用户名: 密码: 验证码:
利用断裂带电阻率各向异性结构揭示区域构造演化过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先综述了目前世界范围内利用大地电磁测深(MT)数据探测地球上主要的大型断裂带/韧性剪切带的岩石圈电性结构的研究。从中可以看出,电磁各向异性已经成为该方面研究的一个突破口和热点。针对利用各向异性的方法研究断裂带的电性结构及演化过程这个中心点,主要完成以下几方面的工作:研究出一套较为完整的MT数据各向异性分析系统以及根据分析结果进行反演建模和解释的流程;较为完整的展示了加拿大大奴湖韧性剪切带(GSLsz)沿构造走向方向不同段的电阻率各向异性差异;最终据此揭示了研究区域的构造演化过程。
     本文使用的MT数据采集于穿过大奴湖韧性剪切带(GSLsz)中段和西段的三条MT剖面。GSLsz是一条由古元古代北美大陆的Slave克拉通和Rae克拉通之间陆陆碰撞而形成的转换断裂带,目前早已失去活动性并且其上地壳的部分以及在漫长的历史演化过程中剥蚀掉,并且其西段被掩埋在西加拿大砂岩盖层之下。这些MT数据的分析揭示了地壳电性结构沿着构造走向方向的变化。我们开展了各向同性和各向异性的2-D和各向同性的3-D反演,这些反演模型揭示了西北地区和西北阿尔伯塔地区的不同的段位的不同的电性结构。在这三条剖面上,GSLsz都表现为高阻的区域(>5000Ωm)。在SNORCLE剖面上,这个高阻区域是10-20km宽,50km深。ABT和NAB剖面模型的高阻区域被限定到地壳深度内,并且切插到一个地壳内的、东倾的、位于20-25km的导体。结合前面我们做过的维性分析结果,这个高导体表现出一定的各向异性,这很有可能是由导电物质填充到定向排列的岩石裂隙中造成的,这些岩石孔隙可能是在1.97-1.90Ga以前的俯冲带边缘存在的。这些高导带被一个GSLsz中1.9-1.75Ga由于韧性剪切作用形成的高压变质(麻粒岩相)条件下形成的高阻带所切插。这就可以用来解释高阻带切插到东倾的各向异性层中的电阻率模型。高阻被解释为脱水的糜棱岩,并且很可能石墨是存在的,但由于在形变过程中出现的高温而不再互相连接。在发生了地壳汇聚增生的北阿尔伯塔地区更北端的GSLsz的中段由于缺乏俯冲、推覆以及汇聚增生就不存在这种各向异性/高导层,这个假设可以用这个区域的地震剖面所证实。
In this thesis, the studies of using magnetotelluric souding data imaging the lithothpheric structure of the major fault/shear zones are reviewed. From these studies, electrical anisotropy can be supposed to be one of the key breakthroughs and hotspots in this field. Thus, several problems as follow have been studied for the purpose of using electrical anisotropy to study the structure of fault zones. Firstly, a Matlab codes package named MT-DimAnisTools was developed to analyze the anisotropic feature of MT data with various dimentionality indicators. Then, based on the analysis results, isotropic and anisotrpic inversion and interpretation can be done. Finaly, according to the above procedure, MT data collected from GSLsz was analyzed and modeled. Regional tectonic processes had been revealed from the along-strike variations of the electrical anisotropic structure the GSLsz.
     Three magnetotelluric (MT) profiles in northwestern Canada cross the central and western segments of Great Slave Lake shear zone (GSLsz), a continental scale structure active during the Slave-Rae collision in the Proterozoic. Dimensionality analysis indicates that the conductivity structure is approximately2-D with a geoelectric strike direction consistent with the dominant geological strike of N60°E and that electrical anisotropic structure can be inferred beneath the two southernmost profiles. Isotropic and anisotropic2-D inversion and isotropic3-D inversions show different resistivity structures on different segments of the shear zone. The GSLsz is imaged as a high resistivity zone (>5000Ω·m) on all three profiles that is10-20km wide and extends to a depth of at least50km on the northern profile. On the southern two profiles, the resistive zone is confined to the upper crust and pierces a crustal, east-dipping, conductor. Inversions show that this dipping conductor is anisotropic, likely caused by conductive materials filling in a network of fractures with a preferred spatial orientation. These conductive regions would have been disrupted by strike-slip, ductile deformation on the GSLsz accommodated by granulite to greenschist facies mylonite belts. The predominantly granulite facies mylonites are resistive and explain why the GSLsz appears as a resistive structure piercing the east-dipping anisotropic layer. The absence of a dipping anisotropic/conductive layer on the northern MT profile, located on the central segment of the GSLsz, is consistent with the lack of subduction or accretion at this location as predicted by geological and tectonic models.
