用户名: 密码: 验证码:
地球电磁三维数值模拟的多重网格方法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球电磁勘探方法在能源及矿产资源勘探开发、水文工程地质勘察以及地壳上地幔深部研究中均发挥着重要作用。随着地质勘探目标日益复杂,三维精细结构探测成为迫切需求,导致复杂地下结构的地球物理三维数值模拟在计算效率上面临着越来越大的挑战。就目前地球电磁三维数值模拟的有限差分、有限元法而言,大规模非均匀网格、大的电性差异以及复杂的电性结构等因素,使得最后形成的大型线性方程组的系数矩阵条件数很差,严重影响着现有迭代解法的收敛速度(如不完全Cholesky共轭梯度法,即ICCG法)。多重网格(MG)方法为近年来计算数学领域发展的新的高效算法,在数学上被证明是求解线性椭圆型偏微分方程的最优解法,其收敛速度与网格节点数无关。但由于诸多困难,在地球电磁三维数值模拟中的应用尚极少见。
     论文首先针对地球物理中常见的Poisson方程及Helmholtz方程进行了几何多重网格法数值模拟,并与目前应用于电磁三维数值模拟中较好的ICCG迭代算法进行比较。结果表明,多重网格算法收敛速度均与网格节点数或网格尺度无关;而ICCG法的收敛速度则随网格节点数增加迅速减慢。几何多重网格法的计算速度比ICCG法要快数倍,证明了多重网格法三维数值模拟的高效性。
     然而以上几何多重网格(GMG)法应用于直流电阻率三维数值模拟遇到很大困难。点源直流电阻率法的数值模拟是一个开域的问题,三维正演中的网格高度非均匀,同时大的电性差异(不连续电性界面)、点电源的奇异性等问题都使得几何多重网格法无法获得其固有的高效性。Zhebel(2006)在其数学系博士论文中改进了传统的几何多重网格法,应用基于矩阵的多重网格法求解带电性差异的直流电阻率三维正演问题,但收效甚微。
     代数多重网格(AMG)法近10年发展非常快,在计算流体力学领域的应用表明该方法在非均匀网格和物性系数不连续的情况下依旧能保持其固有的收敛性。论文对直流电阻率三维数值模拟的有限差分格式进行求解,针对大规模非均匀网格、大的电性差异等主要问题进行了研究,实现了电阻率三维数值模拟的代数多重网格算法,并与ICCG法进行系统的比较。大量的模型计算结果表明,AMG算法收敛速度与网格节点数、计算区域、网格精细度、电性差异及模型尺寸等因素基本无关,迭代收敛次数均在7至8次左右,其计算时间随网格节点数增加基本呈较低的线性增长;ICCG法收敛曲线则呈振荡型,受上述各种因素的影响,其迭代收敛次数从数百次变化至数千次,计算时间随网格节点数增加呈非线性快速增长。一般大规模网格情况下,单个点源的三维数值模拟,AMG法的计算速度约为ICCG法的3至4倍;对多个点源进行求解时,如21个点电源,AMG方法的计算速度约为ICCG法的9倍,优势将更加明显。
     在电阻率三维正演的代数多重网格快速算法基础上,将其应用于巷道超前探测的三维数值模拟研究中。近年来,国内煤矿屡次发生透水矿难,造成巨大的人员伤亡和财产损失,直流电阻率巷道超前探测面临着迫切的生产需求,然而由于可利用的观测空间有限、巷道掘进面前方异常信号弱以及巷道空腔和旁侧异常体的影响等诸多问题,目前仍是国际上的研究难点。本文在大量地下巷道模型的电阻率三维数值模拟基础上,总结分析了巷道掘进面前方异常体真实位置与观测得到的视电阻率曲线极值点位置之间的关系,首次给出了定量估计巷道掘进面前方异常体真实位置的预测模型。文中还分析了异常体尺度对视电阻率异常曲线的影响,据此,可以参照理论预测模型,定性推断前方异常体的大小。同时,对巷道旁侧异常体的影响及定位也进行了细致的研究。研究结果对巷道超前探测的生产实践有重要的理论指导意义。
     多相介质的有效电导率研究在测井资料定量解释中非常重要,也是建立壳幔深部电导率模型的基础。本文应用电阻率三维数值模拟代数多重网格快速算法,发展了一种新的多相介质有效电导率反演计算方法,在两相介质电导率差异变化很宽(达108)的情况下,大量模型的有效电导率计算结果与有限元数值模拟ElecFEM3D的计算结果基本一致,表明本文的计算结果是可靠的。
     上述巷道超前探测和多相介质有效电导率计算的应用研究中,均涉及大规模三维网格、大电性差异的大量模型的电阻率三维数值模拟,工作量巨大。因此,电阻率三维数值模拟代数多重网格快速算法发挥了重要作用。
     论文最后研究了大型复系数矩阵的代数多重网格算法并探索其在大地电磁三维数值模拟中的应用。结果表明,代数多重网格(AMG)算法在解大型复数方程组时可以获得了多重网格算法的最优效率,但应用于大地电磁三维数值模拟还需要对AMG更深层次的数学问题进行研究才有可能获得更好的效果。
Geo-electromagnetic methods are widely used and play an important role in engineering geological survey, mining exploration and detection of the deep structure of earth’s crust and mantle. With the growing complexity of the exploration targets, the requirements for investigation of 3D fine structure become more and more urgent, which greatly challenges the efficiency of 3D geophysical numerical modeling for complex underground structures. However, the convergence rates of standard iteration solvers (such as incomplete cholesky conjugate gradient, abbr. ICCG) for forward modeling will be severely affected by large scale of non-uniform grids, big conductivity contrast, and complex electrical structure and so on, since the condition number of the coefficient matrix becomes worse. Multigrid method is of high numerical efficiency in solving linear equations arisen from boundary value problem of partial differential equation (PDE), which is newly developed by the computational mathematicians in the past decades, but seldom used in 3D geo-electromagnetic modeling so far.
