用户名: 密码: 验证码:
原薯蓣皂苷糖苷酶-1型的特性及其基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薯蓣属植物中的主要活性成分是甾体皂苷,但天然的甾体皂苷常常以低活性的多糖基形式存在,不易被人体吸收。为制备高活性的、易吸收的低糖基甾体皂苷,本文采用微生物酶法转化穿龙薯蓣中的甾体皂苷,并研究了其特异性的甾体皂苷糖苷酶的分离纯化、酶性质以及基因的克隆和表达。
     本研究首先采用乙醇浸提法对穿龙薯蓣植物中总皂苷进行提取,并对提取物进行脱脂、脱糖处理。从4kg穿龙薯蓣植物干燥根中共提取得到了250g的总皂苷,得率为6.3%。通过硅胶柱层析法和制备色谱法,从总皂苷中分离纯化得到了两种主要甾体皂苷,结构经鉴定分别为:26-0-p-D-吡喃葡萄糖基25(R)-22-羟基-呋甾-/△5(6)-烯-3β,26-二羟基-3-O-α-L-吡喃鼠李糖基(1→2)-[α-L-吡喃鼠李糖基(1→4)]-β-D-吡喃葡萄糖苷(原薯蓣皂苷),薯蓣皂苷元-3-O-α-L-吡喃鼠李糖基(1→2)-[α-L-吡喃鼠李糖基(1→4)]-β-D-吡喃葡萄糖苷(薯蓣皂苷)。
     研究了甾体皂苷酶的生产菌,筛选获得了转化穿龙薯蓣总皂苷效果较好的米曲霉(DLFCC-38),其粗酶液几乎完全转化穿龙薯蓣总皂苷,主要生成薯蓣次皂苷A、纤细皂苷,以及一定量的薯蓣皂苷元。以薯蓣次皂苷A的产量为目标,对微生物发酵产酶的条件进行了优化,最佳条件为:最佳诱导物为穿龙薯蓣提取物,最佳诱导物浓度为2%(v/v),在30℃条件下发酵72h。其次,对酶转化的反应条件进行了优化,最佳酶反应条件为:反应温度为50℃,反应体系pH5.0,反应时间9h,反应体系中底物最终浓度20mg/ml。在此基础之上,米曲霉(DLFCC-38)大量发酵制备粗酶液,批量定向酶解制备低糖基甾体皂苷。总皂苷160g经酶转化后共制备得到产物粗品117g,产物经硅胶柱层析法分离纯化,得到3种单体皂苷成分,分别为:60.3g的薯蓣次皂苷A,得率为51.5%;纤细皂苷11.54g,得率为9.86%;3.01g的薯蓣皂苷元,得率为2.57%。
     采用分子筛层析法和离子交换层析法,对米曲霉(DLFCC-38)诱导产粗酶液进行分离纯化。经三次柱法层析,分离得到了原薯蓣皂苷糖苷酶的纯酶。经SDS-PAGE法测定,该酶的分子量约为55kDa。酶反应的最适温度和pH分别为50℃和5.0,酶活力在60℃以下,pH为3.0-8.0范围内相对稳定。K+、Na+、Mg2+、Ca2+四种金属离子对酶活力几乎没有影响;Zn2+对酶活力具有一定的抑制作用;而低浓度的Cu2+和Fe3+对酶活力都有明显的抑制作用。
     纯化得到的原薯蓣甾体皂苷糖苷酶,能水解原薯蓣皂苷上的26-O-β-D-葡萄糖基生成薯蓣皂苷,然后进一步水解薯蓣皂苷的3-O-α-L-(1→4)-鼠李糖基生成薯蓣次皂苷A。该酶水解原薯蓣皂苷葡萄糖基的Km=4.59mM,Vmax=3.86mM/h,水解薯蓣皂苷鼠李糖基的Km=42.6mM,Vmax=0.15mM/h。此外,该酶还能水解对硝基苯基-α-D-半乳糖苷(pNP-α-D-Ga1)、对硝基苯基-β-D-葡萄糖苷(pNP-β-D-Glc)和对硝基苯基-β-D-半乳糖苷(pNP-β-D-Gal)。该酶呈现出新的水解特性,不同于国际酶学委员会公布的184种糖苷酶(一种糖苷酶只能水解一种糖苷键),也不同于其他已报道过的甾体皂苷糖苷酶,是一种新酶,将其命名为原薯蓣皂苷糖苷酶-1型(protodioscin-Glycosidase-1, PGase-1)。
     采用RT-PCR技术以及RACE技术,对原薯蓣皂苷酶-1型的基因全长序列进行调取。该酶基因全长为1725bp,包含一个1497bp的开放阅读框(ORF),编码498个氨基酸,N端前20个氨基酸序列为信号肽序列。通过亚克隆技术,将原薯蓣皂苷糖苷酶-1型基因重组至真核表达载体pPIC9K,并电转化至巴斯德毕赤酵母GS115。重组酵母菌诱导表达的酶液具有原薯蓣皂苷糖苷酶-1型的酶活力,且最佳诱导培养时间为144h、甲醇的最终浓度为0.5%。经SDS-PAGE分析,诱导表达酶的分子量约为55kDa,与野生型原薯蓣皂苷糖苷酶-1型的分子量55kDa相近。这说明原薯蓣皂苷糖苷酶-1型基因在毕赤酵母中成功的进行了异源表达。经序列相似性比较,发现原薯蓣皂苷糖苷酶-1型的基因与α-淀粉酶的基因序列有很高的相似性。基于两者序列的相似性,原薯蓣皂苷糖苷酶-1型应分在糖苷水解酶家族GH13(Glycoside Hydrolase Family13)中;但是两者具有完全不同的水解特性。因此,酶蛋白的基因序列不能完全代表酶的特性。
The steroidal saponins with long sugar chains are physiologically active ingredients in medicinal plant of Dioscorea L., but these natural steroidal saponins generally containing long sugar chains have low activity and low absorption in human bodies. In this paper, the enzyme from microorganism was used for converting the steroidal saponins in Dioscorea nipponica Makino to more active and easy-absorbing steroidal saponins with low sugar chains. In addition, a novel steroidal saponin-glycosidase was purified, characterized, cloned and expressed in Pichia pastoris GS115.