引文
Atwater T. Implications of plate tectonics for the Cenozoic tectonic evolution of Western North America, GSA Bulletin,1970,81,3513-3536.
    Aulbach, A., Griffin, W.L., O'Reilly, S.Y., et al.. Genesis and evolution of the lithospheric mantle beneath the Buffalo Head Terrane, Alberta (Canada). Lithos., 2004,77:413-451. doi:10.1016/j.lithos.2004.04.020.
    Bai, D., Unsworth, M.J., Meju, M.A., et al. Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging.2010. Nature Geosci. doi:10.1038/ngeo830.
    Bai, D. and Meju, M.. Deep structure of the Longling-Ruili fault underneath Ruili basin near the eastern Himalayan syntaxis:Insights from MT imaging, Tectonophysics,2003,364,135-146.
    Beamish D, Travassos J M. A study of static shift removal from magnetotelluric data. Journal of Applied Geophysics,1992 (2):157-178.
    Becken, M, Ritter, O., Park, S.K., et al. A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California, Geophys. J. Int.,2008,173, 718-732.
    Berman, R.G., Pehrsson, S., Davis, W.J.et al.. The Arrowsmith orogeny: Geochronological and thermobarometric constraints on its extent and tectonic setting in the Rae craton, with implications for pre-Nuna supercontinent reconstruction, Precambrian Research,2013,232,44-69.
    Bertrand, E.A., Unsworth, M.J., Chiang, C.W., et al. Magnetotelluric imaging beneath the Taiwan orogen:An arc-continent collision, Journal Of Geophysical Research, 2012, VOL.117, B01402, doi:10.1029/2011JB008688.
    Bertrand, E. A., Caldwell, T.G., Hill, G. J., et al. Magnetotelluric imaging of upper-crustal convection plumes beneath the Taupo Volcanic Zone, New Zealand, Geophysical Research Letters,2012. vol.39, L02304.
    Boerner, D.E., Kurtz, R. D., and Craven, J. A., A Summary of Electromagnetic Studies on the Abitibi-Grenville Transect, Can. J. Earth Sci.,2000,37,427-437.
    Boerner, D.E., Kurtz, R.D., Craven, J.A., et al.,, Electrical conductivity in the Precambrian lithosphere of Western Canada. Science,1999,283,668-670.
    Boerner, D.E., Kurtz, R.D., Craven, J.A., et al. A synthesis of electromagnetic studies in Lithoprobe Alberta Basement Transect:constraints on Paleoproterozoic indentation tectonics, Canadian Journal of Earth Sciences,2000,37:1509-1534.
    Bowring, S. A., Van Schmus, W. R.& Hoffman, P. F. U-Pb zircon ages from Athapuscow aulacogen, East Arm of Great Slave Lake. Can. J. Earth Sci,1984,21, 1315-1324.
    Brasse, H., and Soyer, W.. A Magnetotelluric Survey in the Southern Chilean Andes, Geophys. Res. Lett,2001,28,3757-3760.
    Brace, W.F.. Permeability of crystalline and argillaceous rocks, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1980,17(5),241-251.
    Bedrosian, P., Unsworth, M., Egbert, G., et al. Geophysical images of the creeping segment of the San Andreas Fault:Implications for the role of crustal fluids in the earthquake process, Tectonophysics,2004,385,137-158.
    Bedrosian P A, Unsworth M J, Wang F. Structure of the Altyn Tagh Fault and Daxue Shan from magnetotelluric surveys:Implications for faulting associated with the rise of the Tibetan Plateau. Tectonics,2001, (4):474-486.
    Cagniard L. Basic theory of the magneto-telluric method of geophysical prospecting. Geophysics,1953 (3):605-635.
