Zhu,Terry C.Lowe.Observations and issues on mechanisms of grain refinement during ECAP process[J].Materials Science and Engineering A,2000,291(1-2):46-53
    [22]Hyoung Seop Kim.Evaluation of strain rate during equal-channel[J].Journal of materials research,2002,17(1):172-179
    [23]Aidang Shan,In-Ge Moon,Jong-Woo Park.Estimation of friction during equal channel angular(ECA) pressing of aluminum alloys[J].Journal of Materials Processing Technology,2002,122(2-3):255-259
    [24]V.M.Segal.Equal channel angular extrusion:from macromechanics to structure formation[J].Materials Science and Engineering A,1999,271(1-2):322-333
    [25]Zs.Kov(?)cs,N.Q.Chinh,J.Lendvai,etal.Effect of indentation size on plastic deformation processes in an ultrafine-grained Al-3%Mg alloy[J].Materials Science Forum,2002,396-402(2):1073-1078
    [26]A.Ma,S-W.Lim,Y.Nishiha.Superplasticity of Fine-grained AZ91 Alloy processed by rotary-die Equal-channel Angular pressing.[J]Materials Science Forμm,2003,426-432(3):2735-2740
    [27]#12
    [28]D.Fatay,E.Bastarash,K.Nyilas,et al.X-ray diffraction study on the microstructure of an Al-Mg-Sc-Zr alloy deformed by high-pressure torsion[J].Materials Research and Advanced Techniques,2003,94(7):842-847
    [29]Kolobov Yu R,Kieback B,Ivanov K V,et al.The structure and microhardness evolution in submicrocrystalline molybdenum processed by severe plastic deformation followed by annealing[J].International Journal of Refractory Metals and Hard Materials,2003,21(1-2):69-75
    [30]Sergueeva A V,Stolyarov V V,Valley R Z,et al.Advanced mechanical properties of pure titanium with ultrafine grained structure[J].Scripta Mater,2001,45(7):747-750
    [31]R.K.Islamgaliev,N.F.Yunusova,I.N.Sabirov,etal.Deformation behavior of nanostructured aluminum alloy processed by severe plastic deformation[J].Materials Science and Engneering A,2001,319-321:877-886
    [32]穴田博,田中严。采取反向扭转加工使Al合金棒恢复原形的现象和形变特性[J].轻金属,2003,53:20-26
    [33]A.Gholinia,F.J.Hμmphreys,P.B.Prangnell.Production of ultra-fine grain microstructures in Al-Mg alloy by coventional rollying[J].Acta Mater,2002,50(18):4461-4476
    [34]H.J.D-Rosales,D.I.R-Lopez,F.H-santiaqo,et al.Microstructural changes of the as-quenched Zn-22%Al-2%Cu alloy during cold rolling[J].Mater Trans,2002,43(5):1240-1242
    [35]P.J.Apps,J.R.Bowen,P.B.Prangnell.The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing[J].Acta Materialia,2003,51(10):2811-2822
    [36]G.P.Dinda,H.Rosner,G.Wilde.Synthesis of bulk nanostructured Ni,Ti and Zr by repeated cold-rolling[J].Scripta Materialia,2005,52(7):577-582
    [37]P.J.Hurley,F.J.Hμmphreys.The application of EBSD to the study of substructural development in a cold rolled single-phase aluminium alloy[J].Acta Materialia,2003,51(4):1087-1102
    [38]N.Tsuji,Y.Ito,Y.Saito,etal.Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing[J].Scripta Materialia,2002,47(12):893-899
    [39]M.T.Perez-Prado,J.A.deel Valle,O.A.Ruano.Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding[J].Scripta Materialia,2004,51(11):1093-1097
    [40]C.P.Heason,P.B.Prangnell.Grain refinement and texture evolution during the deformation of Al to ultra-high Strains by accumulative roll bonding(ARB)[J].Materials Science Forμm,2002,396-402(1):429-434