     Firstly, the total steroidal saponins of250g were obtained from4kg dried roots of D. nipponica Makino after by ethanol extraction, desugaration and decoloration. The extraction yield was about6.3%. Tow main steroidal saponins were separated by silica gel chromatography, and the structure of these tow steroidal saponins was identified as protodioscin, i. e.,26-O-β-D-glucopyranosyl-25(R)-22-hydroxyl-5-ene-furostane-3β,26-diol-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyrano side, and dioscin dioscin, i.e., diosgenin-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-β-D-glucopyranoside, respectively.
     Aspergillus oryzae DLFCC-38was screened as the enzyme producing microorganism, the enzyme from this microorganism could almost convert the total steroidal saponins of Dioscorea nipponica Makino to major progenin Ⅲ and gracillin, and small amount of diosgenin. The optimal culture conditions for enzyme production by A. oryzae DLFCC-38were investigated. For enzyme production, the strain was cultured for72h at30℃, in the medium containing2%(v/v) extract of D. nipponica as the enzyme inducer. The crude enzyme converted total steroidal saponins into major progenin III with a high yield when the reaction was carried out for9h, at50℃and pH5.0, with the20mg/ml of substrate. In the scale-up preparation of progenin Ⅲ,117g of crude product was obtained from160g of substrate.117g of the crude product was purified with silica gel column to obtain60.3g progenin with the yield of51.5%,11.54g gracillin with the yield of9.86%, and3.01g diosgenin with the yield of2.57%.
     After3-steps, a protodioscin-glycosidase was purified from the A. oryzae DLFCC-38culture by the methods of molecular sieve chromatography and ion exchange chromatography. The molecular mass of this enzyme was determined to be about55kDa based on SDS-polyacrylamide gel electrophoresis. The optimum temperature and pH of the enzyme was5.0and50℃, respectively, and the enzyme was stable at pH3.0-8.0, below60 ℃. The activity of this enzyme was not obviously affected by K+, Na+, Mg2+and Ca2+ions, but slightly inhibited by Zn2+and strictly inhibited Cu2+and Fe3+ions.
     The purified protodioscin-glycosidase was able to hydrolyze the terminal26-O-β-D-glucopyranoside of protodioscin to produce dioscin, and then further hydrolyze the terminal3-O-(1→4)-α-L-rhamnopyranoside of dioscin to form progenin Ⅲ. The Km and Vmax for protodioscin were4.59mM and3.86mM/h, respectively. The Km and Vmax for dioscin were42.6mM and0.15mM/h, respectively. In addition, this enzyme also could hydrolyze the a-D-galactopyranoside, β-D-glucopyranoside and β-D-galactopyranoside of p-nitrophenyl-glycosides. These new properties of the protodioscin-glycosidase are significantly different from those of previously described steroidal saponin-glycosidases and the glycosidases currently described in Enzyme Nomenclature by the NC-IUBMB where typically one enzyme hydrolyzes one type of glycoside. It therefore represents the advent of a novel enzyme, and the new enzyme was named protodioscin-glycosidase-1(PGase-1).
     The complete gene sequence of protodioscin-glycosidase-1was amplified by the methods of RT-PCR and RACE, and the sequence length is1725bp. The full-length cDNA contains a1497-bp open reading frame (ORF) which encoding498amino acid residues, and20amino acids were cleaved from the N terminus of the mature form and seemed to be a signal sequence. The protodioscin-glycosidase-1gene cloned from A. oryzae was subcloned into the vector pPIC9K and then transformed into Pichia pastoris GS115. The optimal culture condition of recombinant P. pastoris GS115was identified as:the culture time was144h and the final methnol content was0.5%. The recombinant protodioscin-glycosidase-1from recombinant P. pastoris GS115also showed the activity hydrolyzing glycosides of steroidal saponins and the molecular mass of recombinant protodioscin-glycosidase-1was determined to be about55kDa based on SDS-polyacrylamide gel electrophoresis, which were both similar to that of the wild-type protodioscin-glycosidase-1from A. oryzae. The results show that gene has been successfully expressed in P. pastoris GS115. The protodioscin-glycosidase-1gene is highly similar to a-amylase (EC3.2.1.1), and the protodioscin-glycosidase-1should be classified as glycoside hydrolase family13by the method of gene sequence-based classification. But the enzyme properties of this enzyme are different from those of a-amylase in this family. Therefore, gene sequence of the enzyme can not completely represent enzyme properties.