    Caldwell, T.G., Bibby, H.M., and Brown, C. The magnetotelluric phase tensor, Geophys.J. Int.,2004,158,457-469, doi:10.1111/j.1365-246X.2004.02281.x.
    Camfield, P. A., and Gough, D. I. A Possible Proterozoic Plate Boundary in North America, Can. J. Earth Sci.1977,14,1229-1238.
    Chacko, T., De, K.S., Creaser, R.A., and Muehlenbachs, K. Tectonic setting of the Taltson magmatic zone at 1.9-2.0 Ga:a granitoid-based perspective. Can. J. Earth Sci,2000,37,1597-1609.
    Chave A D, Jones D A G. The magnetotelluric method:Theory and practice. Cambridge University Press,2012.
    Davey, F., Henyey, T., Holbrook, W., et al. Preliminary results from a geophysical study across a modern continent-continent collisional plate boundary—the Southern Alps, New Zealand. Tectonophysics,1998,288,221-235.
    De, K.S., Chacko, T., Creaser, R.A., and Muehlenbachs, K. Geochemical and Nd-Pb-O isotope systematics of granites from the Taltson magmatic zone, NE Alberta:implications for Early Proterozoic tectonics in western Laurentia. Precambrian Research,2000,102,221-249.
    Eaton, D.W., Milkereit, B., Ross, G.M., et al. Lithoprobe basin-scale seismic profiling in central Alberta:influence of basement on sediment cover, Bulletin of Canadian Petroleum Geology,1995,43,65-77.
    Eaton, D.W., Ross, G.M., and Hope, J. The rise and fall of a cratonic arch:A regional perspective on the Peace River Arch, Alberta. Bulletin of Canadian Petroleum Geology,47,1999,346-361.
    Eaton, D.W., and Hope, J. Structure of the crust and upper mantle of the Great Slave Lake shear zone, northwestern Canada, from teleseismic analysis and gravity modeling, Can. J. Earth Sci.,2003,40,1203-1218.
    Eaton, D.W., Jones, A.G and Ferguson, I.J. Lithospheric anisotropy structure inferred from collocated teleseismic and magnetotelluric observations:Great Slave Lake shear zone, northern Canada, Geophys. Res. Lett.,2004,31, L19614, doi:10.1029/2004GL020939.
    Eisel, M. and Bahr, K. Electrical anisotropy in the lower crust of British Columbia:an interpretation of a magnetotelluric profile after tensor decomposition, J. Geomagn.Geoelectr.,1993,vol.45,pp.1115-1126.
    Eisel, M, Haak, V., Pek, J., and Cerv, V. A Magnetotelluric Profile across the German Deep Drilling Project (KTB) area:Two-and Three-dimensional Modeling Results, J. Geophys. Res.,2001,106,16,061-16,073.
    Egbert, G.D., and J.R. Booker. Robust estimation of geomagnetic transfer functions, Geophys. J. R. astr. Soc.,1986,87,173-194.
    Egbert, G.D.. Robust multiple-station magnetotelluric data processing. Geophysical Journal International,1997,130(2),475-496.
    Gamble, T. D., Goubeau, W. M. and Clarke, J. Magnetotellurics with a remote reference, Geophysics,1979,44,53-68, doi:10.1190/1.1440923.
    Geiger, H.D., and Cook, F.A. Analysis of crustal structure from bandpass and directionally filtered potential field data:An example from western Canada, Canadian Journal of Earth Sciences,2001,38:953-961.
    Geological Survey of Canad. Magnetic Anomaly Map, Lockhart River, NWT, map NP 12-13 1566 A, scale 1:1,000,000. Geological Survey of Canada.1981.
    Geological Survey of Canada. Magnetic Anomaly Map, Slave River, NWT, map NP 11-12-M, scale 1:1,000,000. Geological Survey of Canada.1984.
    Geological Survey of Canada. Magnetic Anomaly Map of Canada, map 1255A, scale 1:5,000,000. Geological Survey of Canada.1987.
    Gibb, R.A.. Slave-Churchill collision tectonics. Nature (London),1978,271:50-52.