    [41]N.Tsuji,Y.ito,H.Nakashima,etal.Change in microstructure during annealing of ultrafine grained Aluminum produced by ARB[J].Materials Science Forμm,2002,396-402(1):423-428
    [42]S.K ANEKO,K.Fukuda,H.Utsunomiya.Ultragrain refinement of 1110 Alμminiμm 1100 by ARB with cross rolling[J].Materials Science Forum,2003,426-432(3):2649-2654
    [43]Wei Wei,Kun Xia Wei,Qing Bo Du.Corrosion and tensile behaviors of ultra-fine grained Al-Mn alloy produced by accumulative roll bonding[J].Materials Science and Engineering A,2007,454-455:536-541
    [44]B.K.Min,H.W.Kim,S.B.Kang.Effect of Al_3Sc precipitate on the microstructural evolution during accumulative roll bonding in Al-0.2 wt%Sc alloy[J].Journal of Materials Processing Technology,2005,162-163:355-361
    [45]Q.Cui,K.Ohori.Grain refinement of aluminum alloy by asymmetric warm-rolling[J].Mater Sci Tech,2000,16:1095-1099
    [46]崔祺,大崛榕一.采用异周速温铝合金6061的晶粒细化[J].轻金属,2002,52(4):185-189
    [47]Balakrishna Cherukuri,Teodora S.Nedkova,Raghavan Srinivasan.A comparison of the properties of SPD-processed AA-6061 by equal-channel angular pressing,multi-axial compressions/forgings and accumulative roll bonding[J].Materials Science and Engineering A,2005,410-411:394-397
    [48]野田雅史,广桥光治.应变加载方式对Al合金晶粒细化的影响[J].日本金属学会志,2002,66(2):101-108
    [49]野田雅史,广桥光治.采用多轴锻造细化晶粒的AL-MG合金的低温超塑性和形变机制[J].日本金属学会志,2003,67(2):98-105
    [50]K.Oh-ishi,Y.Hashi,A.Sadakata,et al.Microstructural control of an Al-Mg-Si alloy using equal-channel angular pressing[J].Mater Sci Forum,2002,396-402(1):333-338
    [51] Cabibbo M, Evangelista E, Vedani M. Influence of severe plastic deformations on secondary phase precipitation in a 6082 Al-Mg-Si alloy[J]. Metall Mater Trans A,2005, 36 (5) :1353-1364
    [52] S.Nourbakhsh, J.Nutting. The High Strain Deformation of An Aluminium-4% Copper Alloy in The Supersaturated and Aged Conditions [J]. Acta Metallurgical 1980,28 (3): 357-365
    [53]B.Q.Li , F.E.Wawner. Dislocation Interaction with Semicoherent Precipitates(Ω Phase) in Deformed Al-Cu-Mg-Ag Alloy[J]. Acta mater, 1998, 46(15) : 5483-5490
    [54] H G Salem, R E Goforth, K T Hartwig. Influence of Intense Plastic Straining on Grain Refinement, Precipitation and Mechanical Properties of Al-Cu-Li-Based Alloys[J]. Metallurgical and Materials Transactions A , 2003, 34(5): 1153-1161
    [55] Senkov O N, F H Froes, V V Stolyarov, et al. Microstructure and microhardness of an Al-Fe alloy subjected to severe plastic deformation and aging[J]. Nanostruct Mater, 1998, (10):691-698
    [56] Ohashi K , Fujite T , Oh-Ishi K , etal. Microstructural control of a precipitate-hardenable Al-Ag alloy using severe plastic deformation [J].Materials Science Forum, 2003, 426-432 (3) :2637-2642
    [57] Hidaka H, Tsuchiyama T, Takaki S.Microstructural change during mechanical milling treatment in Fe-C alloy powders with different initial microstructure [J].Materials Science Forum, 2003, 426-432(3): 2717-2722
    [58] Tanaka T, Wafanable H, Higashi K. Microstructure in Zn-Al alloy after Equal-Channel Angular Extrusion[J].Mater Trans, 2003, 44(9):1891-1894
    [59] Rostove T D, Dovydov V G, Yelagin V I, et al. Microstructure Change of Ag-Mg-Sc Alloy during ARB Process [J] .Mater Sci Forum, 2000, 396-402: 429
    [60] Shin DH, Han SY. Spheroidization of low carbon steal processed by Equal channel Angular Pressing [J]. Mater Trans, 2003, 44(8):1630-1635