引文
[1]Zhang J Y, Meng Z Y, Zhang M Y, et al. Effect of six steroidal saponins isolated from anemarrhenae rhizoma on platelet aggregation and hemolysis in human blood. Clinica Chimica Acta,1999,289(1-2):79-88
    [2]Li H, Huang W, Wen Y Q, et al. Anti-thrombotic activity and chemical characterization of steroidal saponins from Dioscorea zingiberensis C.H. Wright. Fitoterapia,2010,81(8):1147-1156
    [3]Ori K, Mimaki Y, Mito K, et al. Jatropham derivatives and steroidal saponins from the bulbs of Lilium hansonii. Phytochemistry,1992,31(8):2767-2775
    [4]Takaashi Y, Mimaki Y, Kameyama A, et al. Three new cholestane bisdesmosides from Nolina recurvata stems and their inhibitory activity on cAMP phosphodiesterase and Na+/K+ ATPase. Chemical and Pharmaceutical Bulletin,1995,43(7):1180-1185
    [5]Mimaki Y, Takaashi Y, Kuroda M, et al. Steroidal saponins from Nolina recurvata stems and their inhibitory activity on cyclic AMP phosphodiesterase. Phytochemistry, 1996,42(6):1609-1615
    [6]Mimaki Y, Kanmoto T, Kuroda M, et al. Steroidal saponins from Hosta longipes and their inhibitory activity on tumour promoter-induced phospholipid metabolism of HeLa Cells. Phytochemistry,1996,42(4):1065-1070
    [7]Nakamura O, Mimaki Y, Nishino H, et al. Steroidal saponins from the bulbs of Lilium speciosum x L. nobilissimum'Star Gazer'and their antitumour-promoter activity. Phytochemistry,1994,36(2):463-467
    [8]Hu K, Dong A J, Yao X S, et al. Antineoplastic Agents; Ⅰ. Three Spirostanol Glycosides from Rhizomes of Dioscorea collettii var. hypoglauca. Planta Medica,1996,62(6): 573-575
    [9]Haraguchi M, Mimaki Y, Motidome M, et al. Steroidal saponins from the leaves of Cestrum sendtenerianum. Phytochemistry,2000,55(7):715-720
    [10]Shao Y U, Poobrasert O, Kennelly E J, et al. Steroidal saponins from Asparagus officinalis and their cytotoxic activity. Planta Medica,1997,63(3):258-262
    [11]Sautour M, Mitaine-Offer A C, Lacaille-Dubois M A. The Dioscorea genus:a review of bioactive steroid saponins. Journal of Natural Medicines,2007,61(2):91-101
    [12]Zhang J D, Xu Z, Cao Y B, et al. Antifungal activities and action mechanisms of compounds from Tribulus terrestris L. Journal of Ethnopharmacology,2006,103(1): 76-84
    [13]Yang C R, Zhang Y, Jacob M R, et al. Antifungal activity of C-27 steroidal Saponins. Antimicrobial Agents and Chemotherapy,2006,50(5):1710-1714
    [14]Ikeda T, Ando J, Miyazono A, et al. Anti-herpes virus activity of Solanum steroidal glycosides. Biological and Pharmaceutical Bulletin,2000,23(3):363-364
    [15]Jin M H, Suh S J, Yang J H, et al. Anti-inflammatory activity of bark of Dioscorea batatas DECNE through the inhibition of iNOS and COX-2 expressions in RAW264.7 cells via NF-κB and ERK1/2 inactivation. Food and Chemical Toxicology,2010, 48(11):3073-3079
    [16]林厚文,韩公羽.中药玉竹有效成分研究.药学学报,1994,29(3):215-222
    [17]李树英,陈家畅.五种山药对小鼠免疫功能影响的比较研究.河南中医,1992,12(1):23-24
    [18]南景一.穿山龙对小鼠免疫功能的影响.中草药,1988,19(3):22-28
    [19]Nakashima N, Kimura I, Kimura M, et al. Isolation of pseudoprototimosaponin AIII from rhizomes of Anemarrhena asphodeloides and its hypoglycemic activity in streptozotocin-induced siabetic mice. Journal of Natural Products,1993,56(3): 345-350
    [20]McAnuff M A, Harding W W, Omoruyi F O, et al. Hypoglycemic effects of steroidal sapogenins isolated from Jamaican bitter yam, Dioscorea polygonoides. Food and Chemical Toxicology,2005,43(11):1667-1672
    [21]马海英,赵志涛,王丽娟,等.薯蓣皂苷元和黄山药总皂苷抗高脂血症作用比较.中国中药杂志,2002,27(2):528-531
    [22]Yin J, Kouda K, Tezuka Y, et al. Steroidal glycosides from the rhizomes of Dioscorea spongiosa. Journal of Natural Products,2003,66(5):646-650
    [23]Tewtrakul S, Itharat A. Anti-allergic substances from the rhizomes of Dioscorea membranacea. Bioorganic and Medicinal Chemistry,2006,14(24):8707-8711
    [24]曹亚军,陈虹,杨光.薯蓣皂苷对亚急性衰老小鼠的抗氧化作用研究.中药药理与临床,2008,24(3):19-21
    [25]Jain D C. Antifeedant active saponin from Balanites roxburghii stem bark. Phytochemistry,1987,26(8):2223-2225
    [26]刘忠荣,邹文俊,王若竹,等.地奥心血康十年临床应用概述及疗效分析.中国医药学报,2004,19(10):620-622
    [27]聂有智.心脑舒通胶囊实验研究进展.中西医结合心脑血管病杂志,2010,8(11):1373-1375
    [28]严伟民.心脑舒通防治心、脑血管疾病临床研究进展.上海医药,2009,30(11):510-512
    [29]郭晋才.穿山龙治疗类风湿性关节炎.陕西中医,1986,7(6):172-173
