用户名: 密码: 验证码:
睾丸酮丛毛单胞菌7α-羟基类固醇脱氢酶的表达及调控分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甾体类化合物是自然界中广泛存在的一类天然化学成分,包括植物甾醇、C21甾类、昆虫变态激素、强心苷、胆汁酸、蟾毒配基、甾体生物碱、甾体皂苷等。虽然种类繁多,但它们的结构中都具有重要的相似结构——环戊烷骈多氢菲的甾体母核。随着环境污染的日益加重,由于甾体类化合物结构与人和动物的激素结构相似,影响人和动物的正常发育,使得健康受到威胁。
     睾丸酮丛毛单胞菌(Comonas testosteroni)是一种已经被证明的能够利用甾体类化合物作为唯一碳源并降解甾体类化合物的革兰氏阴性菌。本文通过对7α-羟基类固醇脱氢酶基因的克隆进行原核表达,将纯化的蛋白质制备抗体,通过酶联免疫吸附技术测定在有激素诱导情况下7α-羟基类固醇脱氢酶表达量明显提高。通过对7α-羟基类固醇脱氢酶敲除得到突变菌株,发现敲除7α-羟基类固醇脱氢酶后的Comonas testosteroni突变菌株无论在生长速度和甾体类化合物降解速度上就有明显降低。在其表达调控方面,通过对其上游LysR基因的质粒共转化在无激素诱导情况下7α-羟基类固醇脱氢酶表达量较低,在有激素存在条件下表达量提高。初步认为LysR对于7α-羟基类固醇脱氢酶为负调控。
With the development of industrialization, more and more environmentalpollutants are discharged into the nature, including organic pollutants. Due to thesimilar structure with human and animal hormone, the increasing concentration ofsteroidal compounds affects the growth and development of human beings andanimals,which causes the dysplasia of animals and the metabolic diseases of humanbeings. The traditional technology in dealing with the pollutants has the short-comings of low efficiency, high-cost, and easily causing the second pollution by thetoxic and hazardous intermediates. Nowadays the bioremediation degradation ofsteroidal compounds is a quite hot research topic in solving the environmentalpollution.
     Comamonas testosteroni is a bacterium that can use steroidal compounds assole carbon source for growth and metabolism of Gram-negative bacteria.Comamonas testosterone bacteria metabolic pathways of degradation steroidalcompounds are complex, about dozens of kinds of enzymes involved. Among themany enzymes7α-hydroxysteroid dehydrogenase capable of specifically acting onthe steroid nucleus7carbon atoms, hydroxyl group α to oxidation. Comamonastestosterone ATCC11996sequencing work has been completed, found in itsgenome does exist another7α-hydroxy steroid dehydrogenase possible sequences.Get the PCR production of7α-hydroxysteroid dehydrogenase gene and itsneighboring LysR, and to analyze the conserved sequences, presumably its basiccharacters. After7α-hydroxysteroid dehydrogenase gene and its neighboring LysR get purified protein expression vector. And get7α-hydroxysteroid dehydrogenasepolyclonal antibodies, established ELISA methods. ELISA method proved7α-hydroxysteroid dehydrogenase expression can be changed by vary steroidhormone changes.
     The7α-hydroxysteroid dehydrogenase gene and its300bp regulatorysequences upstream made plasmids were transformed into E. coli genes with LysRprove LysR gene is indeed involved in7α-hydroxysteroid dehydrogenase gene isregulated, when the presence of hormones7α-hydroxysteroid dehydrogenaseexpression was significantly increased. To further prove7α-hydroxysteroiddehydrogenase in the degradation of steroid compounds play an important role inthis study, suicide plasmid approach would make7α-hydroxysteroid dehydrogenaseknockout, and found that the mutation greatly reduced capacity in plant growth, anddegradation of hormones. Due to microbial degradation of pollutants is by variousenzymes, so the mode of enzymes and the regulation of its own way has a veryimportant significance. This research attempts7α-hydroxysteroid dehydrogenaseresearch, in order to further understand Comamonas testosterone mechanism ofaction of bacteria lay a foundation.
引文
[1] FELSTED R L, BACHUR N R. Mammalian carbonyl reductases [J]. Drugmetabolism reviews,1980,11(1):1-60.
    [2] FORREST G L, GONZALEZ B. Carbonyl reductase [J]. Chemico-biologicalinteractions,2000,129(1-2):21-40.
    [3] ESTERBAUER H, CHEESEMAN K H, DIANZANI M U, et al. Separationand characterization of the aldehydic products of lipid peroxidation stimulatedby ADP-Fe2+in rat liver microsomes [J]. The Biochemical journal,1982,208(1):129-40.
    [4] ELLIS E M, HAYES J D. Substrate specificity of an aflatoxin-metabolizingaldehyde reductase [J]. The Biochemical journal,1995,312(Pt2)(535-41.
    [5] MASER E, OPPERMANN U C. Role of type-111beta-hydroxysteroiddehydrogenase in detoxification processes [J]. European journal ofbiochemistry/FEBS,1997,249(2):365-9.
    [6] MASER E. Xenobiotic carbonyl reduction and physiological steroidoxidoreduction. The pluripotency of several hydroxysteroid dehydrogenases [J].Biochemical pharmacology,1995,49(4):421-40.
    [7] ROSEMOND M J, WALSH J S. Human carbonyl reduction pathways and astrategy for their study in vitro [J]. Drug metabolism reviews,2004,36(2):335-61.
    [8] BAKER D, AGARD D A. Kinetics versus thermodynamics in protein folding[J]. Biochemistry,1994,33(24):7505-9.
    [9] ZABOLOTSKAYA M V, DEMIDYUK I V, AKIMKINA T V, et al. A novelneutral protease from Thermoactinomyces species27a: sequencing of the gene,purification, and characterization of the enzyme [J]. The protein journal,2004,23(7):483-92.
    [10] OPPERMANN U C, MASER E. Characterization of a3alpha-hydroxysteroiddehydrogenase/carbonyl reductase from the gram-negative bacterium Comamonastestosteroni [J]. European journal of biochemistry/FEBS,1996,241(3):744-9.