    [61] Yamad Y.Microstructural changes of steel wires during heavily drawing[J].Trans Iran steel Inst Jpn , 1976, 16:417-426
    [62] Salem H.G, Goforth R.E , Hartwing K.T. Influence of intense plastic straining on grain refinement precipition and mechanical properties of Al-Cu-Li based alloys[J].Metall Mater Trans, 2003, 34A(5):1153-1160
    [63]P B Prangnell, A Gholinia, V M Markushev, etal.Investigations and Applications of Severe Plastic Deformation[M], Dordrecht : Kluwer Academic Pub, 2000.65-71
    [64] Patrick B Berbon, Minoru Furukawa, Zenji Horita, et al. Influence of Pressing Speed on Microstuctural Development in Equal-channel Angular Pressing [J]. Mtrallurgical and Materials Transactions A , 1999, 30A (8): 1989-1997
    [65] Iwahashi Y, Horita Z, Nemoto M, et al. Factors influencing the equilibrium grain size in equal-channel angular pressing: role of Mg additions to aluminum[J]. Metall Mater Trans, 1998, A29(10): 2503-2510
    [66] M.A.Munoz-Morris, C.Garcia Oca, G.Gonzalez-Doncel, etal. Microstructural evolution of dilute Al-Mg alloys during processing by equal channel angular pressing and during subsequent annealing[J]. Materials Science and Engineering A, 2004,375-377 (5) : 853-856
    [67] W.S.Choi, H.S.Ryoo, S.K.Hwang, etal. Microstructure Evolution in Zr under Equal Channel Angular Pressing[J].Metallurgical and Materials Transactions A , 2002,33(3): 973-980
    [68] H.G.Salem , J.S.Lyons. Effect Equal Channel Angular Extrusion on the Microstructure and Superplasticity of an Al-Li Alloy[J]. Journal of Materials Engineering and Performance, 2002, 11 (4) :384-391
    [69] C.Pithan, T.Hashimoto, M.Kawazoe, etal. Microstructure and texture evolution in ECAE processed A5056[J]. Materials Science and Engineering A, 2000, 280(1):62-68
    [70] Kim Y S, Kang, Suk Ha, et al. Ductility enhancement of ultrafine grained commercially pure 1050 aluminum alloy by Cross Accumulative Roll-Bonding (C-ARB)[J]. TMS Annual Meeting, Ultrafine Grained Materials Ⅳ, 2006.323-330
    [71] D Fatay, E Bastarash, K Nyilas, etal. X-ray diffraction study on the microstructure of an Al-Mg-Sc-Zr alloy deformed by high-pressure torsion[J].Z.Metallkd, 2003, 94 (7) : 842-847
    [72] H Utsunomiya, R Souba, T Sakai, et al. Ultra Grain Refinement of 1100 Aluminium Strip by Tandem Rolling[J]. Materials Science Forum, 2003, 426-432(3):2681-2686
    [73] M.Richert, H.P.St(?)we, M.J.Zehetbauer, etal.Work hardening and microstructure of AlMg5 after severe plastic deformation by cyclic extrusion and compression[J]. Materials Science and Engineering A, 2003, 355(1-2): 180-185
    [74]Y.H.Zhao, H.W.Sheng , K.Lu. Microstructure Evolution and Thermal Properties in Nanocrystalline Fe During Mechanical Attrition[J]. Acta mater, 2001, 49 (2) :365-375
    [75] Iwahashi Y, Horita Z, Nemoto M, et al. Process of grain refinement in equal-channel angular pressing[J]. Acta Mater, 1998, 46(9):3317-3331
    [76] Furukawa M, Utsunomiya A, Matsubara K, et al. Influence of magnesium on grain refinement and ductility in a dilute Al-Sc alloy[J]. Acta Mater , 2001 , 49(18) :3829-3838
    [77] Humphreys FJ , Hatherly M.Recrystallization and related annealing phenomena[M].Britain:Pergamon, 1995.211
