用户名: 密码: 验证码:
低品位磷矿的微生物浸出研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷是工业和农业生产的重要原料,我国的磷矿资源总量虽多,但平均品位低,采用传统生产工艺加工低品位的磷矿石经济效益极差。而生物浸矿技术具有污染小、能耗少、操作费用低等无可比拟的优点,为低品位磷矿石的开发利用开辟了新的途径。
     本研究采用生物湿法冶金技术中常用的嗜酸氧化硫硫杆菌(At.t)和嗜酸氧化亚铁硫杆菌(At.f),从安徽某矿山酸性废水中提取的At.t和At.f菌,经过长时间的富集和纯化培养后,对其在不同的培养液初始pH值和能源物质条件下的产酸能力进行了实验研究,发现对于At.t菌,在初始pH值为2.35、以单质硫为能源物质的Starkey培养基中的产酸能力较强;对At.t菌而言,在初始pH值为3.01,以黄铁矿能源的9K培养基中的产酸能力较强。
     采用紫外线照射和微波诱变育种的方法对At.t和At.f菌进行产酸诱导实验,以提高它们的产酸能力。实验结果表明:对At.t菌采用微波和紫外线照射的方法都能够加强其产酸能力,尤其是以微波处理10 s和紫外线照射5 min时效果最好,其培养液的最低pH值可分别达到1.45和1.52;对于At.f菌采用微波诱变的方法,对其产酸能力有一定的加强,在微波诱变10 s时,其菌液最低pH值为1.82,而采用紫外线诱变处理的At.f菌,其产酸能力变化不明显。
     At.t和At.f菌对低品位磷矿浸出实验表明,磷的浸出率会随浸矿时间的增长而增加;在相同的浸出时间内,经过诱变育种后产酸能力强的菌种,其对磷矿的浸出率比原菌的更高。在同样条件下25天内,经过紫外诱变5 min的At.t菌浸磷率可达到39.14%,微波诱变10 s的At.f菌的浸出率达到38.12%,而At.t和At.f原菌的浸出率分别只有30.12%和28.13%。添加合适种类和用量的吐温类表面活性剂可以促进硫杆菌对磷矿的浸出,At.t菌添加0.001%(v/v)的吐温60可以将磷的浸出率提高到41.12%;添加0.001%(v/v)的吐温80可以将At.f菌的浸磷率提高到38.25%。不过,对诱变后的菌种添加相应的吐温类表面活性剂,只能对浸磷率起到微弱的提升效果。
     为了解释影响At.t和At.f菌产酸和浸磷效果的原因,进行了Zeta电位和FTIR分析,发现At.t菌在经过紫外线诱变后,其等电点比原菌要低;微波诱变后的At.f菌的IEP也会稍小于原菌。以黄铁矿为能源物质生长的At.f菌比以FeSO_4为能源物质的IEP要高。经过At.t菌作用后的硫粉颗粒和经过At.f菌作用过的黄铁矿其等电点会随着作用时间的增加而升高,加入吐温60后的硫粉颗粒同细菌作用后的IEP也会增加。对At.t和At.f菌的的FTIR研究表明,其表面经过物理诱变后化学官能团或振动方式发生了变化,这表明其表面的氢键作用强弱改变了,这可能是导致诱变后的菌种表面性质的发生变化的重要原因。综合分析Zeta电位和FTIR测试结果,可以对At.t和At.f菌在产酸和浸矿方面的实验结果做出较合理的解释。
Phosphors were important raw material of industry and agriculture,although the total amounts of phosphate ore were plentiful,but the average grade was very low. The economic effectiveness was very poor when adopt tradition technique process low grade phosphate ore,on the contrary,the bioleaching technique have overwhelming advantages such like small pollution,less energy consumption,low cost of operation etc.all these cast new lights on exploiting and using low grade phosphate ore.