    [11] OPPERMANN U C, NAGEL G, BELAI I, et al. Carbonyl reduction of ananti-insect agent imidazole analogue of metyrapone in soil bacteria,invertebrate and vertebrate species [J]. Chemico-biological interactions,1998,114(3):211-24.
    [12] PETERS J, MINUTH T, KULA M R. A novel NADH-dependent carbonylreductase with an extremely broad substrate range from Candida parapsilosis:purification and characterization [J]. Enzyme and microbial technology,1993,15(11):950-8.
    [13] WADA M, KATAOKA M, KAWABATA H, et al. Purification andcharacterization of NADPH-dependent carbonyl reductase, involved instereoselective reduction of ethyl4-chloro-3-oxobutanoate, from Candidamagnoliae [J]. Bioscience, biotechnology, and biochemistry,1998,62(2):280-5.
    [14] ADAMS J D, LAVOIE E J, O'MARA-ADAMS K J, et al. Pharmacokinetics ofN'-nitrosonornicotine and4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone inlaboratory animals [J]. Cancer letters,1985,28(2):195-201.
    [15] AHMED N K, FELSTED R L, BACHUR N R. Comparison andcharacterization of mammalian xenobiotic ketone reductases [J]. The Journalof pharmacology and experimental therapeutics,1979,209(1):12-9.
    [16] SAWADA H, HARA A. The presence of two NADPH-linked aromaticaldehyde-ketone reductases different from aldehyde reductase in rabbit liver [J].Biochemical pharmacology,1979,28(7):1089-94.
    [17] FELSTED R L, RICHTER D R, JONES D M, et al. Isolation andcharacterization of rabbit liver xenobiotic carbonyl reductases [J]. Biochemicalpharmacology,1980,29(11):1503-16.
    [18] AHMED N K, FELSTED R L, BACHUR N R. Heterogeneity of anthracyclineantibiotic carbonyl reductases in mammalian livers [J]. Biochemicalpharmacology,1978,27(23):2713-9.
    [19] HARA A, USUI S, HAYASHIBARA M, et al. Microsomal carbonyl reductasein rat liver. Sex difference, hormonal regulation, and characterization [J].Progress in clinical and biological research,1987,232(401-14.
    [20] NAKAYAMA T, YASHIRO K, INOUE Y, et al. Characterization of pulmonarycarbonyl reductase of mouse and guinea pig [J]. Biochimica et biophysica acta,1986,882(2):220-7.
    [21] IWATA N, INAZU N, SATOH T. Immunological and enzymologicallocalization of carbonyl reductase in ovary and liver of various species [J].Journal of biochemistry,1990,107(2):209-12.
    [22] LEE S C, LEVINE L. Prostaglandin metabolism. I. Cytoplasmic reducednicotinamide adenine dinucleotide phosphate-dependent and microsomalreduced nicotinamide adenine dinucleotide-dependent prostaglandin E9-ketoreductase activities in monkey and pigeon tissues [J]. The Journal ofbiological chemistry,1974,249(5):1369-75.
    [23] LEE S C, LEVINE L. Purification and properties of chicken heartprostaglandin delta13-reductase [J]. Biochemical and biophysical researchcommunications,1974,61(1):14-21.
    [24] CAGEN L M, ZUSMAN R M, PISANO J J. Formation of1a,1bdihomoprostaglandin E2by rabbit renal intersititial cell cultures [J].Prostaglandins,1979,18(4):617-21.
    [25] TANAKA M, OHNO S, ADACHI S, et al. Pig testicular20beta-hydroxysteroid dehydrogenase exhibits carbonyl reductase-like structureand activity. cDNA cloning of pig testicular20beta-hydroxysteroiddehydrogenase [J]. The Journal of biological chemistry,1992,267(19):13451-5.
    [26] HARA A, NAKAYAMA T, DEYASHIKI Y, et al. Carbonyl reductase of dogliver: purification, properties, and kinetic mechanism [J]. Archives ofbiochemistry and biophysics,1986,244(1):238-47.
    [27] NAKANISHI M, DEYASHIKI Y, OHSHIMA K, et al. Cloning, expression andtissue distribution of mouse tetrameric carbonyl reductase. Identity with anadipocyte27-kDa protein [J]. European journal of biochemistry/FEBS,1995,228(2):381-7.
    [28] IMAMURA Y, MIGITA T, ANRAKU M, et al. Inhibition of rabbit heartcarbonyl reductase by fatty acids [J]. Biological&pharmaceutical bulletin,1999,22(7):731-3.
    [29] IMAMURA Y, MIGITA T, OTAGIRI M, et al. Purification and catalyticproperties of a tetrameric carbonyl reductase from rabbit heart [J]. Journal ofbiochemistry,1999,125(1):41-7.
    [30] HIGUCHI T, IMAMURA Y, OTAGIRI M. Kinetic studies on the reduction ofacetohexamide catalyzed by carbonyl reductase from rabbit kidney [J].Biochimica et biophysica acta,1993,1158(1):23-8.
    [31] WERMUTH B. Purification and properties of an NADPH-dependent carbonylreductase from human brain. Relationship to prostaglandin9-ketoreductase andxenobiotic ketone reductase [J]. The Journal of biological chemistry,1981,256(3):1206-13.
    [32] CROMLISH J A, YOSHIMOTO C K, FLYNN T G. Purification andcharacterization of four NADPH-dependent aldehyde reductases from pig brain[J]. Journal of neurochemistry,1985,44(5):1477-84.
    [33] IWATA N, INAZU N, SATOH T. The purification and properties ofNADPH-dependent carbonyl reductases from rat ovary [J]. Journal ofbiochemistry,1989,105(4):556-64.
    [34] IWATA N, INAZU N, TAKEO S, et al. Carbonyl reductases from rat testis andvas deferens. Purification, properties and localization [J]. European journal ofbiochemistry/FEBS,1990,193(1):75-81.
    [35] INAZU N, RUEPP B, WIRTH H, et al. Carbonyl reductase from human testis:purification and comparison with carbonyl reductase from human brain and rattestis [J]. Biochimica et biophysica acta,1992,1116(1):50-6.
    [36] WERMUTH B. Expression of human and rat carbonyl reductase in E. coli.Comparison of the recombinant enzymes [J]. Advances in experimentalmedicine and biology,1995,372(203-9.