    [78] C.Y.Nam, J.H.Han, Y.H.Chung, etal. Effect of precipitates on Microstructural evolution of 7050 Al alloy sheet during equal channel angular rolling[J]. Materials Science and EngineeringA, 2003, 347(1-2): 253-257
    [79] Li S, Beyerlein I J, Alexander D J, et al. Texture evolution during multi-pass equal channel angular extrusion of copper: Neutron diffraction characterization and polycrystal modeling[J]. Acta Mater, 2005,53 (7) :2111-2125
    [80] Mishin O V, Juul J D, Hansen N. Microstructures and boundary populations in materials produced by equal channel angular extrusion[J]. Mater Sci Eng A, 2003,342:320-328
    [81] Chen Y C, Huang YY, Chang C P, et al. The effect of extrusion temperature on the development of deformation microstructures in 5052 aluminium alloy processed by equal channel angular extrusion[J]. Acta Mater, 2003, 51 (7): 2095-2105
    [82] Terhune S D, Swisher D L, Oh-ishi K, et al. An investigation of microstructure and grain-boundary evolution during EC A pressing of pure aluminum[J]. Metall Mater TransA, 2002, 33 (7) :2173-2184
    [83] Furukawa M, Horita Z, Langdon T G. Processing by equal-channel angular pressing: Applications to grain boundary engineering[J]. J Mater Sci, 2005, 40(4) :909-917
    [84] Z C Wang, P B Prangnell. Microstructure refinement and mechanical properties of severely deformed Al-Mg-Li alloys[J]. Materials Science and Engineering A, 2002,328: 87-97
    [85] Alexandre Goloborodko, Oleg Sitdikov, Taku Sakai, et al. Grain Refinement in As-Cast 7475 Aluminum Alloy under Hot Equal-Channel Angular Pressing [J]. Materials Transactions, 2003, 44 (4) : 766-774
    [86] Hyoung Seop Kim, Sun Ig Hong, Young Shin Lee, etal. Deformation behavior of copper during a high pressure torsion process[J]. Journal of Materials Processing Technology, 2003, 142(2): 334-337
    [87] A.V.Seerhueeva, C.Song, R.Z Valiev, et al. Structure and properties of amorphous and nanocrystalline NiTi prepared by severe plastic deformation and annealing[J]. Materials Science and Engineering A, 2003, 339(1-2): 159-165
    [88] Uday Chakkingal, P F Thomson. Development of microstructure and texture during high temperature equal channel angular extrusion of aluminium[J]. Journal of Materials Processing Technology, 2001, 117 (1-2) : 169-177
    [89] M.Richert , H.P.St(?)we , J.Richert , et al. Characteristic features of microstructure of ALMg5 deformed to large plastic strains[J]. Materials Science and Engineering A, 2001, 301(2): 237-243
    [90] B B Straumal, B Baretzky, A A Mazilkin, etal. Formation of nanograined structure and decomposition of supersaturated solid solid solution during high pressure torsion of Al-Zn and Al-Mg alloys[J]. Acta Materialia , 2004, 52: 4469-4478
    [91] Niels Hansen, Robert F. Mehl, Award Medalist.New Discoveries in Deformed Metals[J]. Metallurgical And Materials Transactions A, 2001, 32, 12: 2917-2935
    [92] C. P. Chang, P. L. Sun, P. W. Kao.Deformation Induced Grain Boundaries In Commercially Pure Aluminium[J].Acta mater, 2000, 48(13): 3377-3385
    [93] Y Xu, M Mmemoto, K Tsuchiya. Comparison of the characteristics of nanocrystalline ferrite in Fe-0.89C steels with pearlite and spheroidite structure produce by ball milling [J]. Mater Trans, 2002,43(9): 2005-2012
    [94] H J Fecht, E Hellstern, Z FU, etal. Nanocrystalline Metals Prepared by High-Energy Ball Milling[J]. Metallurgical Transactions A, 1990, 21(9): 2328-2333