     Acidithiobacillus thiooxidans(At.t) and Acidithiobacillusferrooxidans(At.f) which were been widely use in biological hydrometallurgy were be adopted in this study.At.t and At.f were spperate from the acid drainage of a coal mine in Anhui province,after they be enriched and purfied a long time,the produce acide ability were been test on different substrate original pH value and differemt energy materals. At.t was found have stronger produce acid ability when the sbustrate original pH value was 2.35 and sulfur as the energy source in Starkey substrate.When the substrate original pH value was 3.01 and pyrite as energy source the At.f produce more acide in 9K sbustrate.
     Ultraviolet irradiation and Microwave inducement were applied to the bacterial cultivation process to produce At.t and At.f able to generate more acide.As a result: At.t generate acid capacity were be enhanced after induced by Ultraviolet irradiation and Microwave,especiallly when Microwave induced 10 second(MW 10 s) and Ultraviolet irradiation induced 5 minute(UV 5 min),the lowest pH value of the substrate were 1.45 and 1.52.When Mivrowave was applied to induce At.f 10 s,their generate acide capacity also improved,the lowest pH value of substrate were 1.82. At.f induced by Ultravioled irradiation had unconspicuous change on their generate acide capacity.
     The experiment of low grade phosphate ore leached by At.t and At.f indicated the phosphorus leached rate increased with the leached time in general.The mutagenesis with stronge generate acide capacity had more leached rate than the original bacterium during the same period.UV 5rain At.t leached rate can reach 39.14%,MW 10 s At.f phosphate leached rate was 38.12%,the original At.t and At.f correspond leached rate were 30.12%and 28.13%.The phosphate leached rate can improve by the addition of suitable kinds and quaintity of Tween series surfactant,At.t leached rate was increased to 41.12%when 0.001%(v/v) Tween 60 was added,At.f leached rate was increased to 38.25%when 0.001%(v/v) Tween 80 was added.The corresponded mutagenesis leahed rate only improved a little when Tween series surfactant was added.
     In order to find out the reasons affect the At.t and At.f phospate leached rate,the zeta potential and FTIR test were carried out.The IEP were smaller than the original At.t when they were induced cultivating by ultraviolet irradiation.The same change happened to At.f when they induced by microwave 10 s.The At.f grown with pryite has higher IEP than At.f grown with FeSO_4.The sulfur and pyrite particles IEP will increase with interaction times when they interacted with corresponding At.t and At.f The IEP of sulfur particles also increase when interatced with At.t in presence of Tween 60.The FTIR study on At.t and At.f cells surface substances shown that the chemical function group or the vibration mode of group had been changed,these means the hydrogen bond action changed on the surface,they maybe was the main reason cause the mutagenes surface characteristic changed.The reasonable interpretation to At.t and At.f leaching posphate ore and genetate acide experiment reuslts can be found out from the synthetically analyzed the results of zeta potential and FTIR experiments.
引文
[1]陈嘉甫.中国磷化工生产现状及前景展望[J].无机盐工业,2006.38(3).
    [2]中国化工报(2006)磷肥原料供应:磷矿丰而不富 硫磺依赖进口.http://www.aweb.com.cn
    [3]田煦,周开灿,文化川.非金属矿产地质学[M].武汉工业大学出版社1989,261.
    [4]《选矿设计手册》编委会.选矿设计手册[M].冶金工业出版社2005,42.
    [5]张永奎,王安,陈茂春等.细菌分解磷矿石研究性探索[J].矿产综合利用,2000.6:32-35.
    [6]柳正.我国磷矿资源的开发利用现状及发展战略[J].中国非金属矿工业导刊,2006(1):21-23.
    [7]中国化工信息网(2007)磷资源保障程度低 选矿能力亟待提升.http://www.cheminfo.gov.cn
    [8]卿黎,曾波,张宗华等。.云南中低品位磷矿资源利用的必要性[J].矿产综合利用,2005.6:29-32.
    [9]A.V.Slack.磷酸[M].石油化学工业出版社1968.
    [10]中国矿业网(2003)中国矿产资源磷矿资源概述.http://www.chinamining.com.cn/report/default.asp?V DOC ID=1256
    [11]刘如林.微生物工程概论[M].天津:南开大学出版社1995.