    Groom, R.W. and Bailey, R.C.. Some effects of multiple lateral inhomogeneities in magnetotellurics. Geophys. Prospect.,1989,37,697-712.
    Hickman, S., Zoback, M., and Ellsworth, E.. Introduction to special section:Preparing for the San Andreas Fault Observatory at Depth, GRL,2004,31, L12S01-4p.
    Hanmer, S., and Lucas, S.B. Anatomy of a ductile transcurrent shear:the Great Slave Lake shear zone, District of Mackenzie, NWT, In Current research. Geological Survey of Canada,1985, Paper 85-1B, pp.7-22.
    Hanmer, S., and Connelly, J.N. Mechanical role of the syntectonic Laloche Batholith in the Great Slave Lake shear zone, District of Mackenzie, NWT. In Current research. Geological Survey of Canada,1986, Paper 86-1B, pp.21-26
    Hanmer, S and T. Needham. Great Slave Lake shear zone meets Thelon Tectonic Zone, District of Mackenzie, NWT. In Current research. Geological Survey of Canada, 1988,88(lc),33-49
    Hanmer, S., Bowring, S., van Breemen, O., and Parrish, R. Great Slave Lake shear zone, NW Canada:mylonitic record of Early Proterozoic continental convergence, collision and indentation. Journal of Structural Geology,1992,14:757-774.
    Hanmer, S., Williams M., Kopf S, Striding-Athabasca mylonite zone:Implications for the Archean and Early Proterozoic tectonics of the Western Canadian Shield, Canadian Journal of Earth Sciences,1995,32,178-196.
    Hanmer, S. Great Slave Lake shear zone, Canadian Shield:Reconstructed vertical profile of a crustal-scale fault zone, Tectonophysics,1988,149:245-264.
    Harris, J.B. Hammer-Impact SH-Wave Seismic Reflection Methods in Neotectonic Investigations:General Observations and Case Histories from the Mississippi Embayment U.S.A., Journal of Earth Science,2009,20,513-525.
    Hathway, B., Dolby, G., McNeil, D.H., et al. Revised stratigraphy, regional correlations and new bentonite radiometric ages for the Albian Loon River Formation, Fort St. John Group, northwestern Alberta, Bulletin of Canadian Petroleum Geology,2013,61(4),331-358.
    Heise, V., and Pous, J. Effects of Anisotropy on the Two-dimensional Inversion Procedure, Geophys. J. Int.,2001,147,610-621.
    Heise, W., Caldwell, T.G., Bibby, H.M., et al. Anisotropy and phase splits in magnetotellurics, Physics of the Earth and Planetary Interiors,2006,158(2-4), 107-121.
    Hoffman, P.F., Bell, I.R., Hildebrand, R.S., et al. Geology of Athapuscow Aulacogen, East Arm of Great Slave Lake, District of Mackenzie. In Current research, part A, Geological Survey of Canada,1977, Paper 77-1A, pp.117-129.
    Hoffman, P. F. Continental transform tectonics:Great Slave Lake shear zone (ca.1.9 Ga), northwest Canada, Geology,1987,15,785-788.
    Hoffman, P.F. United plates of America, the birth of a craton:Early Proterozoic assembly and growth of Proto-Laurentia, Annual Reviews of Earth and Planetary Sciences,1988,16,543-603.
    Hoffman, P.F. Precambrian geology and tectonic history of North America. In The geology of North America—an overview. Edited by A.W. Bally and A.R. Palmer. Geological Society of America, Boulder, Colo., The Geology of North America, Vol.1989, A, pp.447-512.
    Hoffman-Rothe, A., Ritter, O., and Janssen, C, Correlation of electrical conductivity an structural damage at a major strike-slip fault in Northern Chile, J. Geophys. Res.,2004,109, doi:10.1029/2004JB003030.
    Hope, J., and Eaton, D. Crustal structure beneath the Western Canada Sedimentary Basin:constraints from gravity and magnetic modelling. Canadian Journal of Earth Sciences,2002,39,291-312.
    Hope, J., Eaton, D.W., and Ross, G.M. Lithoprobe seismic transect of the Alberta Basin:Compilation and interregional analysis. Bulletin of Canadian Petroleum Geology,1999,47,331-345.