    [95] J.Karch, R.Birringer, H.Gleiter. Ceramics ductile at low temperature[J].Nature,1987, 330: 556-558
    [96] V Yamakov, D Wolf, S R Phillpot, etal. Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation[J].Acta Materialia, 2002, 50: 61-73
    [97] R Kaibyshev, A Goloborodko, F Musin, etal. The role of grain boundary sliding in microstructural evolution guring superplastic deformation of a 7055 aluminum alloy[J].Mater Trans, 2002, 43(10): 2408-2414
    [98] W.J.Kim, J.K.Kim, T.Y.Park, etal.Enhancement of Strength and Superplasticity in a 6061 Al Alloy Processed by Equal-Channel-Angular-Pressing[J].Metallurgical And Materials Transactions A, 2002, 33A(10): 3155-3164
    [99] Dongliang Lin , Yi Liu. Microstructural evolution and mechanisms of superplasticity in large-grained iron aluminides[J]. Materials Science and Engineering, 1999, 268A(1-2): 83-89
    [100]J D Embury,A Deschamps,Y Brechet.The interaction of plasticity and diffusion controlled precipitation reactions[J].Scripta Materialia,2003,49(10):927-932
    [101]Horita Z,Fujinami T,Nemoto M,et al.Equal-channel angular pressing of commercial aluminum alloys:Grain refinement,thermal stability and tensile properties[J].Metall Mater Trans A,2000,31(3):691-701.
    [102]詹美燕,李元元,陈维平,等.累积叠轧工艺对AZ31镁合金板材组织和性能的影响[J].材料工程,2008,3:22-27
    [103]M V Markushev,C C Bampton,M Yu Murashkin,etal.Structure and properties of ultra-fine grained aluminium alloys produced by severe plastic deformation[J].Materials Science and Engineering A,1997,234-236:927-931.
    [104]Parian V,Vinogradov A,Higashi K,et al.Overview of fatigue properties of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing[J].Mater Sci Eng A,2001,300(1-2):171-182
    [105]Washikita A,Kitagawa K,Kopylov V,et al.Tensile and fatigue properties of Al-Mg-Sc-Zr alloy fine-grained by equal-channel angular pressing[J].TMS Annual Meeting,Ultrafine Grained Materials Ⅱ,2002,341-350
    [106]Vinogradov A,Washikita A,Kitagawa K,et al.Fatigue life of fine-grain Al-Mg-Sc alloys produced by equal-channel angular pressing[J].Mater Sci Eng A,2003,349(1-2):318-326
    [107]Tsuji N,Okuno S,Matsuura,et al.Mechanical properties as a function of grain size in ultrafine grained aluminum and iron fabricated by ARB and annealing process[J].Mater Sci Forμm,2003,426-432(3):2667-2672
    [108]李英杰,刘世明,吴世丁,等.等通道转角挤压Al—Cu合金的应力和应变疲劳行为比较[J].金属学报,2005,41(4):380-384
    [109]Son In-Joon,Nakano Hiroaki,Oue Satoshi,etal.Pitting corrosion resistance of ultrafine-grained aluminum processed by severe plastic deformation[J].Mater Trans,2006,47(4):1163-1169
    [110]Valiev R Z,Salimonenko D A,Tsenev N K,et al.Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes[J].Scripta Mater,1997,(37):1945-1950
    [111]Islamgaliev R K,Yunusova N F,Valiev R Z,et al.Characteristics of superplasticity in an ultrafine-grained aluminum alloy processed by ECA pressing[J].Scripta Mater,2003,49(5):467-472
    [112]] Lee S, Furukawa M, Horita Z, et al. Developing a superplastic forming capability in a commercial aluminum alloy without scandiμm or zirconium additions[J].Mater Sci Eng A, 2003, 342 (1-2) :294-301
    [113] Horita Z, Furukawa M, Nemoto M, et al. Superplastic forming at high strain rates after severe plastic deformation[J].Acta Mater, 2000, 48 (14) :3633-3640.