    [12]Taylor J.H.,W.P.E The leaching of cuprous pyrite and the precipitation of copper at Rio Tinto[J].Trans.Inst.Min.metal.,1943.52:35-71.
    [13]裘荣庆.微生物冶金的研究和应用现状[J].微生物学通报,1995.22(3):180-183.
    [14]Malouf E.E.,P.J.D.Role of bacterial oxidation in leaching processes.[J].Merals,1961.13:353-356.
    [15]Torma,A.E.生物湿法冶金的现状和未来的挑战[J].国外金属矿选矿,1990.10:1-7.
    [16]J.R.,F.Bacterial leaching of Elliot Lake uranium ore[J].Trans.Inst.Min.metal.,1966.69:167-171.
    [17]杨遇春.用生物氧化法处理难浸金矿[J].现代化工,1997.1:36-38.
    [18]Ghosh,R.,Banik,A.K..Optimisation of Different Physical Parameters for Bioleaching of Phosphate by Aspergiltus niger from India Roch Phosphate[J].Indian Journal of Experimental Biology,1998.36(7):688-692.
    [19]刘丽丽,李淑高等.PK菌肥的菌种筛选及应用研究[J].南开大学学报(自然科学),1994.3:82-84.
    [20]Colmer A R,H.M.E.The role of microorganism in acid mine drainage[J].Science,1947.106:253-256.
    [21]Tsezos M,B.V.Biotechn and Bioeng.[M].Vol.23.1981,583.
    [22]Blake R C,M.S.Electron-transfer proteins of bacteria that respire on iron.[M].Warrendale Pennsylvania:TMS Press 1993,616-628.
    [23]A.C.Costa,R.A.Medronho,and R.P.pecanha.Phosphate rock bioleaching[J].Biotechnol Letters,1990.52(2):233-238.
    [24]WONG JW,X.L.,GU XY,ZHOU LX.Bioleaching of heavy metals from anaerobically digested sewage sludge using FeS2 as an energy source[J].Chemosphere,2004.55(1):101-107.
    [25]CHI,R.,C.XIAO,and H.GAO.Bioleaching of phosphorus from rock phosphate containing pyrites by Acidithiobacillus ferrooxidans[J].Minerals Engineering,2006.19(9):979-981.
    [26]T.A.Fowler,P.R.H.,F.K.Crundwell.Hydrometallurgy[M].Vol.59.2001.
    [27]A.Schippers,W.S.Appl.Environ.Microbiol[M].Vol.65.1999,319-321.
    [28]陈伟.嗜酸氧化亚铁硫杆菌的培养特性和浸磷效果[D]:[硕士学位论文].武汉:武汉理工大学资源与环境工程学院,2006
    [29]林建群,彭基斌,颜望月.氧化亚铁硫杆菌基因转移系统研究进展[J].应用与环境生物学报,2001.7(2):193-196.
    [30]Holmes D.S,L.J.H.,Bopp L.H et.al.Cloing of a Thiobacillus ferooxidans Plasmids in Escherichia Coli.[J].J.Bacteriol,1984.157(1):324-326.
    [31]Rawlings D.E,P.I.M.,Woods D.R.Expression of a Thiobacillus Ferrooxidans Origin of Replication in Escherichia Coli[J].J.Bacteriol,1984.158(2):737-738.
    [32]Barros M.E.C,R.D.E.,Woods D.R.Cloning and Expression of the Thiobacillus Ferrooxidans Glutamine Sytbetase Gene in Escherichia Coli[J].J.Bacteriol,1985.164(3):1386-1389.
    [33]Rawlings D.E,P.I.M.,Woods D.R.,Patent ApplicationPatent.UK,GB2148300A
    [34]Liu Z.Y,Y.W.M.Restriction Mapping of Plasmid-52 from Thiobacillus Ferrooxidans and Construction of Chimeric Plasmid Psdi-1[J].Chi J Shandon Universitu,1990.25(3):389-394.