    Howie J.M., Miller K.C., W.U. Savage, Integrated Crustal Structure across the South Central California Margin:Santa Lucia Escarpment to the San Andreas Fault, Journal of Geophysical Research,1993,98,8173-8196.
    Janssen, C., Hoffmann-Rothe, A., Tauber, S. et al. Internal structure of the Precordilleran fault system (Chile)-insights from structural and geophysical observations. Journal of Structural Geology,2002,24,123-143.
    Jones, A. G. Electrical Properties of the Continental Lower Crust, in D. M. Fountain, R. J. Arculus, and R. W. Kay (eds.), Continental Lower Crust, Elsevier, New York,,1992,pp.81-143.
    Jones, A. G., Craven, J. A., McNiece, G. W., et al. North American Central Plains Conductivity Anomaly within the Trans-Hudson Orogen in Northern Saskatchewan, Canada, Geology,1993,21,1027-1030.
    Jones, A. G., Katsube, T. J., and Schwann, P. The Longest Conductivity Anomaly in the World Explained:Sulphides in Fold Hinges Causing very High Electrical Anisotropy, J. Geomagn. Geoelectr.,1997,49,1619-1629.
    Jones, A.G., Ferguson, I.J., Chave, A., Evans, R. and Mcneice, G. Electrical lithosphere of the Slave craton, Geology,2001,29,423-426.
    Jones, A. G. Electromagnetic interrogation of the anisotropic Earth:Looking into the Earth with polarized spectacles. Physics of the Earth and Planetary Interiors, 2006,158(2-4),281-291.
    Jones, A.G., Ledo, J. and Ferguson, I.J. Electromagnetic images of the Trans-Hudson orogen:The North American Central Plains anomaly revealed. Can. J. Earth Sci., 2005,42,457-478.
    Jones, A.G and Gough, D.I. Electromagnetic images of crustal structures in southern and central Canadian Cordillera, Canadian Journal of Earth Sciences,1995, 32(10),1541-1563.
    Kellett, R.L., Mareschal, M., Kurtz, R.D. A model of lower crustal electrical anisotropy for the Pontiac Subprovince of the Canadian Shield. Geophys. J. Int. 1992,111,141-150.
    Kirkwood, S.E., Hutton, V.R.S., Sik, J. A geomagnetic study of the Great Glen fault. Geophys. J.R. Astron. Soc.,1981,66,481-490.
    Kurtz, R. D., Craven, J. A., Niblett, E. R., et al. The Conductivity of the Crust and Mantle Beneath the Kapuskasing Uplift:Electrical Anisotropy in the Upper Mantle, Geophys. J. Int.,1993,113,483-498.
    Mareschal, M., Kurtz, R. D., and Bailey, R. C. A Review of Electromagnetic Investigations in the Kapuskasing Uplift and Surrounding Regions:Electrical Properties of Key Rocks, Can. J. Earth Sci.,1994,31,1042-1051.
    Mareschal, M., R. Kellett, R. D. Kurtz, J. N., et al. Bailey. Archean cratonic roots, mantle shear zones and deep electrical anisotropy, Nature,1995,375,134-137.
    McNeice, G, and Jones, A. G. Multisite, multifrequency tensor decomposition of magnetotelluric data, Geophysics,2001,66,158-173.
    McBride, J. H., and Brown, L. D.. Reanalysis of the Cocorp Deep Seismic Reflection Profile Across the SAF, Parkfield, California, BSSA,1986,76,1668-1686.
    Meqbel, N. M. M., Ritter, O., and DESIRE Group. A magnetotelluric transect across the Dead Sea Basin:electrical properties of geological and hydrological units of the upper crust, Geophysical Journal International,2013,193(3):1415-1431.
    Mackie, R. L., Smith, J. T. and Madden, T. R.. Three-dimensional electromagnetic modeling using finite difference equations:The magnetotelluric example. Radio Sci.,1994,29,923935.
    Majorowicz, J.A., Gough, D.I. and Lewis, T.J. Correlation between the depth to the lower-crustal high conductive layer and heat flow in the Canadian Cordillera. Tectonophysics,1993,225,49-56.