    [114] Perevezentsev V N, Chuvil V N, Sysoev A N, et al. Achieving high-strain-rate superplasticity in Al-Mg-Sc-Zr alloys after severe plastic deformation[J]. Phys Metals Metall, 2002, 94:45-53
    [115] Kaibyshev R, Shipilova K, Musin F, et al. Achieving high strain rate superplasticity in an Al-Li-Mg alloy through equal channel angular extrusion[J]. Mater Sci Tech, 2005, (21):408-418
    [116] Komura S, Berbon P B, Furukawa M, et al. High strain rate superplasticity in an Al-Mg alloy containing scandium[J].Scripta Mater, 1998, 38(12):1851-1856
    [117]XuC, Dixon W, Furukawa M, et al. Developing superplasticity in a spray-cast aluminum 7034 alloy through equal-channel angular pressing[J]. Mater Lett, 2003, 57 (22-23): 3588-3592
    [118] Park K T, Hwang D Y, Lee Y K, et al. High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation[J]. Mater Sci EngA, 2003,341 (1-2): 273-281
    [119] Zhao Y H, Liao X Z, Jin Z, et al. Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing[J]. Acta Mater, 2004, 52(15):4589-4599
    [120]Yu C Y, Sun P L, Kao P W, et al. Evolution of microstructure during annealing of a severely deformed aluminum[J]. Mater Sci Eng A, 2004, 366(2):310-317
    [121] Lee S, Utsunomiya A, Akamatsu H, et al. Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys[J]. Acta Mater, 2002, 50(3):553-564
    [122] XuC, Furukawa M, Horita Z, et al. Using ECAP to achieve grain refinement,precipitate fragmentation and high strain rate superplasticity in a spray-cast aluminum alloy[J]. Acta Mater, 2003, 51(20):6139-6149
    [123] Murayama M, Hono K. Role of Ag and Mg on precipitation of Tl phase in an Al-Cu-Li-Mg-Ag alloy[J] .Scripta mater, 2001, 44(4): 701-706
    [124] Macchi E, Somoza A, DupasquierA. Secondary precipitation in Al-Zn-Mg-(Ag) alloys[J].Acta mater, 2003, 51(17): 5151-5158
    [125]Patrick B,Furukawa,Horita Z.Influence Of Pressing Speed On Microstructural Development In Equal Channel Angular Pressing[J].Metallurgical and Materials Transactions,1999,A30(8):33-42
    [126]Yuntian T Z,Terry C L,TERENCE G L.Performance and application of nanostructured materials produced by severe plastic deformation[J].Scripta Materials,2004,51(8):825-830
    [127]Xu Y,Mmemoto M,Tsuchiya K.Comparison of the characteristics of nanocrystalline ferrite in Fe-0.89C steels with pearlite and spheroidite structure produce by ball milling[J].Mater Trans,2002,43(9):2205-2212
    [128]T D Rostova,V G Davydov,V I Yelaqin,etal.Effect of scandiμm on recrystallization of alμminμm and its alloys[J].Materials Science Forum,2000,331:793-798
    [129]Hong M H,Reynolds W T,Tarui T,etal.Microstructural changes in alμminμm alloy by Equal Channel Angular Extrusion[J].Metall Mater Trans,1999,30A:713-717
    [130]刘国勋.金属学原理[M].北京:冶金工业出版社,1979:319-394
    [131]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南大学出版社,1989:
    [132]Esmaeill S,Wang X,Lloyd D J.On the Precipitation-Hardening Behavior of the Al-Mg-Si-Cu Alloy AA6111[J].Metallurgical and Materials Transaction A,2003,34(3):751-763
    [133]Prangnell P H,Bowen J R,Apps P J.Ultra-fine grain structure in aluminum alloys be severe deformation processing[J].Material science and Engineering,2004,A375-377:178-185
    [134]Liu Z Y,Liang G X,Wang E D.Effect of equal channel angular pressing on structure of Al alloy 2024[J].Trans Nonferrous Met Soc China.1997,7:160-162
    [135]师昌绪,李恒德,周廉.材料科学与工程手册[M].化学工业出版社,2004.