    [30]Rothrock J W, Hammes P A, McAleer W J. Isolation of diosgenin by acid hydrolysis of saponin. Industrial and Engineering Chemistry,1957,49(2):186-188
    [31]Hu K, Yao X S. The cytotoxicity of methyl protoneogracillin (NSC-698793) and gracillin (NSC-698787), two steroidal saponins from the rhizomes of Dioscorea collettii var. hypoglauca, against human cancer cells in vitro. Phytotherapy Research, 2003,17(6):620-626
    [32]Dong M, Feng X Z, Wang B X, et al. Steroidal saponins from Dioscorea panthaica and their cytotoxic activity. Pharmazie,2004,59(4):294-296
    [33]Hu K, Yao X S. Methyl protogracillin (NSC-698792):the spectrum of cytotoxicity against 60 human cancer cell lines in the National Cancer Institute's anticancer drug screen panel. Anticancer Drugs,2001,12(6):541-547
    [34]Dong M, Feng X Z, Wu L J, et al. Two new steroidal saponins from the rhizomes of Dioscorea panthaica and their cytotoxic activity. Planta Medica,2001,67(9):853-857
    [35]Hu K, Yao X S. Protodioscin (NSC-698 796):Its spectrum of cytotoxicity against sixty human cancer cell lines in an anticancer drug screen panel. Planta Medica,2002,68(4): 297-301
    [36]Hu K, Yao X S. The cytotoxicity of protoneodioscin (NSC-698789), a furostanol saponin from the rhizomes of Dioscorea collettii var. hypoglauca, against human cancer cells in vitro. Phytomedicine,2002,9(6):560-565
    [37]Dong M, Feng X Z, Wang B X, et al. Two novel furostanol saponins from the rhizomes of Dioscorea panthaica Prain et Burkill and their cytotoxic activity. Tetrahedron,2001,57(3):501-506
    [38]Hu K, Yao X S. The cytotoxicity of methyl protodioscin against human cancer cell lines in vitro. Cancer Investigation,2003,21(3):389-393
    [39]Hu K, Yao X S. The cytotoxicity of methyl protoneodioscin (NSC-698791) against human cancer cell lines in vitro. Anticancer Research 2002,22(2):1001-1005
    [40]唐世蓉,杨如同,潘福生,等.中国薯蓣属植物中的甾体皂苷甾体皂苷元.植物资源与环境学报,2007,16(2):64-72
    [41]Man S L, Gao W Y, Zhang Y J, et al. Chemical study and medical application of saponins as anti-cancer agents. Fitoterapia,2010,81(7):703-714
    [42]Wang Y B, Zhang Y C, Zhu Z Y, et al. Exploration of the correlation between the structure, hemolytic activity, and cytotoxicity of steroid saponins. Bioorganic and Medicinal Chemistry,2007,15(7):2528-2532
    [43]金凤燮,鱼红闪,芦明春,等.生物转化法生产高附加值生理活性物质的开发.辽宁医药,2002,17(3):33-36
    [44]刘美正,郭忠武.皂甙研究--糖链的作用.有机化学,1997,17(30):307-318
    [45]Monks A, Scudiero D, Skehan P, et al. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. Journal of the National Cancer Institute,1991,83(11):757-766
    [46]Mimaki Y, Yokosuka A, Kuroda M, et al. Cytotoxic activities and structure-cytotoxic relationships of steroidal saponins. Biological and Pharmaceutical Bulletin,2001, 24(11):1286-1289
    [47]Kobashi K. Glycosides are natural prodrugs-evidence using germ-free and gnotobiotic rats associated with a human intestinal bacterium. Journal of Traditional Medicines, 1998,15:1-13
    [48]Akao T, Kawabata K, Yanagisawa E, et al. Balicalin, the predominant flavone glucuronide of scutellariae radix, is sbsorbed from the rat gastrointestinal tract as the aglycone and restored to its original form. Journal of Pharmacy and Pharmacology, 2000,52(12):1563-1568
    [49]Akao T, Kida H, Kanaoka M, et al. Drug metabolism:intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rbl from Panax ginseng. Journal of Pharmacy and Pharmacology,1998, 50(10):1155-1160
    [50]Akao T, Kobashi K, Aburada M. Enzymic studies on the animal and intestinal bacterial metabolism of geniposide. Biological and Pharmaceutical Bulletin,1994,17(12): 1573-1576
    [51]刘欣,崔昱,杨凌.糖苷酶与药物研发.天然产物研究与开发,2005,17(2):223-228
    [52]Wang W, Zhao Y, Rayburn E R, et al. In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemotherapy and Pharmacology,2007,59(5):589-601
    [53]Atopkina L N, Uvarova N I, Elyakov G B. Simplified preparation of the ginsenoside-Rh2 minor saponin from ginseng. Carbohydrate Research,1997,303(4): 449-451
    [54]Lee S Y, Kim G T, Roh S H, et al. Proteomic analysis of the anti-cancer effect of 20S-ginsenoside Rg3 in human colon cancer cell lines. Bioscience, Biotechnology, and Biochemistry,2009,73(4):811-816
    [55]Kim H S, Lee E H, Ko S R, et al. Effects of ginsenosides Rg3 and Rh2 on the proliferation of prostate cancer cells. Archives of Pharmacal Research,2004,27(4): 429-435