    Muir, I.D., and Dravis, J.J. Burial porosity development in middle Devonian Keg River reservoirs, Lithoprobe Alberta Basement Transects Workshop,1992,Report 28,102-103.
    Pana, D. Unravelling the structural control of Mississippi Valley-type deposits and prospects in carbonate sequences of the Western Canada Sedimentary Basin, Geological Survey of Canada Bulletin,2006,591, p.255-304.
    Pana, D., Creaser, R.A., Muehlenbachs, K., and Wheatley, K. Basement geology in the Alberta portion of the Athabasca Basin, context for the Maybelle River area, in:Jefferson, C.W., Delaney, G. (Eds.), EXTECH IV:Geology and Uranium Exploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta, Geological Survey of Canada, Bulletin 588 (also Saskatchewan Geological Society, Special Publication 17; Geological Association of Canada, Mineral Deposits Division, Special Publication,2007,4,135-153.
    Parkinson, W. D.. The influence of continents and oceans on geomagnetic variations, Geophys. J. R. Astron. Soc.,1962,6,411-449.
    Pek, J. and Verner, T. Finite difference modelling of magnetotelluric fields in 2-D anisotropic media, Geophys. J. Internat.,1997,128,505-521.
    Peirce J.W, Cordsen A., and Glenn T.. The Great Slave Lake Shear Zone Implications for Exploration in NW Alberta and NE British Columbia, Canadian Society of Exploration Geophysicists Convention,2011.
    Pilkington, M., Miles, W. F., Ross, G. M. and Roest, W. R.. Potential-field signatures of buried Pre-cambrian basement in the Western Canada sedimentary basin, Can. J. Earth Sci.,2000,37,1453-1471.
    Plint, H.E. and Ross, G.M.40Ar/39Ar geochronology of selected crystalline basement samples from the Alberta Basin:the timing of Proterozoic assembly of the subsurface of Western Canada:in Radiogenic Age and Isotopic Studies, Report 7. Geological Survey of Canada,1993,93(2),71-82.
    Reinhardt, E.W.. Geology of the precambrian rocks of Tbubun Lakes map area in relationship to the McDonald Fault system, District of Mackenzie (75E/12 and parts of 75E/13 and 85H/9). Geological Survey of Canada.,1969,29,69-21.
    Rippe, D., Unsworth, M. J., and Currie, C. A. Magnetotelluric constraints on the fluid content in the upper mantle beneath the southern Canadian Cordillera: Implications for rheology, J. Geophys. Res. Solid Earth,2013,118,5601-5624, doi:10.1002/jgrb.50255.
    Ritter, O., Ryberg, T., Weckmann, U., Hoffmannrothe, et al. Geophysical images of the Dead Sea Transform in Jordan reveal an impermeable barrier for the fluid flow. Geophysical Research Letters,2003,30,1741, doi: 10.1029/2003GL017541.
    Ritter, O., Weckmann, U., Vietor, T. and Haak, V. A magnetotelluric study of the Damara Belt in Namibia 1, regional scale conductivity anomalies, Physics of the Earth and Planetary Interiors,2003,138,71-90, doi:10.1016/S0031-9201 (03)00078-5.
    Ritter, O., Hoffman-Rothe, A., Bedrosian, P. A., et al. Electrical conductivity images of active and fossil fault zones, in Microstuctural Evolution and Physical Properties in High Strain Zones, Geological Society of London Special Publications,2004,245,165-186.
    Rodi, W. and Mackie, R.L. Nonlinear conjugate gradients algorithm for 2D magnetotelluric inversion, Geophysics,2001,66,174-187.
    Ross, G.M., and Eaton, D.W. Basement reactivation in the Alberta Basin: Observational constraints and mechanical rationale. Bulletin of Canadian Petroleum Geology,1999,47,391-411.
    Ross, G.M. Evolution of continental lithosphere in western Canada:A synthesis of lithoprobe studies in Alberta and beyond, Can. J. Earth Sci.,2002,39,413-437.
    Ross, G.M., and Eaton, D.W. Proterozoic tectonic accretion and growth of western Laurentia:results from Lithoprobe studies in northern Alberta. Canadian Journal of Earth Sciences,2002,39,313-329.