    [136]杜志伟,周铁涛,赵辉等.Al-Zn-Mg-Cu合金时效过程的小角度X射线散射研究[J],物理学报,2004,53(10):3601-3608
    [137]Jingtao Wang,Horita Z,Furukawa M,etal.An investigation of ductility and microstructural evolution in an Al-3%Mg alloy with submicron grain size[J].Journal of materials research,1993,8(11):2810-2818
    [138]李松瑞,周善初.金属热处理[M].长沙:中南大学出版社,2003.228-243
    [139]Krasilnikov N,Lojkowski W,Pakiela Z,etal.Tensile strength and ductility of ultra-fine-grained nickel processed by severe plastic deformation[J].Materials science and Engineering,2005,A397:330-337
    [140]陈景榕,李承基.金属与合金中的固态相变[M].北京:冶金工业出版社,1997.
    [141]Ivanisenko Y,Lojkowski W,Valiev R Z,et al.The mechanism of formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion[J].Acta Materialia,2005,51:5555-5570
    [142]Oh-ishi K,Horita Z,Smith D J,et al.Grain boundary structure in Al-Mg and Al-Mg-Sc alloys after equal-channel angular pressing[J].J Mater Res,2001,16:583-589
    [143]万菊林,孙新军,顾家琳等.Al-Cu-Mg-Zn-Cr合金热扭转变形中连续动态再结晶机理[J].金属学报,1999,35(10):1031-1035
    [144]Gulnaz J V,Maria D B,ruslan Z V.Thermal stability and microtrutural evolution in ultrafine drained niekel after ECAP[J].Metall Mater trans,2002,33A:1865-1871
    [145]西泽泰二著,郝士明译.微观组织热力学[M].北京:化学工业出版社,2006.
    [146]Horita Z,Fujinami T,Nemoto M.Improvement of mechanical properties for Al alloy using equal-channel angular pressing[J].mater pro tech,2001,117:288-292
    [147]J Friedel,LF Vassamillet.Dislocations[M].Oxford:Pergamon Press,1964.
    [148]T.Hebesberger,H.P.St(u|¨)we,A.Vorhauer,etal.Structure of Cu deformed by high pressure torsion[J].Acta Materialia,2005,53(2):393-402
    [149]A.V.Korzikov,G.Tram,O.Dimitrov.the mechanism of nanocrystalling structure formation in Ni_3Al during severe plastic deformation[J].Acta Mater,2001,49(2001)663-671
    [150]C.-S.Tsao,U.-S.Jeng b,C.-Y.Chen a,etal.Small-angle X-ray scattering study of nanostructure evolution of β” precipitates in Al-Mg-Si alloy.Scripta Materialia,2005,53(11):1241-1245
    [151]Tomoaki Kamiyama,Hisamichi Kimura,Kenichiro Sasamori.A Saxs Study Of Rapidly Solidified Al-Base Amorphous Alloys Containing Nanometer-Scale Precipitates.Scriptamater,2001,44(8-9):1297-1301
    [152]M.Dμmont,W.Lefebvre,B.Doisneau-Cottignies,etal.Characterisation of the composition and volμme fraction of η'and η precipitates in an Al-Zn-Mg alloy by a combination of atom probe,small-angle X-ray scattering and transmission electron microscopy[J].Acta Materialia,2005,53(10):2881-2892
    [153]J Kusnierz.Influence of ECAP modes on texture and microstructure evolution of alμminiμm and copper[J].Mater Sci Forμm,2003,426-432(4):2807-2812
    [154]Gutierrez-Vrrutia I,Munoz-Morris M A,Morris D G.The effect of coarse second-phase particles and fine precipitates on microstructure refinement and mechanical properties of severely deformed Al alloy[J].Material science and Engineering,2005,A394(1-2):399-410
    [155]Uniu N,Gable B M,Shifiet G J,etal.The Effect of Cold Work on the Precipitation of Ω and θ'in a Ternary Al-Cu-Mg Alloy[J].Materials Science Form,2002,396-402(2):801-806
    [156]Martin J W,Doher R D,Cantor B.Stability of microstructure in metallic systems [M].Britain:Cambridge University Press,1997.