    [37] AOKI H, OKADA T, MIZUTANI T, et al. Identification of two closely relatedgenes, inducible and noninducible carbonyl reductases in the rat ovary [J].Biochemical and biophysical research communications,1997,230(3):518-23.
    [38] GUAN G, TANAKA M, TODO T, et al. Cloning and expression of twocarbonyl reductase-like20beta-hydroxysteroid dehydrogenase cDNAs inovarian follicles of rainbow trout (Oncorhynchus mykiss)[J]. Biochemical andbiophysical research communications,1999,255(1):123-8.
    [39] OPPERMANN U C, MASER E, MANGOURA S A, et al. Heterogeneity ofcarbonyl reduction in subcellular fractions and different organs in rodents [J].Biochemical pharmacology,1991,42Suppl(S189-95.
    [40] MASER E, HOFFMANN J G, FRIEBERTSHAUSER J, et al. High carbonylreductase activity in adrenal gland and ovary emphasizes its role in carbonylcompound detoxication [J]. Toxicology,1992,74(1):45-56.
    [41] SMOLEN A, ANDERSON A D. Partial purification and characterization of areduced nicotinamide adenine dinucleotide phosphate-linked aldehydereductase from heart [J]. Biochemical pharmacology,1976,25(3):317-23.
    [42] HAYASHI H, FUJII Y, WATANABE K, et al. Enzymatic conversion ofprostaglandin H2to prostaglandin F2alpha by aldehyde reductase from humanliver [J]. Progress in clinical and biological research,1989,290(365-79.
    [43] INAZU N, SATOH T. Activation by human chorionic gonadotropin of ovariancarbonyl reductase in mature rats exposed in vivo to estrogens [J]. Biochemicalpharmacology,1994,47(9):1489-96.
    [44] PIETRUSZKO R, CHEN F F. Aldehyde reductase from rat liver is a3alpha-hydroxysteroid dehydrogenase [J]. Biochemical pharmacology,1976,25(24):2721-5.
    [45] IKEDA M, HATTORI H, OHMORI S. Properties of NADPH-dependentcarbonyl reductases in rat liver cytosol [J]. Biochemical pharmacology,1984,33(24):3957-61.
    [46] BOHREN K M, BULLOCK B, WERMUTH B, et al. The aldo-keto reductasesuperfamily. cDNAs and deduced amino acid sequences of human aldehydeand aldose reductases [J]. The Journal of biological chemistry,1989,264(16):9547-51.
    [47] WERMUTH B, BOHREN K M, HEINEMANN G, et al. Human carbonylreductase. Nucleotide sequence analysis of a cDNA and amino acid sequenceof the encoded protein [J]. The Journal of biological chemistry,1988,263(31):16185-8.
    [48] JEZ J M, BENNETT M J, SCHLEGEL B P, et al. Comparative anatomy of thealdo-keto reductase superfamily [J]. The Biochemical journal,1997,326(Pt3)(625-36.
    [49] JORNVALL H, PERSSON B, KROOK M, et al. Short-chain dehydrogenases/reductases (SDR)[J]. Biochemistry,1995,34(18):6003-13.
    [50] RATNAM K, MA H, PENNING T M. The arginine276anchor for NADP(H)dictates fluorescence kinetic transients in3alpha-hydroxysteroiddehydrogenase, a representative aldo-keto reductase [J]. Biochemistry,1999,38(24):7856-64.
    [51] JEZ J M, FLYNN T G, PENNING T M. A new nomenclature for the aldo-ketoreductase superfamily [J]. Biochemical pharmacology,1997,54(6):639-47.
    [52] PERSSON B, KROOK M, JORNVALL H. Characteristics of short-chainalcohol dehydrogenases and related enzymes [J]. European journal ofbiochemistry/FEBS,1991,200(2):537-43.
    [53] FLYNN T G, GREEN N C. The aldo-keto reductases: an overview [J].Advances in experimental medicine and biology,1993,328(251-7.
    [54] GHOSH D, WAWRZAK Z, WEEKS C M, et al. The refined three-dimensionalstructure of3alpha,20beta-hydroxysteroid dehydrogenase and possible rolesof the residues conserved in short-chain dehydrogenases [J]. Structure,1994,2(7):629-40.
    [55] GHOSH D, PLETNEV V Z, ZHU D W, et al. Structure of human estrogenic17beta-hydroxysteroid dehydrogenase at2.20A resolution [J]. Structure,1995,3(5):503-13.
    [56] TANAKA N, NONAKA T, NAKANISHI M, et al. Crystal structure of theternary complex of mouse lung carbonyl reductase at1.8A resolution: thestructural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family [J]. Structure,1996,4(1):33-45.
    [57] TANAKA N, NONAKA T, TANABE T, et al. Crystal structures of the binaryand ternary complexes of7alpha-hydroxysteroid dehydrogenase fromEscherichia coli [J]. Biochemistry,1996,35(24):7715-30.
    [58] BENACH J, ATRIAN S, GONZALEZ-DUARTE R, et al. The refined crystalstructure of Drosophila lebanonensis alcohol dehydrogenase at1.9A resolution[J]. Journal of molecular biology,1998,282(2):383-99.
    [59] DUAX W L, GHOSH D, PLETNEV V. Steroid dehydrogenase structures,mechanism of action, and disease [J]. Vitamins and hormones,2000,58(121-48.
    [60] PERSSON B, KALLBERG Y, OPPERMANN U, et al. Coenzyme-basedfunctional assignments of short-chain dehydrogenases/reductases (SDRs)[J].Chemico-biological interactions,2003,143-144(271-8.
    [61] KALLBERG Y, OPPERMANN U, JORNVALL H, et al. Short-chaindehydrogenase/reductase (SDR) relationships: a large family with eightclusters common to human, animal, and plant genomes [J]. Protein science: apublication of the Protein Society,2002,11(3):636-41.
    [62] KROOK M, GHOSH D, DUAX W, et al. Three-dimensional model ofNAD(+)-dependent15-hydroxyprostaglandin dehydrogenase and relationshipsto the NADP(+)-dependent enzyme (carbonyl reductase)[J]. FEBS letters,1993,322(2):139-42.