    [35]Peng J.B,Y.W.M.,Bao X.Z.Plasmid and Transposon Transfer to Thiobacillus Ferrooxidans[J].J.Bacteriol,1994.176(10):2892-2897.
    [36]郭爱莲,孙先锋,朱宏莉.He-Ne激光、紫外线诱变氧化亚铁硫杆菌及耐砷菌株的选育[J].光子学报,1999.28(8):718-721.
    [37]徐晓军,孟运生,宫磊.氧化亚铁硫杆菌紫外线诱变及对低品位黄铜矿的浸出[J].矿业工程,2005.25(1):34-36.
    [38]孙雪南,孙玲,温建康.浸铜菌株的选育研究[J].有色金属,2000.52(4):232-233.
    [39]张在海,王淀佐,邱冠周.氧化亚铁硫杆菌亚铁活性诱变育种理论探讨[J].铜业工程,2001(1):12-15.
    [40]熊英,胡建平,林滨兰.氧化亚铁硫杆菌的驯化与诱变育种[J].矿产综合利用,2001(6):27-31.
    [41]李伟,彭立永,周长春.氧化亚铁硫杆菌诱导驯化对浮选脱硫的影响[J].煤质技术, 2003(4):50-52.
    [42]Pronk JT,M.R.,Hazeu W,etal.Oxidation of reduced inorganic sulfur compounds by acidophilic thiobacilli.[J].Microbial Rev,1990.990(75):293-306.
    [43]Schippers A,R.T.,Sand W.Intermediary sulfur compounds in pyrite oxidation:implications for bioleaching and biodepyritization of coal.[J].Appl.Microbiol biotechnol,1999.999(52):104-110.
    [44]Rohwerder T,S.W.The sulfane sulfur of persulfides is the actual substrate of the sulfur-oridizing enzymes from Acidithiobacillus and Acidiphilium spp.[J].Mcirobiology,2003.149:1699-1709.
    [45]Ramirez P,G.N.,Valenzuela L,Beard S,Jerez CA.Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron,sulfur compounds or metal sulphides.[J].Appl.Microbiol,2004.70:4491-4498.
    [46]Elbehti A,B.G.,Lemesle-Meunier.First evidence for existence of an uphill electron transfer through the bcl and NADH-Q oxidoreductase complexs of the acidophilic obligate chemolithotrophic ferrous ion-oxidizing bacterium Thiobacillus ferrooxidans.[J].J.Bacterid,2000.182:3602-3606.
    [47]Yarzabal A,B.G.,Bonnefoy V.Cytochromes c of Acidithiobacillus ferroxidans.[J].FEMS Mivrobiol Lett,2002.209:189-195.
    [48]Brassuer G,L.G.,Bonnefoy V,et al.Apparent redundancy of electron transfer pathways via bcl complexes and terminal oxidases in the extremely acidophilic chemoautotrophic Acidithiobacillus ferrooxidans.[J].Biochim Biophys Acta,2004.1656:114-126.
    [49]Kusano T,T.T.,Sugawara K,Inoue C,et al.Molecular cloning of the gene encoding Thiobacillus ferrooxidans Fe(Ⅱ) oxidase.[J].J Biol Chem.,1992.267:11242-11247.
    [50]Busscher H J,W.A.H.Specific and Non-spcific Interactions in Bacterial Adhesion to Solid Substrate[J].FEMS Mivrobiology Reviews,1987.46:165-173.
    [51]Devasia P,N.K.A.S.D.N.e.a.Surface Chemistry of Thiobacillus ferrooxidans Relevant to Adhesion on Mineral Surfaces[J].Applied and Environmental Microbiology,1993.59(12):4051-4055.
    [52]Van loosdrecht M.C.M,Z.A.J.B.Energetics of Bacterial Adhesion[J].Experimentia,1990.46:817-822.
    [53]Prestion Devasia K.A.Natarajan D.N.Sathyanarayana,e.a.Surface Chemistry of Thiobacillus ferrooxidans Relevant to Adhesion on Mineral Surface.[J].Applied and Environmental Microbiology,1993.59(12):4051-4055.