    [157]Sauvage X,Wetscher F,Pareige P.Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu-Fe composite[J].Acta Mater,2005,53(7):2127-2135
    [158]V.N.Gridnev,V.G.Gavirilymk.Macromechanics and structure forrmation by equal channel angual pressing[J],metal-physics(Russia),1982,14(3):135-139
    [159]A.V.Korznikov,Y.V.Ivanisenko,D.V.Laptionok.Equal channel angular pressing of alμminμm alloy[J].Nanostructured Mater,1994,4:159-163
    [160]胡赓祥,钱苗根.金属学[M].上海:上海科学出版社,1980.
    [161]许晓嫦,刘志义,张坤等.强变形诱导析出相回归后的再时效行为研究[J].中国有色金属学报,2004,14(5):759-765
    [162]许晓嫦,刘志义,谭曼玲等.强变形过程中时效析出相室温回归现象的研究[J].材料热处理学报,2004,25(6):71-76
    [163]汪复兴.金属物理.北京:机械工业出版社,1980.
    [164]ZHOU Zhi-min,SUN Yan-rui,ZHOU Hai-tao.Evolution of dislocation cells during plastic deformation[J].Trans Nonfeerous Met Soc China,2005,15(1):149-151
    [165]Hewitt.P,Butler.E.P.Mechanisms and kinetics ofθ'dissolution in Al-3%Cu[J].Acta metall,1986(34):1163-1172
    [166]L.S.Vasil's,I.L.Lonmaev,E.P.Elsukov.On the Analysis of the Mechanisms of the Strain-Induced Dissolution of Phases in Metals[J].Physics of Metals and Metallography,2006,102(2):186-197
    [167]Genki S,Zenji H,Terence G L.Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion[J].Material science and Engineering A,2005,393(1-2):344-345
    [168]J Mao,S B Kang,J O Park.Grain refinement,thermal stability and tensile properties of 2024 aluminum alloy after equal-channel angular pressing[J].Journal of materials processing technology,2005,159(3):314-320
    [169]Terence G.Langdon.The principles of grain refinement in equal-channel angular pressing[J].Materials science and Engineering,2007,462A(1-2):3-11
    [170]Shogo Komura,Minoru furukawa,Zenji Horita.Optimizing the procedure of equal-channel angular pressing for maximum superplasticity[J].Materials science and EngineeringA,2001,297(1-2):111-118
    [171]Si-Young Chang,jung Guk Lee,Kyung-TAE Park,etal.Microstructures and Mechanical of Equal Channel Angular Pressed 5083 Al Alloy[J].Materials Transactions,2001,42(6):1074-1080
    [172]May J,Hoppel H W,Goken M.Strain rate sensitivity of ultrafine-grained aluminum processed by severe plastic deformation[J].Scripta Materials,2005,53(2):189-194
    [173]Z.C.Wang,P.B.Prangnell.Microstructure refinement and mechanical properties of severely deformed Al-Mg-Li alloys[J].Materials Science and Engineering A,2002,328(1-2):87-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700