    [63] GHOSH D, SAWICKI M, PLETNEV V, et al. Porcine carbonyl reductase.structural basis for a functional monomer in short chain dehydrogenases/reductases [J]. The Journal of biological chemistry,2001,276(21):18457-63.
    [64] KROZOWSKI Z.11beta-hydroxysteroid dehydrogenase and the short-chainalcohol dehydrogenase (SCAD) superfamily [J]. Molecular and cellularendocrinology,1992,84(1-2): C25-31.
    [65] PENNING T M. Molecular endocrinology of hydroxysteroid dehydrogenases[J]. Endocrine reviews,1997,18(3):281-305.
    [66] MONDER C, WHITE P C.11beta-hydroxysteroid dehydrogenase [J].Vitamins and hormones,1993,47(187-271.
    [67] PENNING T M, PAWLOWSKI J E, SCHLEGEL B P, et al. Mammalian3alpha-hydroxysteroid dehydrogenases [J]. Steroids,1996,61(9):508-23.
    [68] LABRIE F, LUU-THE V, LIN S X, et al. The key role of17beta-hydroxysteroid dehydrogenases in sex steroid biology [J]. Steroids,1997,62(1):148-58.
    [69] MATSUNAGA T, SHINTANI S, HARA A. Multiplicity of mammalianreductases for xenobiotic carbonyl compounds [J]. Drug metabolism andpharmacokinetics,2006,21(1):1-18.
    [70] WERMUTH B. Human carbonyl reductases [J]. Progress in clinical andbiological research,1982,114(261-74.
    [71] WERMUTH B, BURGISSER H, BOHREN K, et al. Purification andcharacterization of human-brain aldose reductase [J]. European journal ofbiochemistry/FEBS,1982,127(2):279-84.
    [72] WERMUTH B. Aldo-keto reductases [J]. Progress in clinical and biologicalresearch,1985,174(209-30.
    [73] WERMUTH B, PLATTS K L, SEIDEL A, et al. Carbonyl reductase providesthe enzymatic basis of quinone detoxication in man [J]. Biochemicalpharmacology,1986,35(8):1277-82.
    [74] ATALLA A, MASER E. Carbonyl reduction of the tobacco-specificnitrosamine4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in cytosolof mouse liver and lung [J]. Toxicology,1999,139(1-2):155-66.
    [75] SCHIEBER A, FRANK R W, GHISLA S. Purification and properties ofprostaglandin9-ketoreductase from pig and human kidney. Identity withhuman carbonyl reductase [J]. European journal of biochemistry/FEBS,1992,206(2):491-502.
    [76] OHARA H, MIYABE Y, DEYASHIKI Y, et al. Reduction of drug ketones bydihydrodiol dehydrogenases, carbonyl reductase and aldehyde reductase ofhuman liver [J]. Biochemical pharmacology,1995,50(2):221-7.
    [77] PENNING T M, MUKHARJI I, BARROWS S, et al. Purification andproperties of a3alpha-hydroxysteroid dehydrogenase of rat liver cytosol andits inhibition by anti-inflammatory drugs [J]. The Biochemical journal,1984,222(3):601-11.
    [78] SAWADA H, HARA A, NAKAYAMA T, et al. Reductases for aromaticaldehydes and ketones from rabbit liver. Purification and characterization [J].Journal of biochemistry,1980,87(4):1153-65.
    [79] FISCHER S M, KLEIN-SZANTO A J, ADAMS L M, et al. The first stage andcomplete promoting activity of retinoic acid but not the analog RO-10-9359[J].Carcinogenesis,1985,6(4):575-8.
    [80] HARA A, HASEBE K, HAYASHIBARA M, et al. Dihydrodioldehydrogenases in guinea pig liver [J]. Biochemical pharmacology,1986,35(22):4005-12.
    [81] SAWADA H, HARA A, NAKAYAMA T, et al. Mouse liver dihydrodioldehydrogenases. Identity of the predominant and a minor form with17beta-hydroxysteroid dehydrogenase and aldehyde reductase [J]. Biochemicalpharmacology,1988,37(3):453-8.
    [82] HYNDMAN D, BAUMAN D R, HEREDIA V V, et al. The aldo-ketoreductase superfamily homepage [J]. Chemico-biological interactions,2003,143-144(621-31.
    [83] PENNING T M. AKR1B10: a new diagnostic marker of non-small cell lungcarcinoma in smokers [J]. Clin Cancer Res,2005,11(5):1687-90.
    [84] SAWADA H, HARA A, KATO F, et al. Purification and properties ofreductases for aromatic aldehydes and ketones from guinea pig liver [J].Journal of biochemistry,1979,86(4):871-81.
    [85] PERSSON B, KROOK M, JORNVALL H. Short-chain dehydrogenases/reductases[J]. Advances in experimental medicine and biology,1995,372(383-95.
    [86] JORNVALL H, PERSSON M, JEFFERY J. Alcohol and polyoldehydrogenases are both divided into two protein types, and structuralproperties cross-relate the different enzyme activities within each type [J].Proceedings of the National Academy of Sciences of the United States ofAmerica,1981,78(7):4226-30.
    [87] JORNVALL H, HOOG J O, PERSSON B. SDR and MDR: completed genomesequences show these protein families to be large, of old origin, and ofcomplex nature [J]. FEBS letters,1999,445(2-3):261-4.
    [88] KARPLUS K, BARRETT C, HUGHEY R. Hidden Markov models fordetecting remote protein homologies [J]. Bioinformatics,1998,14(10):846-56.
    [89] KARPLUS K, KARCHIN R, SHACKELFORD G, et al. Calibrating E-valuesfor hidden Markov models using reverse-sequence null models [J].Bioinformatics,2005,21(22):4107-15.
    [90] APWEILER R, ATTWOOD T K, BAIROCH A, et al. InterPro--an integrateddocumentation resource for protein families, domains and functional sites [J].Bioinformatics,2000,16(12):1145-50.
    [91] BAIROCH A, APWEILER R. The SWISS-PROT protein sequence databaseand its supplement TrEMBL in2000[J]. Nucleic acids research,2000,28(1):45-8.
    [92] KALLBERG Y, PERSSON B. KIND-a non-redundant protein database [J].Bioinformatics,1999,15(3):260-1.