     First, the geometric multigrid (GMG) method is used to solve linear equation systems arisen from 3D Poisson equation and 3D Helmholtz equation, and compared to ICCG method that widely used in 3D geo-electromagnetic modeling at present. The convergence rate of GMG shows independency of the number of unknowns, while ICCG is apparently slow down as the number of unknowns growing. Moreover, GMG algorithm is much faster than ICCG algorithm in the same conditions, showing its superior efficiency.
     However, the GMG method mentioned above has difficulties when applied to 3D DC resistivity modeling. The modeling of DC resistivity method with point source is an open boundary problem, with highly non-uniform 3D grids. Furthermore, big conductivity contrast (discontinuous electrical interface) and singularity of point source are also inevitable. Because of these problems, the GMG method tends to lose its intrinsic high efficiency. Zhebel(2006) improves the standard GMG method in her mathematical PH.D. thesis, using matrix-dependent multigrid (MDMG) method to solve 3D DC resistivity modeling problem with conductivity contrast, it seems that the convergence performance is not good enough.
     Algebraic multigrid (AMG) method is developing very fast in the past ten years, its application in computational fluid mechanics shows it remains its intrinsic high efficiency with non-uniform grids and discontinuous coefficients. In this paper, we developed a fast 3D DC resistivity modeling algorithm using AMG to solve large linear equation system derived from finite difference simulation, and systematically compared our results with those from ICCG. Numerical calculations for a large number of models show the convergence rate of AMG algorithm is independent of the number of unknowns or the grid size, the conductivity contrast, the area of computation and the size of the inhomogeneity. The iteration number for AMG to reach convergence is around 7 to 8 times, and its computational time increases slowly and linearly as the number of unknowns grows. While the convergence curves of ICCG algorithm are oscillating, it requires hundreds or thousands of iterations to reach convergence with the influences mentioned above, and its computational time increases fast and non-linearly as the number of unknowns grows. AMG method is about 2 to 3 times faster than ICCG method for 3D DC resistivity modeling with a single point source, furthermore, AMG is about 8 times faster than ICCG for multi-sources case (21 sources for example), shows much more efficiency. Based on the fast algebraic multigrid solver, 3D DC resistivity modeling is applied to tunnel forward prediction, which is very important to the security of workers in underground mining engineering. Because of limit investigation space, weak anomalous signal in front of the tunnel, and the influences of tunnel cavity itself and the anomalies around the tunnel, the tunnel forward prediction remains a challenging task. In this paper, we carry out 3D DC resistivity modeling for a large number of underground tunnel models and analyze the relationship between the actual position of the anomaly in front of the tunnel and the position of the characteristic point(e.g. minimum point) on apparent resistivity curve. A quantitative prediction model is established, for the first time, to predict the actual position of the anomaly in front the tunnel. The influence of the size of the anomaly on observed apparent resistivity is also investigated, which could be used to qualitatively estimate the size of the anomaly in front of the tunnel. Meanwhile, a detail study on the identification and location of the anomalies around the tunnel is also carried out. The result would be very useful for the practice of tunnel forward prediction.
     The effective conductivity of complex multi-phase medium is important to the interpretation of logging data, and also it is the foundation to simulate conductivity model of the deep earth’s crust and mantle which is composed of multi-phase minerals. A new method is developed to calculate the effective conductivity of the multi-phase medium using 3D resistivity modeling and inversion. With a wide range of variation of conductivity contrast (up to 10~8) of two-phase medium, the effective conductivities of two-phase medium calculated by our method are in good agreement with those from finite element modeling program ElecFEM3D, which shows our results is reliable.