    [54]Naoya Ohmura,K.K.,Hiroshi Saiki.Selective Adhesion of Thiobacillus Ferrooxidans to Pyrite.[J].Applied and Environmental Microbiology,1993.59(12):4044-4050.
    [55]Johnson D B,M.J.H.M.,Rolfe S.A New Solid Medium for the Isolation and Enumeration of Thiobacillus Ferrooxidans and Acidophilic Heterotrophic bacteria[J].J.Microbiol Methods,1987.7:89-18.
    [56]Santhiya D,S.S.N.K.A.Surface Chemical Studies on Galena and Sphalerite in the Presence of Thiobacillus Thiooxidans with Reference to Mineral Beneficiation.[J].Minerals Engineering,2000.13(7):747-763.
    [57]胡凯光,胡鄂明,康泉.细菌浸矿机理和影响因素[J].中国矿业,2004.4:73-77.
    [58]胡岳华,康自珍.黄铜矿的细菌氧化[J].国外金属矿选矿,1997(8):45.
    [59]索络金.细菌在矿业工程中的应用[J].国外金属矿选矿,1991.5:6.
    [60]郑士民,严望明,钱新民.自养微生物[M].北京:科学出版社1983,48-65.
    [61]王世梅,周立祥.提高氧化亚铁硫杆菌和氧化硫硫杆菌平板检出率的方法:双层平板法[J].环境科学学报,2005.25(10):1418-1420.
    [62]吴彩斌,段希祥,戴惠新.中低品位磷矿富集的新方法--干式电选法。[J].化工矿物与加工,2003(9):7-9.
    [63]魏以和,王军,钟康年.矿物生物技术的微生物学基本方法[J].国外金属矿选矿,1996.1.
    [64]周群英,高庭耀.环境工程微生物学(第二版)[M].北京:高等教育出版社2000,292-293.
    [65]周顺桂,王世梅,余素萍.污泥中氧化亚铁硫杆菌的分离及其应用效果[J].环境科学,2003.3:56-60.
    [66]周群英,李广武,沈萍.微生物学实验(第二版)[M].北京:人民教育出版社1980.
    [67]国家环境保护总局水和废水监测分析方法编委会编.水和废水监测分析方法[M].北京:中国环境出版社2002,246-248.
    [68]王炜铭,王英刚,王林芳等.氧化亚铁硫杆菌最佳生长条件的初步探索[J].有色矿冶,2004.20(5):54-56.
    [69]Waksman,S.A.,R.L.Starkey.On the growth and respiration of sulfur-oxidizing bacteria.[J].J.Gen.Physiol,1923.5:285-310.
    [70]Vogler,K.G.,W.W.Umbreit.The necessity for direct contact in sulfur oxidation by thiobacillus thiooxidans.[J].Soil Sci.,1941.51:331-337.
    [71]Starkey,R.L.,G.E.Jones,L.R.Frederick.Effects of medium agitation and wetting agents on oxidation of sulphur by Thiobacillus thiooxidans.[J].J.Gen.Microbiol.,1956.15:329-334.
    [72]Jones,G.E.,Starkey,Robert L.Surface-active substances produced by thiobacillus thiooxidans.[J].J Bateriol,1961.82(5):788-789.
    [73]Schaeffer WI,U.W.Phosphotidylinositol as a wetting agent in sulfur oxidation by thiobacillus thiooxidans.[J].J Bateriol,1963.85(2):492-493.
    [74]cook,T.M.Growth of thiobacillus thiooxidans in shaken culture[J].J Bateriol,1964.88(3):620-623.
    [75]谢念铭.医学细菌电镜图谱[M].北京:人民卫生出版社1994.
    [76]范秀容,李广武,沈萍.微生物学试验(第二版)[M].北京:高等教育出版社1989,133-138.
    [77]Jean Lacombe Barron,D.R.L.Growth and maintenance of Thiobacillus ferrooxidans cells[J].Applied and Environmental Microbiology,1990.9:2801-2806.