    [93] BACHUR N R. Cytoplasmic aldo-keto reductases: a class of drugmetabolizing enzymes [J]. Science (New York, NY,1976,193(4253):595-7.
    [94] AHMED N K, FELSTED R L, BACHUR N R. Daunorubicin reductionmediated by aldehyde and ketone reductases [J]. Xenobiotica; the fate offoreign compounds in biological systems,1981,11(2):131-6.
    [95] FELSTED R L, BACHUR N R. Human liver daunorubicin reductases [J].Progress in clinical and biological research,1982,114(291-305.
    [96] ROSSMAN M G, LILJAS A, BR ND N C-I, et al.2Evolutionary andStructural Relationships among Dehydrogenases [J]. The enzymes,1975,11(61-102.
    [97] GRIMM C, MASER E, MOBUS E, et al. The crystal structure of3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonastestosteroni shows a novel oligomerization pattern within the short chaindehydrogenase/reductase family [J]. The Journal of biological chemistry,2000,275(52):41333-9.
    [98] AUERBACH G, HERRMANN A, GUTLICH M, et al. The1.25A crystalstructure of sepiapterin reductase reveals its binding mode to pterins and brainneurotransmitters [J]. The EMBO journal,1997,16(24):7219-30.
    [99] BENACH J, ATRIAN S, GONZALEZ-DUARTE R, et al. The catalyticreaction and inhibition mechanism of Drosophila alcohol dehydrogenase:observation of an enzyme-bound NAD-ketone adduct at1.4A resolution byX-ray crystallography [J]. Journal of molecular biology,1999,289(2):335-55.
    [100] SGRAJA T, ULSCHMID J, BECKER K, et al. Structural insights into theneuroprotective-acting carbonyl reductase Sniffer of Drosophila melanogaster[J]. Journal of molecular biology,2004,342(5):1613-24.
    [101] PAL L, BASU G. Novel protein structural motifs containing two-turn andlonger3(10)-helices [J]. Protein engineering,1999,12(10):811-4.
    [102] VARUGHESE K I, SKINNER M M, WHITELEY J M, et al. Crystal structureof rat liver dihydropteridine reductase [J]. Proceedings of the NationalAcademy of Sciences of the United States of America,1992,89(13):6080-4.
    [103] PURANEN T, POUTANEN M, GHOSH D, et al. Characterization of structuraland functional properties of human17beta-hydroxysteroid dehydrogenase type1using recombinant enzymes and site-directed mutagenesis [J]. MolEndocrinol,1997,11(1):77-86.
    [104] TSIGELNY I, BAKER M E. Structures stabilizing the dimer interface onhuman11beta-hydroxysteroid dehydrogenase types1and2and human15-hydroxyprostaglandin dehydrogenase and their homologs [J]. Biochemicaland biophysical research communications,1995,217(3):859-68.
    [105] HOFFMANN F, SOTRIFFER C, EVERS A, et al. Understandingoligomerization in3alpha-hydroxysteroid dehydrogenase/carbonyl reductasefrom Comamonas testosteroni: an in silico approach and evidence for an activeprotein [J]. Journal of biotechnology,2007,129(1):131-9.
    [106] ORITANI H, DEYASHIKI Y, NAKAYAMA T, et al. Purification andcharacterization of pig lung carbonyl reductase [J]. Archives of biochemistryand biophysics,1992,292(2):539-47.
    [107] GHOSH D, ERMAN M, PANGBORN W, et al. Inhibition of Streptomyceshydrogenans3alpha,20beta-hydroxysteroid dehydrogenase by licorice-derived compounds and crystallization of an enzyme-cofactor-inhibitorcomplex [J]. The Journal of steroid biochemistry and molecular biology,1992,42(8):849-53.
    [108] GHOSH D, ERMAN M, WAWRZAK Z, et al. Mechanism of inhibition of3alpha,20beta-hydroxysteroid dehydrogenase by a licorice-derived steroidalinhibitor [J]. Structure,1994,2(10):973-80.
    [109] USAMI N, ISHIKURA S, ABE H, et al. Cloning, expression and tissuedistribution of a tetrameric form of pig carbonyl reductase [J]. Chemico-biological interactions,2003,143-144(353-61.
    [110] WIRTH H, WERMUTH B. Immunohistochemical localization of carbonylreductase in human tissues [J]. The journal of histochemistry andcytochemistry: official journal of the Histochemistry Society,1992,40(12):1857-63.
    [111] WIRTH H P, WERMUTH B. Immunochemical characterization of aldo-ketoreductases from human tissues [J]. FEBS letters,1985,187(2):280-2.
    [112] RIS M M, WARTBURG J P. Heterogeneity of NADPH‐Dependent AldehydeReductase from Human and Rat Brain [J]. European Journal of Biochemistry,1973,37(1):69-77.
    [113] SCHIEBER A, GHISLA S. Prostaglandin9-ketoreductase from pig and humankidney: purification, properties and identity with human carbonyl reductase [J].Eicosanoids,1992,5Suppl(S37-8.
    [114] DOORN J A, MASER E, BLUM A, et al. Human carbonyl reductase catalyzesreduction of4-oxonon-2-enal [J]. Biochemistry,2004,43(41):13106-14.
    [115] GHOSH D, ERMAN M, PANGBORN W, et al. Crystallization and preliminaryX-ray diffraction studies of a mammalian steroid dehydrogenase [J]. TheJournal of steroid biochemistry and molecular biology,1993,46(1):103-4.
    [116] ATALLA A, BREYER-PFAFF U, MASER E. Purification and characterizationof oxidoreductases-catalyzing carbonyl reduction of the tobacco-specificnitrosamine4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) in humanliver cytosol [J]. Xenobiotica; the fate of foreign compounds in biologicalsystems,2000,30(8):755-69.
    [117] BOHREN K M, VON WARTBURG J P, WERMUTH B. Kinetics of carbonylreductase from human brain [J]. The Biochemical journal,1987,244(1):165-71.
    [118] WERMUTH B, BOHREN K M, ERNST E. Autocatalytic modification ofhuman carbonyl reductase by2-oxocarboxylic acids [J]. FEBS letters,1993,335(2):151-4.
    [119] FORREST G L, AKMAN S, KRUTZIK S, et al. Induction of a humancarbonyl reductase gene located on chromosome21[J]. Biochimica etbiophysica acta,1990,1048(2-3):149-55.