    [56]Chen X C, Zhou Y C, Chen Y, et al. Ginsenoside Rgl reduces MPTP-induced substantia nigra neuron loss by suppressing oxidative stress1. Acta Pharmacologica Sinica,2005,26(1):56-62
    [57]Zhang J T, Qu Z W, Liu Y, et al. Preliminary study on antiamnestic mechanism of ginsenoside Rgl and Rbl. Chinese Medical Journal,1990,103(11):932-938
    [58]Teng C M, Kuo S C, Ko F N, et al. Antiplatelet actions of panaxynol and ginsenosides isolated from ginseng. Biochimica et Biophysica Acta (BBA)-General Subjects,1989, 990(3):315-320
    [59]Samukawa K, Suzuki Y, Ohkubo N, et al. Protective effect of ginsenosides Rg2 and Rhl on oxidation-induced impairment of erythrocyte membrane properties. Biorheology,2008,45(6):689-700
    [60]Lee Y J, Jin Y R, Lim W C, et al. A ginsenoside-Rhl, a component of ginseng saponin, activates estrogen receptor in human breast carcinoma MCF-7 cells. The Journal of Steroid Biochemistry and Molecular Biology,2003,84(4):463-468
    [61]Park Y C, Lee C H, Kang H S, et al. Ginsenoside-Rhl and Rh2 inhibit the induction of nitric oxide synthesis in murine peritoneal macrophages. IUBMB Life,1996,40(4): 751-757
    [62]Baek N, Kim D S, Lee Y H, et al. Cytotoxicities of ginseng saponins and their degradation products against some cancer cell lines. Archives of Pharmacal Research, 1995,18(3):164-168
    [63]Li W, Liu Y, Zhang J W, et al. Anti-androgen-independent prostate cancer effects of ginsenoside metabolites in vitro:Mechanism and possible structure-activity relationship investigation. Archives of Pharmacal Research,2009,32(1):49-57
    [64]李谦,高向涛,赵文垒,等.盐酸催化薯蓣皂苷水解过程的优化研究.中药材,2008,31(7):1059-1062
    [65]宋子言,刘秉钺,王井,等.硫酸法提取黄姜中皂苷元的清洁生产研究.大连轻工业学院学报,2007,26(1):53-55
    [66]荣先冬,徐美红,施红生,等.硫酸浸泡法提取薯蓣皂苷元的研究.安徽理工大学学报(自然科学版),2007,27(1):48-51.
    [67]刘志辉,李琳,钱芳.醋酸水解三七总皂苷制备人参皂苷Rg3工艺的优选.中国医院药学杂志,2009,29(11):881-884
    [68]Kaku T, Kawashima Y. Isolation and characterization of ginsenoside-Rg2, 20R-prosapogenin,20S-prosapogenin and delta 20-prosapogenin. Chemical studies on saponins of Panax ginseng C. A. Meyer, Third report. Arzneimittel-Forschung,1980, 30(6):936-943
    [69]Han B H, Park M H, Han Y N, et al. Degradation of ginseng saponins under mild acidic conditions. Planta Medica 1982,44(3):146-149
    [70]Bae E A, Han M J, Kim E J, et al. Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Archives of Pharmacal Research,2004,27(1):61-67
    [71]陈英杰,张绍林,林景南,等.人参皂甙碱水解的研究.沈阳药学院学报,1990,7(4):283-287
    [72]陈燕萍,孟勤,宋长春,等.20(S)-原人参二醇类皂苷的制备及其转化人参皂苷Rh2.中国药学杂志,1997,32(5):273-275
    [73]Zhang C Z, Yu H S, Bao Y M, et al. Purification and characterization of ginsenoside-β-glucosidase from ginseng. Chemical and Pharmaceutical Bulletin,2001, 49(7):795-798
    [74]Zhang C Z, Yu H S, Bao Y M, et al. Purification and characterization of ginsenoside-a-arabiofuranase hydrolyzing ginsenoside Rc into Rd from the fresh rood of Panax ginseng. Process Biochemistry,2002,37(7):793-798
    [75]金凤燮.高活性红参的制作方法.中国.发明专利,ZL200510136799,2006-10-18
    [76]刘廷强,何璐璐,鱼红闪,等.三七提取中人参皂苷的转化.大连工业大学学报,2009,28(2):111-114
    [77]Kawasaki T, Komori T, Miyahara K, et al. Furostanol bisglycosides corresponding to dioscin and gracillin. Chemical and Pharmaceutical Bulletin,1974,22(9):2164-2175
    [78]Joly R A, Bonner J, Bennett R D, et al. Conversion of cholesterol to an open-chain saponin by Dioscorea floribunda. Phytochemistry,1969,8(5):857-859
    [79]Gurielidze K G, Paseshnichenko V A, Vasil'eva I S. Detection of an oligofurostanoside-specific β-glucosidase in leaves of Dioscorea deltoidea. Doklady Akademii Nauk SSSR,1986,286(3):754-756
    [80]Inoue K, Shimomura K, Kobayashi S, et al. Conversion of furostanol glycoside to spirostanol glycoside by β-glucosidase in Costus speciosus. Phytochemistry,1996, 41(3):725-727
    [81]Inoue K, Ebizuka Y. Purification and characterization of furostanol glycoside 26-O-β-glucosidase from Costus speciosus rhizomes. FEBS Letters,1996,378(2): 157-160
    [82]Qian S, Yu H S, Zhang C Z, et al. Purification and characterization of dioscin-a-L-rhamnosidase from pig liver. Chemical and Pharmaceutical Bulletin,2005, 53(8):911-914
    [83]王红英,钱斯日古楞,鱼红闪,等.羊肝源穿山龙薯蓣皂苷-α-L-鼠李糖苷酶的分离及其动力学特性.高等学校化学学报,2007,28(4):663-667