    [78]翟中和,王喜中,丁明孝.细胞生物学[M].北京:高等教育出版社 2000.
    [79]Guiliani N,J.C.A.Molecular cloning,sequencing,and the gene coding for the major outer membrane protein from the acidophilic bacterium Thiobacillus[J].Applied and Environmental Microbiology,2000.2(66):2318-2324.
    [80]P.F.Verhulst.Notice sur la loi que la population s'uit dons son accroissement.[J].Correspondences Mathematigues et physiques,1838.10:113-121.
    [81]周吉奎.三类生物冶金微生物菌种的选育及其与矿物作用研究[D]:[博士学位论文].长沙:中南大学资源加工与生物工程学院.2004
    [82]Pablo Ram(?)rez,H.T.,Nicolas Guiliani,Carlos A.Jerezl.An exported rhodanese-like protein is induced during growth of acidithiobacillus ferrooxidans in metal sulfides and different sulfur compounds.[J].Applied and Environmental Microbiology,2002.68(4):1837-1845.
    [83]Brett M.,G.,Erko Stackerbrandt.Cultrral and phylogenetic analysis of mixed microbial popupations found in natural and commercial bioleaching environments[J].Applied and Environmental Microbiology,1994.60(5):1614-1621.
    [84]M.N.钱德拉普拉布哈.应用嗜酸的氧化亚铁硫杆菌对矿物生物改性的方法从黄铜矿和毒砂中选择性浮选分离黄铁矿[J].国外金属矿选矿,2005.4:34-38.
    [85]韦革宏,王卫卫.微生物学[M].北京:科学出版社2008.
    [86]J.Nicklin,K.G.-C.,T.Paget,R.Killington.微生物学[M].北京:科学出版社 2001.
    [87]何忠效,静国忠,许佐良等.生物技术概论(第二版)[M].北京:北京师范大学出版社2002.
    [88]王恩文.嗜酸氧化亚铁硫杆菌的诱变育种及磷矿强化浸出研究[D]:[硕士研究生论文].武汉:武汉理工大学资源与环境工程学院,2007
    [89]Sugio,T.,Katagiri,T..Inagaki,K,.et.al.Actual substrate for elemental sulfur oxidation by sulfur:ferric ion oxidoreductase purified from Thiobacillus ferrooxidans.[J].Biochim Biophys Acta,1989.973:250-256.
    [90]Wakai S,K.M.,Kanao T,Kamimura K.Involvement of sulfide quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium,Acidithiobacillus ferrooxidans NASF-1.[J].Biosci Biotechnol Biochem,2004.68:2519-2528.
    [91]Vestal J.R.,L.D.G.The sulfite oxidase of Thiobacillus ferrooxidans(Ferrobacillus ferrooxidans)[J].Ganadian J Biochem,1971.49(10):1125-1130.
    [92]Nakamura K.,Y.H.,Okubo S.,et.al..Purification and properties of membrane-bound sulfite dehydrogenase from Thiobacillus thiooxidans JCM7814.[J].Biotechnol Biochem,1995.59:11-15.
    [93]Byerley J.J.,F.S.A.,Remple G.L.The oxidation of thiosulfate in aqueous ammonia by copper(Ⅱ) oxygen complexes[J].Inorganic and Nuclear Chemistry,1973.9(8):889-893.
    [94]Solicio C.,L.A.,Veglio F.Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans[J].Waste Management,2002.22:667-675.
    [95]沈镭,张再利,贾晓珊.氧化亚铁硫杆菌和烟花硫硫杆菌对硫代硫酸钠的代谢机理研究[J].环境科学学报,2006.26(12):2000-2007.
    [96]Appia-Ayme,C.,Guiliani N,Ratouchniak J,Bonnefoy V.Charaterization of an operon encoding two c-type cytochromes an aa3-type cytochrome oxidase,and rusticyanin in Acidithiobacillus ferrooxidans ATCC33020.[J].Appl.Environ.Microbiol,1999.65:4781-4787.