    [120] KROOK M, GHOSH D, STROMBERG R, et al. Carboxyethyllysine in aprotein: native carbonyl reductase/NADP(+)-dependent prostaglandindehydrogenase [J]. Proceedings of the National Academy of Sciences of theUnited States of America,1993,90(2):502-6.
    [121] SCIOTTI M A, NAKAJIN S, WERMUTH B, et al. Mutation of threonine-241to proline eliminates autocatalytic modification of human carbonyl reductase[J]. The Biochemical journal,2000,350Pt1(89-92.
    [122] TANAKA M, BATEMAN R, RAUH D, et al. An unbiased cellmorphology-based screen for new, biologically active small molecules [J].PLoS biology,2005,3(5): e128.
    [123] BOHREN K M, WERMUTH B, HARRISON D, et al. Expression,crystallization and preliminary crystallographic analysis of human carbonylreductase [J]. Journal of molecular biology,1994,244(5):659-64.
    [124] ENSOR C M, TAI H H. Site-directed mutagenesis of the conserved tyrosine151of human placental NAD(+)-dependent15-hydroxyprostaglandindehydrogenase yields a catalytically inactive enzyme [J]. Biochemical andbiophysical research communications,1991,176(2):840-5.
    [125] BACKLUND M G, MANN J R, HOLLA V R, et al.15-Hydroxyprostaglandindehydrogenase is down-regulated in colorectal cancer [J]. The Journal ofbiological chemistry,2005,280(5):3217-23.
    [126] WATANABE K, SUGAWARA C, ONO A, et al. Mapping of a novel humancarbonyl reductase, CBR3, and ribosomal pseudogenes to human chromosome21q22.2[J]. Genomics,1998,52(1):95-100.
    [127] LAKHMAN S S, GHOSH D, BLANCO J G. Functional significance of anatural allelic variant of human carbonyl reductase3(CBR3)[J]. Drugmetabolism and disposition: the biological fate of chemicals,2005,33(2):254-7.
    [128] STRAUSBERG R L, FEINGOLD E A, GROUSE L H, et al. Generation andinitial analysis of more than15,000full-length human and mouse cDNAsequences [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,2002,99(26):16899-903.
    [129] OTA T, SUZUKI Y, NISHIKAWA T, et al. Complete sequencing andcharacterization of21,243full-length human cDNAs [J]. Nature genetics,2004,36(1):40-5.
    [130] TERADA T, SUGIHARA Y, NAKAMURA K, et al. Characterization ofmultiple Chinese hamster carbonyl reductases [J]. Chemico-biologicalinteractions,2001,130-132(1-3):847-61.
    [131] TERADA T, SUGIHARA Y, NAKAMURA K, et al. Further characterization ofChinese hamster carbonyl reductases (CHCRs)[J]. Chemico-biologicalinteractions,2003,143-144(373-81.
    [132] INAZU N, INABA N, SATOH T, et al. Human chorionic gonadotropin causesan estrogen-mediated induction of rat ovarian carbonyl reductase [J]. Lifesciences,1992,51(11):817-22.
    [133] TANAKA N, NONAKA T, NAKANISHI M, et al. Crystallization of mouselung carbonyl reductase complexed with NADPH and analysis of symmetry ofits tetrameric molecule [J]. Journal of biochemistry,1995,118(5):871-3.
    [134] NAKAJIN S, TAMURA F, TAKASE N, et al. Carbonyl reductase activityexhibited by pig testicular20beta-hydroxysteroid dehydrogenase [J].Biological&pharmaceutical bulletin,1997,20(11):1215-8.
    [135] OHNO S, NAKAJIN S, SHINODA M.20beta-hydroxysteroid dehydrogenaseof neonatal pig testis:3alpha/beta-hydroxysteroid dehydrogenase activitiescatalyzed by highly purified enzyme [J]. The Journal of steroid biochemistryand molecular biology,1991,38(6):787-94.
    [136] MASER E, VOLKER B, FRIEBERTSHAUSER J.11Beta-hydroxysteroiddehydrogenase type1from human liver: dimerization and enzymecooperativity support its postulated role as glucocorticoid reductase [J].Biochemistry,2002,41(7):2459-65.
    [137] MASER E, FRIEBERTSHAUSER J, VOLKER B. Purification, characterizationand NNK carbonyl reductase activities of11beta-hydroxysteroid dehydrogenasetype1from human liver: enzyme cooperativity and significance in thedetoxification of a tobacco-derived carcinogen [J]. Chemico-biologicalinteractions,2003,143-144(435-48.
    [138] TAJIMA K, HASHIZAKI M, YAMAMOTO K, et al. Purification and someproperties of two enzymes from rat liver cytosol that catalyze carbonylreduction of6-tert-butyl-2,3-epoxy-5-cyclohexene-1,4-dione, a metabolite of3-tert-butyl-4-hydroxyanisole [J]. Archives of biochemistry and biophysics,1999,361(2):207-14.
    [139] GONZALEZ B, SAPRA A, RIVERA H, et al. Cloning and expression of thecDNA encoding rabbit liver carbonyl reductase [J]. Gene,1995,154(2):297-8.
    [140] MATSUURA K, BUNAI Y, OHYA I, et al. Ultrastructural localization ofcarbonyl reductase in mouse lung [J]. The Histochemical journal,1994,26(4):311-6.
    [141] HARTL F U, PFANNER N, NICHOLSON D W, et al. Mitochondrial proteinimport [J]. Biochimica et biophysica acta,1989,988(1):1-45.
    [142] PFANNER N, HARTL F U, NEUPERT W. Import of proteins intomitochondria: a multi-step process [J]. European journal of biochemistry/FEBS,1988,175(2):205-12.
    [143] PFANNER N, OSTERMANN J, RASSOW J, et al. Stress proteins andmitochondrial protein import [J]. Antonie van Leeuwenhoek,1990,58(3):191-3.
    [144] PFANNER N, RASSOW J, GUIARD B, et al. Energy requirements forunfolding and membrane translocation of precursor proteins during import intomitochondria [J]. The Journal of biological chemistry,1990,265(27):16324-9.