    [84]Kanaoka M, Okao T, Kobashi K. Metabolism of ginseng saponins, ginsenosides by human intestinal flora. Journal of Traditional Medicines,1994, 11(3):241-245
    [85]Bae E A, Park S Y, Kim D H. Constitutive β-glucosidase hydrolyzing ginsenoside Rbl and Rb2 from human intestinal bacteria. Biological and Pharmaceutical Bulletin,2000, 23(12):1481-1485
    [86]Busto M D, Meza V, Ortega N, et al. Immobilization of naringinase from Aspergillus niger CECT 2088 in poly (vinyl alcohol) cryogels for the debittering of juices. Food Chemistry,2007,104(3):1177-1182
    [87]Prakash S, Singhal R S, Kulkarni P R. Enzymic debittering of Indian grapefruit(Citrus paradisi) juice. Journal of the Science of Food and Agriculture,2002,82(4):394-397
    [88]Tsen H Y, Tsai S H, Yu G K.. Fiber entrapment of naringinase from Penicillium sp. and application to fruit juice debittering. Journal of Fermentation and Bioengineering,1989, 67(3):186-189
    [89]Tsen H Y, Yu G K. Limonin and naringin removal from grapefruit juice with naringinase entrapped in cellulose triacetate fibers. Journal of food science,1991, 56(1):31-34
    [90]Mazzaferro L, Pinuel L, Minig M, et al. Extracellular monoenzyme deglycosylation system of 7-O-linked flavonoid P-rutinosides and its disaccharide transglycosylation activity from stibella fimetaria. Archives of microbiology,2010,192(5):383-393
    [91]Terada Y, Kometani T, Nishimura T, et al. Prevention of hesperidin crystal formation in canned mandarin orange syrup and clarified orange juice by hesperidin glycosides. Food Science and Technology International,1995,1(1):29-33
    [92]Gallego M V, Pinaga F, Ramon D, et al. Purification and characterization of an a-L-rhamnosidase from Aspergillus terreus of interest in winemaking. Journal of Food Science,2001,66(2):204-209
    [93]Zhang C Z, Zhang Y F, Chen J P, et al. Purification and characterization of baicalin-β-D-glucuronidase hydrolyzing baicalin to baicalein from fresh roots of Scutellaria viscidula Bge. Process Biochemistry,2005,40(5):1911-1915
    [94]Yu H S, Liu H, Zhang C Z, et al. Purification and characterization of gypenoside-a-L-rhamnosidase hydrolyzing gypenoside-5 into gisenoside Rd. Process Biochemistry,2004,39(7):861-867
    [95]Yu H S, Zhang C Z, Lu M C, et al. Purification and characterization of new special ginsenosidase hydrolyzing multi-glycisides of protopanaxadiol ginsenosides, ginsenosidase type I. Chemical and Pharmaceutical Bulletin,2007,55(2):231-235
    [96]Yu H S, Ma X Q, Guo Y, et al. Purification and Characterization of Ginsenoside-β-Glucosidase. Journal of Ginseng Research,1999,23(1):50-54
    [97]Zhang C Z, Yu H S, Lu M C, et al. Enzymic synthesis of salidroside:Purification and characterization of salidrosidase from Aspergillas niger. Process Biochemistry,2005, 40(9):3143-3147
    [98]Yu H S, Gong J M, Zhang C Z, et al. Purification and characterization of ginsenoside-a-rhamnosidase. Chemical and Pharmaceutical Bulletin,2002,50(2): 175-178
    [99]Yu H S, Liu Q M, Zhang C Z, et al. A new ginsenosidase from Aspergillus strain hydrolyzing 20-O-multi-glycoside of PPD ginsenoside. Process Biochemistry,2009, 44(7):772-775
    [100]Jin X F, Yu H S, Wang D M, et al. Kinetics of a cloned special ginsenosidase hydrolyzing 3-0-glucoside of multi-protopanaxadiol-type ginsenosides, named ginsenosidase type III. Journal of Microbiology and Biotechnology,2012,22(3): 343-351
    [101]Wang D M, Yu H S, Song J G, et al. A novel ginsenosidase from Aspergillus strain hydrolyzing 6-O-multi-glycosides of protopanaxatriol-type ginsenosides, named ginsenosidase type IV. Journal of Microbiology and Biotechnology,2011,21(10): 1057-106
    [102]金凤燮,鱼红闪,保永明.酶法改变人参皂甙糖基制备人参皂甙的方法.中国.发明专利,ZL 99112764,1999-09-22
    [103]黄红卫.糖苷酶及其改造策略研究概况.粮食与油脂,2010,2:11-14
    [104]Yadav V,Yadav, P K,Yadav S, et al. α-L-Rhamnosidase:A review. Process Biochemistry,2010,45(8):1226-1235
    [105]Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal,1991,280(2):309-316
    [106]Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal,1993,293(3):781-788
    [107]Henrissat B, Bairoch A. Updating the sequence-based classification of glycosyl hydrolases. Biochemical Journal,1996,316(2):695-696
    [108]Davies G, Henrissat B. Structures and mechanisms of glycosyl hydrolases. Structure, 1995,3(9):853-859