    [97]Yarz(?)bal A,A.-A.C.,Ratouchniak J,Bonnefoy V.Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c,a cytochrome oxidase and rustieyanin.[J].Microbiology,2004.150:2113-2123.
    [98]Cox JC,B.D.The purification and some properties of rusticyanin,a blue copper protein involved in iron(Ⅱ) oxidation from Thiobacillus ferroxidans.[J].Biochem J,1978.174:497-502.
    [99]Yarz(?)bal A,b.G.,Appia-Ayme C,Ratchouchniak,J,et.al..The high molecular weight cytochrome c Cyc2 of Acidithiobacillus ferrooxidans is an outer membrane protein.[J].J Bateriol,2002.184:313-317.
    [100]何正国,李雅芹,周培瑾.烟花亚铁的铁和硫氧化系统及其分子遗传学[J].微生物学报,2000.40(5):563-566.
    [101]Rawlings.,D.E.The molechlar genetics of thiobacillus ferrooxidans and other mesophilic,acidophilic,chemolithotrophic,iron-or sulfur-oxidizing bacteria[J].Hydrometallurgy,2001.59:187-201.
    [102]柳建设.硫化矿物生物提取及腐蚀电化学研究[D]:[博士学位论文].长沙:中南大学矿物加工工程,2002
    [103]邱冠周,柳建设,王淀佐等.氧化亚铁硫杆菌生长过程铁的行为[J].中南工学大学学报,1998(3):226-228.
    [104]Natarajan K.A,E.H.L.,Brierley C.L..Electrochemical aspects of bioleaching of base metal sulphides.[J].Microbial Mineral Recovery,1990:79-106.
    [105]Deveci H.,A.A.,and Alp(?).,.Bioleaching of complex zinc sulphides using mesophilic and thermophilic bacteria:comparative importance of pH and iron.[J].Hydrometallurgy,2001.59(3):159-175.
    [106]刘清,徐伟吕,张宇.重金属离子对氧化亚铁硫杆菌活性的影响[J].铀矿冶,2004. 23(3):155-157.
    [107]J.G.KINGMA,JR,and M.SILVER.Autotrophic growth of thiobacillus acidophilus in the presence of a surface-active agent,Tween-80[J].Applied and Environmental Microbiology,1979.38(5):795-799.
    [108]#12
    [109]张在海.铜硫化矿生物浸出高效菌种选育及浸出机理[D]:[博士学位论文].长沙:中南大学资源加工与生物工程雪岩,2002
    [110]胥传来,姚惠源.吐温一80与脂质体膜相互作用机理的研究[J].西安石油大学学报(自然科学版),2005.20(6).
    [111]XB,Z.,W.XT,i.S,et al.The effect of PEG modi-fied liposomes on adriamycin entrapments[J].Peking Univ,2002.34:362-364.
    [112]柳建设,王兆慧,耿梅梅等.微生物浸出中微生物-矿物多相界面作用的研究进展[J].矿冶工程,2006(1):40-44.
    [113]Shrihari,J.M.,MOdak,Kumar R.,et.al..Dissolution of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans.[J].Hydrometallurgy,1995.38:175-187.
    [114]Murthy,K.S.N.,K.A.Natarajan.The role of surface attachment of Thiobacillus ferrooxidans on the biooxidation of pyrite.[J].Miner.Metallurg.Processing,1992.9:20-24.
    [115]Shrihari,R.K.,K.S.Gandhi.Role of cell attachment in leaching of chalcopyrite mineral by Thiobacillus ferrooxidans[J].Appl.Microbiol.Biotechnol.,1991.36:278-282.
    [116]Kempton,A.G.,N.Moneib,R.G.L.McCready.Removal of pyrite from coal by conditioning with Thiobacillus ferrooxidans followed by oil agglomeration.[J].Hydrometallurgy,1980.5:117-125.
    [117]McCready,R.G.L.,B.P.Le Gallais.Selective adsorption of P-labelled Thiobacillus ferrooxidans in finely ground coal suspensions.[J].Hydrometallurgy,1984.12:281-288.