    [145] TROPSCHUG M, NICHOLSON D W, HARTL F U, et al. CyclosporinA-binding protein (cyclophilin) of Neurospora crassa. One gene codes for boththe cytosolic and mitochondrial forms [J]. The Journal of biological chemistry,1988,263(28):14433-40.
    [146] NEUPERT W, HARTL F U, CRAIG E A, et al. How do polypeptides cross themitochondrial membranes?[J]. Cell,1990,63(3):447-50.
    [147] NAKAYAMA T, HARA A, SAWADA H. Purification and characterization of anovel pyrazole-sensitive carbonyl reductase in guinea pig lung [J]. Archives ofbiochemistry and biophysics,1982,217(2):564-73.
    [148] MATSUURA K, NAKAYAMA T, NAKAGAWA M, et al. Kinetic mechanismof pulmonary carbonyl reductase [J]. The Biochemical journal,1988,252(1):17-22.
    [149]MATSUURA K, NAGANEO F, HARA A, et al. Pulmonary carbonyl reductase:metabolism of carbonyl products in lipid peroxidation [J]. Progress in clinicaland biological research,1989,290(335-49.
    [150] HARA A, YAMAMOTO H, DEYASHIKI Y, et al. Aldehyde dismutationcatalyzed by pulmonary carbonyl reductase: kinetic studies of chloral hydratemetabolism to trichloroacetic acid and trichloroethanol [J]. Biochimica etbiophysica acta,1991,1075(1):61-7.
    [151] HARA A, ORITANI H, DEYASHIKI Y, et al. Activation of carbonyl reductasefrom pig lung by fatty acids [J]. Archives of biochemistry and biophysics,1992,292(2):548-54.
    [152] MATSUURA K, HARA A, SAWADA H, et al. Localization of pulmonarycarbonyl reductase in guinea pig and mouse: enzyme histochemical andimmunohistochemical studies [J]. The journal of histochemistry andcytochemistry: official journal of the Histochemistry Society,1990,38(2):217-23.
    [153] MONDER C, SHACKLETON C H.11beta-Hydroxysteroid dehydrogenase:fact or fancy?[J]. Steroids,1984,44(5):383-417.
    [154] SECKL J R.11beta-Hydroxysteroid dehydrogenase in the brain: a novelregulator of glucocorticoid action?[J]. Frontiers in neuroendocrinology,1997,18(1):49-99.
    [155] STEWART P M, KROZOWSKI Z S, GUPTA A, et al. Hypertension in thesyndrome of apparent mineralocorticoid excess due to mutation of the11beta-hydroxysteroid dehydrogenase type2gene [J]. Lancet,1996,347(8994):88-91.
    [156] LI K X, OBEYESEKERE V R, KROZOWSKI Z S, et al. Oxoreductase anddehydrogenase activities of the human and rat11beta-hydroxysteroiddehydrogenase type2enzyme [J]. Endocrinology,1997,138(7):2948-52.
    [157] QUINKLER M, KOSMALE B, BAHR V, et al. Evidence for isoforms of11beta-hydroxysteroid dehydrogenase in the liver and kidney of the guinea pig [J].The Journal of endocrinology,1997,153(2):291-8.
    [158] MASER E, BANNENBERG G.11beta-hydroxysteroid dehydrogenasemediates reductive metabolism of xenobiotic carbonyl compounds [J].Biochemical pharmacology,1994,47(10):1805-12.
    [159] MASER E, BANNENBERG G. The purification of11beta-hydroxysteroiddehydrogenase from mouse liver microsomes [J]. The Journal of steroidbiochemistry and molecular biology,1994,48(2-3):257-63.
    [160] KOTELEVTSEV Y, HOLMES M C, BURCHELL A, et al.11beta-hydroxysteroid dehydrogenase type1knockout mice show attenuatedglucocorticoid-inducible responses and resist hyperglycemia on obesity orstress [J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,1997,94(26):14924-9.
    [161] MASUZAKI H, PATERSON J, SHINYAMA H, et al. A transgenic model ofvisceral obesity and the metabolic syndrome [J]. Science (New York, NY,2001,294(5549):2166-70.
    [162] ALBERTS P, ENGBLOM L, EDLING N, et al. Selective inhibition of11beta-hydroxysteroid dehydrogenase type1decreases blood glucoseconcentrations in hyperglycaemic mice [J]. Diabetologia,2002,45(11):1528-32.
    [163] TSIGELNY I, BAKER M E. Structures important in mammalian11beta-and17beta-hydroxysteroid dehydrogenases [J]. The Journal of steroidbiochemistry and molecular biology,1995,55(5-6):589-600.
    [164] AGARWAL A K, TUSIE-LUNA M T, MONDER C, et al. Expression of11beta-hydroxysteroid dehydrogenase using recombinant vaccinia virus [J]. MolEndocrinol,1990,4(12):1827-32.
    [165] MOORE C C, MELLON S H, MURAI J, et al. Structure and function of thehepatic form of11beta-hydroxysteroid dehydrogenase in the squirrel monkey,an animal model of glucocorticoid resistance [J]. Endocrinology,1993,133(1):368-75.
    [166] ADAMS M D, CELNIKER S E, HOLT R A, et al. The genome sequence ofDrosophila melanogaster [J]. Science (New York, NY,2000,287(5461):2185-95.
    [167] MASER E, OPPERMANN U C. Molecular cloning and sequencing of mousehepatic11beta-hydroxysteroid dehydrogenase/carbonyl reductase. A memberof the short chain dehydrogenase superfamily [J]. Advances in experimentalmedicine and biology,1995,372(211-21.
    [168] REKKA E A, SOLDAN M, BELAI I, et al. Biotransformation anddetoxification of insecticidal metyrapone analogues by carbonyl reduction inthe human liver [J]. Xenobiotica; the fate of foreign compounds in biologicalsystems,1996,26(12):1221-9.
    [169] WSOL V, SZOTAKOVA B, SKALOVA L, et al. The novel anticancer drugoracin: different stereospecificity and cooperativity for carbonyl reduction bypurified human liver11beta-hydroxysteroid dehydrogenase type1[J].Toxicology,2004,197(3):253-61.
    [170] MASER E. Significance of reductases in the detoxification of thetobacco-specific carcinogen NNK [J]. Trends in pharmacological sciences,2004,25(5):235-7.