    Ross, G.M. Deep crust and basement structure of the Peace River Arch region: Constraints on mechanisms of formation. Bulletin of Canadian Petroleum Geology,1990,38A,25-35.
    Ross, G.M., Parrish, R.R., Villeneuve, M.E., and Bowring, S.A. Geophysics and geochronology of the crystalline basement of the Alberta Basement, western Canada, Canadian Journal of Earth Sciences,1991,28,512-522.
    Ross, G.M., and Eaton, D.W. Reply to comment:Basement reactivation in the Alberta Basin, Bulletin of Canadian Petroleum Geology,2001,49,429-433.
    Ross, G.M., Eaton, D.W., Boerner, D.E., and Miles, W.. Tectonic entrapment and its role in the evolution of the continental lithosphere:An example from the Precambrian of western Canada. Tectonics,2000,19,116-134.
    Rutter, E., Brodie, K. and Evans, P.. Structural geometry, lower crustal magmatic underplating and lithospheric stretching in the Ivrea-Verbano zone, northern Italy. Journal of Structural Geology,1995,15,647-662.
    Soyer, W., and Unsworth, M. J. Deep electrical structure of the northern Cascadia (British Columbia, Canada) subduction zone:Implications for the distribution of fluids, Geology,2006,34,53-56, doi:10.1130/G21951.1.
    Siripunvaraporn, W., Egbert, G., Lenbury, Y., et al. Three-dimensional Magnetotelluric inversion:Data-space method, Phys. Earth Planet. Inter.,2005,150,3-14, doi:10.1016/j.pepi.2004.08.023.
    Sibson, R.H. Fault rocks and fault mechanisms. J. geol. Soc. London,1977,133, 191-214.
    Sibson, R.H. Continental fault structure and the shallow earthquake source. Journal of the Geological Society, London,1983,140,741-767.
    Snyder, D.B and Kjarsgaard, B.A. Mantle roots of major Precambrian shear zones inferred from structure of the Great Slave Lake shear zone, northwest Canada, Lithosphere,2013,5, p.539-546.
    Tietze, K. and Ritter O. Three-dimensional magnetotelluric inversion in practice-the electrical conductivity structure of the San Andreas Fault in Central California, Geophysical Journal International,2013,195 (1),130-147.
    Tiirkoglu, E., Unsworth, M. J. and Pana, D. Deep electrical structure of northern Alberta (Canada):Implications for diamond exploration, Can. J. Earth Sci.,2009, 46,139-154, doi:10.1139/E09-009.
    Unsworth, M. J., Egbert, G. D. and Booker, J. R. High Resolution electromagnetic imaging of the San Andreas Fault in Central California, J. Geophys. Res.,1999, 104,1131-1150.
    Unsworth, M.J., Bedrosian, P., Eisel, M., et al. Along strike variations in the electrical structure of the San Andreas fault at Parkfield, California. Geophysical Research Letters,2000,27,3021-3024.
    Unsworth, M. and Bedrosian, P.A. Electrical resistivity structure at the SAFOD site from magnetotelluric exploration. Geophysical Research Letters,2004,31, 10.1029/2003 GL019405.
    Unsworth, M. and Bedrosian, P.A. On the geoelectric structure of major strike-slip faults and shear zones. Earth Planets Space,2004,56,1177-1184.
    Van Breemen, O., Thompson, P.H., Bostock, H.H. and Loveridge, W.D. Timing of plutonism in the northern Thelon tectonic zone and Taltson magmatic arc, Geol Assoc. Can. Prog, with Abstracts,1987,12,98.
    Vry, J., Powell, R., Golden, K.M., and Petersen, K. The role of exhumation in metamorphic dehydration and fluid production. Nature Geosci.,2010,3(1), 31-35.
    Wannamaker, P.E.. Comment on The petrologic case for a dry lower crust by Bruce W.D. Yardley and John W. Valley, Journal of Geophysical Research,105, 6057-6064; 10.1029/1999JB900324.
    Wannamaker, P.E.,2005. Anisotropy versus heterogeneity in Continental solid Earth electromagnetic studies:fundamental response characteristics and implications for physicochemical state, Surv. Geophys.,2000,26,733-765.