    [109]Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Current Opinion in Structural Biology,1997,7(5):637-644
    [110]杨松成.蛋白质组学中的有机质谱.现代科学仪器,2000,5(5):9-15
    [111]Nakanishi T, Miyazaki A, Kishikawa M, et al. Electrospray ionization-tandem mass spectrometry analysis of peptides derived by enzymatic digestion of oxidized globin subunits:An improved method to determine amino acid substitution in the hemoglobin "core". Journal of the American Society for Mass Spectrometry,1996,7(10): 1040-1049
    [112]Harrison A G Effect of phenylalanine on the fragmentation of deprotonated peptides. Journal of the American Society for Mass Spectrometry,2002,13(10):1242-1249
    [113]Wattenberg A, Organ A J, Schneider K, et al. Sequence dependent fragmentation of peptides generated by MALDI quadrupole time-of-flight (MALDI Q-TOF) mass spectrometry and its implications for protein identification. Journal of the American Society for Mass Spectrometry,2002,13(7):772-783
    [114]Mullis K B, Faloona F A. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology,1987,155:335-350
    [115]Ftouhi-Paquin N, Hauer C R, Stack R F, et al. Molecular cloning, primary structure, and properties of a new glycoamidase from the fungus Aspergillus tubigensis. Journal of Biological Chemistry,1997,272(36):22960-22965
    [116]Schaefer B C. Revolutions in rapid amplification of cDNA ends:new strategies for polymerase chain reaction cloning of full-length cDNA ends. Analytical Biochemistry, 1995,227(2):255-273
    [117]Emmett M, Petrack B. Rapid isolation of total RNA from mammalian tissues. Analytical biochemistry,1988,174(2):658-661
    [118]Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry,1987,162(1): 156-159
    [119]Simms D, Cizdziel P E, Chomczynski P. TRIzolTM:A new reagent for optimal single-step isolation of RNA. Focus,1993,15(4):99-102
    [120]Frohman M A, Dush M, Martin G. Rapid production of full-length cDNAs from rare transcripts:amplification using a single gene-specific oligonucleotide primer. Proceedings of the National Academy of Sciences,1988,85(23):8998-9002
    [121]Ogata K, Nishikawa H, Ohsugi M. A yeast capable of utilizing methanol. Agricultural and Biological Chemistry,1969,33(10):1519-1520
    [122]Couderc R, Baratti J. Oxidation of methanol by the yeast Pichia pastoris:purification and properties of alcohol oxidase. Agricultural and Biological Chemistry,1980,44(10): 2279-2289
    [123]Roggenkamp R, Janowicz Z, Stanikowski B, et al. Biosynthesis and regulation of the peroxisomal methanol oxidase from the methylotrophic yeast Hansenula polymorpha. Molecular and General Genetics,1984,194(3):489-493
    [124]Ellis S B, Brust P F, Koutz P J, et al. Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Molecular and Cellular Biology,1985,5(5):1111-1121
    [125]Cregg J M, Madden K R, Barringer K J, et al. Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Molecular and Cellular Biology, 1989,9(3):1316-1323
    [126]Cregg J M, Barringer K J, Hessler A Y, et al. Pichia pastoris as a host system for transformations. Molecular and Cellular Biology,1985,5(12):3376-3385
    [127]Cregg J M and Madden K R. Development of yeast transformation systems and construction of methanol-utilization-defective mutants of Pichia pastoris by gene disruption. Boca Raton:CRC Press,1987
    [128]Brierley R A. Secretion of recombinant human insulin-like growth factor I (IGF-I). Methods in Molecular Biology,1998,103:149-177
    [129]White C E, Hunter M J, Meininger D P, et al. Large-scale expression, purification and characterization of small fragments of thrombomodulin:the roles of the sixth domain and of methionine 388. Protein Engineering,1995,8(11),1177-1187
    [130]Koutz P, Davis G R, Stillman C, et al. Structural comparison of the Pichia pastoris alcohol oxidase genes. Yeast, (1989,5(3),167-177
    [131]Scorer C A, Clare J J, McCombie W R, et al. Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. Nature Biotechnology,1994,12(2):181-184
    [132]Cregg J M, Tschopp J F, Stillman C, et al. High level expression and efficient assembly of hepatitis B surface antigen in the methylotrophic yeast, Pichia pastoris. Nature Biotechnology,1987,5:479-485
    [133]李开泉,邹盛勤,陈武.薯蓣属植物的研究开发现状.林产化工通讯,2004,38(2):26-29
    [134]方一苇,赵家俊,贺玉珍,等.穿龙薯蓣中两种水难溶性甾体皂苷的结构研究.药学学报,1982,17(5):388-390