    [171] PARK Y S, HEIZMANN C W, WERMUTH B, et al. Human carbonyl andaldose reductases: new catalytic functions in tetrahydrobiopterin biosynthesis[J]. Biochemical and biophysical research communications,1991,175(3):738-44.
    [172] MASER E. Stress, hormonal changes, alcohol, food constituents and drugs:factors that advance the incidence of tobacco smoke-related cancer?[J]. Trendsin pharmacological sciences,1997,18(8):270-5.
    [173] INAZU N, FUJII T. Pre-and post-ovulatory changes in carbonyl reductase inovarian follicles and corpora lutea in rats [J]. Research communications inmolecular pathology and pharmacology,1997,98(3):325-34.
    [174] ESPEY L L, YOSHIOKA S, RUSSELL D, et al. Characterization of ovariancarbonyl reductase gene expression during ovulation in the gonadotropin-primedimmature Rat [J]. Biology of reproduction,2000,62(2):390-7.
    [175] FUJII J, IUCHI Y, OKADA F. Fundamental roles of reactive oxygen speciesand protective mechanisms in the female reproductive system [J].Reproductive biology and endocrinology: RB&E,2005,3(43.
    [176] IINO T, TABATA M, TAKIKAWA S, et al. Tetrahydrobiopterin is synthesizedfrom6-pyruvoyl-tetrahydropterin by the human aldo-keto reductase AKR1family members [J]. Archives of biochemistry and biophysics,2003,416(2):180-7.
    [177] IINO T, TAKIKAWA S I, YAMAMOTO T, et al. The enzyme that synthesizestetrahydrobiopterin from6-pyruvoyl-tetrahydropterin in the lemon mutantsilkworm consists of two carbonyl reductases [J]. Archives of biochemistry andbiophysics,2000,373(2):442-6.
    [178] SAYRE L M, SMITH M A, PERRY G. Chemistry and biochemistry ofoxidative stress in neurodegenerative disease [J]. Current medicinal chemistry,2001,8(7):721-38.
    [179] DAWSON T M, DAWSON V L. Molecular pathways of neurodegeneration inParkinson's disease [J]. Science (New York, NY,2003,302(5646):819-22.
    [180] BOTELLA J A, ULSCHMID J K, GRUENEWALD C, et al. The Drosophilacarbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration[J]. Current biology: CB,2004,14(9):782-6.
    [181] GONG W, XIONG G, MASER E. Oligomerization and negative autoregulationof the LysR-type transcriptional regulator HsdR from Comamonas testosteroni[J]. The Journal of steroid biochemistry and molecular biology,2012,132(3-5):203-11.
    [182] MOBUS E, JAHN M, SCHMID R, et al. Testosterone-regulated expression ofenzymes involved in steroid and aromatic hydrocarbon catabolism inComamonas testosteroni [J]. Journal of bacteriology,1997,179(18):5951-5.
    [183] MOBUS E, MASER E. Molecular cloning, overexpression, and characterization ofsteroid-inducible3alpha-hydroxysteroid dehydrogenase/carbonyl reductase fromComamonas testosteroni. A novel member of the short-chain dehydrogenase/reductase superfamily [J]. The Journal of biological chemistry,1998,273(47):30888-96.
    [184] OPPERMANN C T, NETTER K J, MASER E. Carbonyl reduction by3alpha-HSD from Comamonas testosteroni--new properties and its relationshipto the SCAD family [J]. Advances in experimental medicine and biology,1993,328(379-90.
    [185] XIONG G, MASER E. Regulation of the steroid-inducible3alpha-hydroxysteroid dehydrogenase/carbonyl reductase gene in Comamonastestosteroni [J]. The Journal of biological chemistry,2001,276(13):9961-70.
    [186] GONG W, KISIELA M, SCHILHABEL M B, et al. Genome sequence ofComamonas testosteroni ATCC11996, a representative strain involved insteroid degradation [J]. Journal of bacteriology,2012,194(6):1633-4.
    [187] ALTSCHUL S F, GISH W, MILLER W, et al. Basic local alignment search tool[J]. Journal of molecular biology,1990,215(3):403-10.
    [188] LAEMMLI U K. Cleavage of structural proteins during the assembly of thehead of bacteriophage T4[J]. Nature,1970,227(5259):680-5.
    [189] BRADFORD M M. A rapid and sensitive method for the quantitation ofmicrogram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical biochemistry,1976,72(248-54.
    [190] XIONG G, LUTZ F. Site-directed mutagenesis of the Pseudomonas aeruginosacytotoxin for probing toxic activity [J]. European journal of biochemistry/FEBS,1992,204(2):789-92.
    [191] GONG W, XIONG G, MASER E. Oligomerization and negative autoregulationof the LysR-type transcriptional regulator HsdR from Comamonas testosteroni[J]. The Journal of steroid biochemistry and molecular biology,2012,132(3-5):203-11.
    [192] GONG W, XIONG G, MASER E. Cloning, expression and characterization of anovel short-chain dehydrogenase/reductase (SDRx) in Comamonas testosteroni [J].The Journal of steroid biochemistry and molecular biology,2012,129(1-2):15-21.
    [193] JORNVALL H, PERSSON B, KROOK M, et al. Short-chaindehydrogenases/reductases (SDR)[J]. Biochemistry,1995,34(18):6003-13.
    [194] TANAKA N, NONAKA T, TANABE T, et al. Crystal structures of the binaryand ternary complexes of7alpha-hydroxysteroid dehydrogenase fromEscherichia coli [J]. Biochemistry,1996,35(24):7715-30.
    [195] AKAO T, HATTORI M, NAMBA T, et al. Enzymes involved in the formationof3beta,7beta-dihydroxy-12-oxo-5beta-cholanic acid from dehydrocholicacid by Ruminococcus sp. obtained from human intestine [J]. Biochimica etbiophysica acta,1987,921(2):275-80.
    [196] COLEMAN J P, WHITE W B, LIJEWSKI M, et al. Nucleotide sequence andregulation of a gene involved in bile acid7-dehydroxylation by Eubacterium sp.strain VPI12708[J]. Journal of bacteriology,1988,170(5):2070-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700