    Weckmann, U., Ritter, O. and Haak, V. A Magnetotelluric study of the Damara Belt in Namibia 2. internal structure of the Waterberg Fault/Omaruru Lineament. Physics of the Earth and Planetary Interiors,2003a,138,91-112, doi: 10.1016/S0031-9201 (03)00079-7.
    Wei W, Unsworth M, Jones A, et al. Detection of Widespread Fluids in the Tibetan Crust by Magnetotelluric Studies. Science,2001 (5517):716-719.
    Wibberley, C., and Shimamoto, T.. Internal structure and permeability of major strike-slip fault zones:the Median Tectonic Line in Mie Prefecture, Southwest Japan. Journal of Structural Geology,2003,25,59-78.
    Williams, R.A., Wood, S., Stephenson, W.J., et al. Surface seismic-refraction/reflection measurements of Potential Site Resonances and the Areal Uniformity of NEHRP Site Class D in Memphis, Tennessee, Earthquake Spectra,2003, v.19, p.159-189.
    Wu, X., Ferguson, I.J., and Jones, A.G. Magnetotelluric response and geo-electric structure of the Great Slave Lake shear zone along SNORCLE corridor 1A, Earth and Planetary Science Letters,2002,196,35-50.
    Yardley, B. W. D., and Valley, J. W. The Petrologic Case for a Dry Lower Crust, J. Geophys. Res.,1997,102,12,173-12,185.
    Yoshino T., F. Noritake, Unstable graphite films on grain boundaries in crustal rocks, Earth and Planetary Science Letters,2011,306,186-192.
    蔡军涛,陈小斌.大地电磁资料精细处理和二维反演解释技术研究(二)——反演数据极化模式选择.地球物理学报,2010,53(11):2703-2714.
    金胜,魏文博,叶高峰,等.班公—怒江构造带的电性结构特征——大地电磁探测结果.地球物理学报,2009,52(10):2666-2675.
    金胜,叶高峰,魏文博等.青藏高原东南部地壳导电性结构与断裂构造特征—下察隅-昌都剖面大地电磁探测结果.地学前缘,2006,13(5):408-415.
    金胜,叶高峰,魏文博,等.青藏高原西缘壳幔电性结构与断裂构造:札达-泉水湖剖面大地电磁探测提供的依据.地球科学,2007,32(4):474-480.
    柳建新,童孝忠,郭荣文,等.大地电磁测深法勘探—资料处理、反演与解释.科学出版社,2012.
    刘志强,陈宣华,刘刚,等.LITHOPROBE-—加拿大地球探测计划.地质学报,2010,84(6):927-938.
    石应骏,刘国栋,吴广耀,等.大地电磁测深法教程.地震出版社,1985.
    魏文博.我国大地电磁测深新进展及瞻望.地球物理学进展,2002,17(2):245-254.
    魏文博,陈乐寿,谭捍东,等.西藏中、南部壳内高导体与热结构特点—INDEPTH-MT提供的证据.现代地质,1997a,11(3):387-392.
    魏文博,陈乐寿,谭捍东,等.西藏高原大地电磁深探测——亚东—巴木错沿线地区壳幔电性结构.现代地质,1997b,11(3):366-374.
    魏文博,陈乐寿,谭捍东,等.关于印度板块俯冲的探讨——据INDEPTH-MT研究结果.现代地质,1997c,11(3):379-386.
    魏文博,金胜,叶高峰等.藏南岩石圈导电性结构与流变性——超宽频带大地电磁测深研究结果.中国科学(D)地球科学,2009,39(11):1591-1606.
    魏文博,金胜,叶高峰等.藏北高原地壳及上地幔导电性结构——超宽频带大地电磁测深研究结果.地球物理学报,2006a,49(4):1215-1225.
    魏文博,金胜,叶高峰等.西藏高原中、北部断裂构造特征:INDEPTH(III)-MT观测提供的依据.地球科学,2006b,31(2):257-265.
    叶高峰,金胜,魏文博.西藏高原中南部地壳与上地幔导电性结构.地球科学,2007,32(4):491-498.
    尹曜田,魏文博,叶高峰等.基于遗传算法的大地电磁阻抗张量分解方法研究.地球物理学报,2012,55(2):671-682,doi:10.6038/j.issn.0001-5733.2012.02.031.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700