    [118]Yelloji Rao,M.K.,K.A.Natarajan.Effect of biotreatment with Thiobacillus ferrooxidans on the flotability of sphalerite and galena.[J].Miner.Metallurg.Processing,1992.9:95-100.
    [119]Marshall,K.C.Interfaces in microbial ecology[M].Cambridge:Harvard University Press 1976.
    [120]van loosdrecht M.C.M,J.L.,et.al.Electrophoretic mobility and hydrophobicity to predict the initial steps of bacterial adhesion.[J].Appl.Environ.Microbiol,1987.53:1898-1901.
    [121]van loosdrecht M.C.M,J.L.,et.al.Influence of interfaces on microbial activity.[J].Mcirobiol.Rev.,1990.54:75-87.
    [122]Van der Mei,H.C.,A.J.Leonard,A.H.Weerkamp,et.al.Surfacie properties of Streptococcus salivarius HB and nonfibrillar mutants:measurement of zeta potential and elemental composition with X-ray photoelectron spectroscopy.[J].J.Bacteriol,1988. 170:2462-2466.
    [123]Mozes N.,P.G.R.Microbial cell surface hydrophobicity.[M].Microbial Cell Factories.Washington,D.C.:American Society for Microbiology 1990,75-105.
    [124]Rodriguez-Leiva,M.,H.Tributsch.Morphology of bacterial leaching patterns by Thiobacillus ferrooxidans on synthetic pyrite.[J].Arch.Microbiol.,1988.149:401-405.
    [125]Tilman Gehrke,J.T.,Dominique Thierry,Wolfagna Sand.Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching[J].Applied and Environmental Microbiology,1998.64(7):2743-2747.
    [126]P.K.Sharma,A.D.,K.Hanumantha Rao,K.S.E.Forssberg.Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions.[J].Hydrometallurgy,2003.71:285-292.
    [127]Perston Devasia,K.A.N.,D.N.Sathyanarayana,G.Ramananda Rao.Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces[J].Applied and Environmental Microbiology,1993.59(12):4051-4055.
    [128]Sand,W.,T.Gehrke,R.Hallmann,A.Schippers.Sulfur chemistry,biofilm and the(in)direct attack mechanism a critical evaluation of bacterial leaching.[J].Appl.Microbiol.Biotechnol,1995.43:961-966.
    [129]Murr,L.E.,A.E.Torma,J.A.Brierley.Metallurgical applications of bacterial leaching and related microbiological phenomena.[M].New York:Academic Press 1978.
    [130]Tributsch,H.,J.C.Bennett.Semiconductor-electrochemical aspects of bacterial leaching.I.Oxidation of metals.[J].J.chem.Technol.Biotechnol.,1981.31:565-577.
    [131]Fowler T A,H.P.R.,Grundwell F K.Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans[J].Appl.Environ.Microbiol,1999.65(7):2987-2993.
    [132]Gehrke T,T.J.,Thierry D,et.al.Importance of extracellular polymeric substance from Thiobacillus ferrooxidans for bioleaching[J].Appl.Environ.Microbiol,1998.64(7):2743-2747.
    [133]迪安,J.A.分析化学手册[M].北京:科学出版社 2003.
    [134]翁诗甫.傅立叶变换红外光谱仪[M].北京:化学工业出版社 2005.
    [135]吴瑾光.近代傅立叶变换红外光谱技术及应用[M].北京:科学文献出版社 1994.
    [136]王宗明.实用红外光谱学[M].北京:石油化学工业出版社1978.
    [137]Parikh S.,C.J.ATR-FTIR spectroscopy reveals bond formation during bacterial adhension to iron oxide.[J].Langmuir 2006.22:8495-8500.
    [138]M.布叶罗帕乌里克.氢键在提高分选效率的药剂吸附中的作用[J].国外金属矿选矿,2001.6:36-39.
    [139]Arredondo R,G.A.,Jerez C A.Partical removal of lipopolysaecharide from thiobacillus ferrooxidans affects its adhersion to solides.[J].Applied and Environmental Microbiology, 1994.3(7):2846-2851.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700