    [135]康利平,马百平,王煜,等.穿山龙中甾体皂苷的分离鉴定.中国药学杂志,2005,40(20):1539-1541
    [136]都述虎,刘文英,付铁军,等.穿龙薯蓣总皂苷中甾体皂苷的分离与鉴定.药学学报,2002,37(4):267-270
    [137]Wang T J, Choi R C Y, Li J, et al. Trillin, a steroidal saponin isolated from the rhizomes of Dioscorea nipponica, exerts protective effects against hyperlipidemia and oxidative stress. Journal of Ethnopharmacology,2012,139(1):214-220
    [138]Liu C Z, Zhou H Y, Yan Q. Fingerprint analysis of Dioscorea nipponica by high-performance liquid chromatography with evaporative light scattering detection. Analytica Chimica Acta,2007,582(1):61-68
    [139]Kawasaki T, Yamauchi T. Structures of prosapogenin-B and -A of dioscin and cooccurrence of B with dioscin in the Rhizoma of Dioscorea Tokoro Makino. Chemical and pharmaceutical bulletin,1968,16(6):1070-1075
    [140]Man S L, Gao W Y, Zhang Y J, et al. Qualitative and quantitative determination of major saponins in Paris and Trillium by HPLC-ELSD and HPLC-MS/MS. Journal of Chromatography B,2010,878(29):2943-2948
    [141]Zhang T, Liu H, Liu X T, et al. Qualitative and quantitative analysis of steroidal saponins in crude extracts from Paris polyphylla var. yunnanensis and P. polyphylla var. chinensis by high-performance liquid chromatography coupled with mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis,2010, 51(1):114-124
    [142]张传会,陈有为,郑毅,等.菌株YM32139转化黄山药生产薯蓣皂苷元的研究.微生物学杂志,2007,27(6):13-16
    [143]Lin L, Dong Y S, Qi S S, et al. Biotransformation of steriodal saponins in Dioscorea zingiberensis C. H. Wright to diosgenin by Trichoderma harzianum. Applied Microbiology and Biotechnology,2010,85(4):933-940
    [144]董悦生,齐珊珊,刘琳,等.米曲霉直接转化盾叶薯蓣生产薯蓣皂苷元.过程工程学报,2009,9(5):993-998
    [145]Zhu Y L, Huang W, Ni J R, et al. Production of diosgenin from Dioscorea zingiberensis tubers through enzymatic saccharification and microbial transformation. Applied Microbiology and Biotechnology,2010,85(5):1409-1416
    [146]赵玉婷,徐增莱,戴传超,等.薯蓣皂苷水解微生物的筛选.中药材,2007,30(8):905-909
    [147]赵玉婷,徐增莱,戴传超,等.薯蓣皂苷水解酶的发酵及粗酶的性质研究.食品科学,2007,28(8):269-272
    [148]Feng B, Ma B P, Kang L P, et al. The microbiological transformation of steroidal saponins by Curvularia lunata. Tetrahedron,2005,61(49):11758-11763
    [149]Kang L P, Ma B P, Feng B, et al. The microbiological transformation of Protodioscin by Aspergillus oryzae. Chinese Journal of Natural Medicines,2006,4(5):377-381
    [150]Zhao Y, Feng B, Kang L P, et al. Biotransformation of Dichotomin by Pectinex BE XXL. Chinese Journal of Natural Medicines,2009,7(5):381-389
    [151]Zhao W B, Feng B, Huang H Z, et al. Hydrolysis of timosaponin BⅡ by the crude enzyme from Aspergillus niger AS 3.0739. Journal of Asian Natural Products Research,2010,12(11):955-961
    [152]Jin J M, Liu X K, Teng R W, et al. Enzymatic Degradation of Parvifloside. Acta Botanica Sinica,2002,44(10):1243-1249
    [153]Watanabe Y, Sanada S, Ida Y, et al. Comparative studies on the constituents of ophiopogonis tuber and its congeners. Ⅱ:Studies on the constituents of the subterranean part of Ophiopogon planiscapus Nakai (1). Chemical and pharmaceutical bulletin,1983,31(10):3486-3495
    [154]Feng B, Huang H Z, Zhou W B, et al. Substrate specificity, purification and identification of a novel pectinase with the specificity of hydrolyzing the α-1,4-glycosyl residue in steroidal saponin. Process Biochemistry,2010, 45(8):1383-1392
    [155]Feng B, Hu W, Ma B P, et al. Purification, characterization, and substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata. Applied Microbiology and Biotechnology,2007,76(6):1329-1338
    [156]Feng B, Kang L P, Ma B P, et al. The substrate specificity of a glucoamylase with steroidal saponin-rhamnosidase activity from Curvularia lunata. Tetrahedron,2007, 63(29):6796-6812
    [157]Fu Y Y, Yu H S, Tang S H, et al. New dioscin-glycosidase hydrolyzing multi-glycosides of dioscin from Absidia strain. Journal of microbiology and biotechnology,2010,20(6):1011-1017
    [158]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry,1951,193(265-275)
    [159]Inoue K, Shibuya M, Yamamoto K, et al. Molecular cloning and bacterial expression of a cDNA encoding furostanol glycoside 26-O-β-glucosidase of Costus speciosus. FEBS Letters,1996,389(3):273-277

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700