     Both applications in tunnel forward prediction and effective conductivity of multi-phase medium involve large scale of 3D non-uniform grids, big conductivity contrast and 3D resistivity modeling for a large number of models, requiring huge amount of numerical works. Thus, fast AMG solver for 3D resistivity modeling plays a very important role in both applications.
     Finally, algebraic multigrid is applied to solve large linear equations with complex coefficients and consequently 3D magnetotelluric(MT) modeling using AMG is also investigated. Our results show that AMG algorithm obtains its intrinsic high efficiency for solving large linear equations with complex coefficients. However, we need a deep probe into the mathematical problems of AMG to get a better performance for solving 3D MT modeling.
引文
程久龙,王玉和,于师建等,巷道掘进中电阻率法超前探测原理与应用.煤田地质与勘探,28(4):60-62,2000.
    底青云,王妙月,稳定电流场有限元法模拟研究[J].地球物理学报,41(2):252-260,1998.
    傅良魁,电法勘探教程[M].北京:地质出版社,1983.
    傅承义,陈运泰,祁贵仲.地球物理学基础[M].北京:科学出版社,1985.
    韩光,庄德玉等,矿井直流电法超前预报球体构造的初步理论及沙槽实验研究.煤炭工程,3:69-72,2009.
    韩江涛,起伏地表三维电阻率法数值模拟与分析[D].博士论文,吉林大学,2009
    韩德品,张天敏,石亚丁等,井下单极——偶极直流电透视原理及解释方法.煤田地质与勘探,25(5):32-35,1997.
    胡祖志,胡祥云,大地电磁三维反演方法综述[J].地球物理学进展, 20(1), 2005.
    胡祖志,胡祥云,何展翔,大地电磁非线性共轭梯度拟三维反演[J].地球物理学报, 49(4), 2006.
    黄俊革,阮百尧,鲍光淑,齐次边界条件下三维地电断面电阻率有限元数值模拟法[J].桂林工学院学报,22(1):11-14,2002.
    黄俊革,阮百尧,三维电阻率测深有限元正演模拟中的边界影响[J].石油地球物理勘探,39:71-75,2004.
    黄俊革,鲍光淑,阮百尧,坑道直流电阻率测深异常研究.地球物理学报,48(1):222-228,2005.
    黄俊革,王家林,阮百尧,三维高密度电阻率E_SCAN法有限元模拟异常特征研究[J].地球物理学报,49(4):1206-1214,2006(a).
    黄俊革,王家林,阮百尧,坑道直流电阻率法超前探测研究.地球物理学报,49(5):1529-1538,2006(b).
    黄俊革,阮百尧,王家林,坑道直流电阻率法超前探测的快速反演.地球物理学报,50(2):619-624,2007.
    黄晓葛,白武明,兰从欣,计算部分熔融岩石电导率方法的综述,地球物理学进展,20(3):635-639,2005.
    李剑浩,混合物电导率公式及其在测井解释中的应用,地球物理学报,36(5):674-682,1993.
    李剑浩,混合物整体电导率和各成分电导率的关系,地球物理学进展,13(2):53-59,1998.
    李剑浩,混合物整体电导率的研究,地球物理学报,48(6):1406-1411,2005.
    李剑浩,用混合物电导率公式改进双水模型的公式,测井技术,31(1),2007.
    李晓波,朴化荣.两层大地中三维体的激发极化与电阻率响应的积分方程模拟[J]. 地球物理学报, 31(3): 342-352, 1988.
    李学军,煤矿井下定点源梯度法超前探测试验研究,煤田地质与勘探,20(4):59-62,1992.
    李玉宝,矿井电法超前探测技术.煤炭科学技术,30(2),2002.
    刘斌,李术才,李树忱,钟世航,隧道含水构造直流电阻率法超前探测研究.岩土力学,30(10):3093-3101,2009.
    刘超群.多重网格法及其在计算流体力学中的应用[M].北京:清华大学出版社,1995.
    刘国兴,电法勘探原理与方法[M].北京:地质出版社,2003.
    刘金世,薛庆忠,导电高分子复合材料的有效电导率模型,石油大学学报(自然科学版),29(1),2005.
    刘明新,陈国华,张曦,唐永福,全非均质贴井壁电阻率测井的三维有限元模拟[J].大庆石油地质与开发,11(4):62-67,1992.
    刘青雯,井下电法超前探测方法及其应用.?煤田地质与勘探,29(5):60‐62,2001.?
    刘树才,刘志新,姜志海,岳建华,矿井直流电法三维正演计算的若干问题.物探与化探,28(2):170-176,2004.
    刘伊克,常旭.盆地模拟水动力油气二次运移隐式多重网格法[J].地球物理学报,1998, 41(3): 342-348.
    刘志新,许新刚,岳建华,矿井电法三维有限元正演模拟_直流电透视方法技术研究.物探化探计算技术,25(4):302-307,2003.
    鲁晶津,吴小平,Spitzer K.,三维泊松方程数值模拟的多重网格方法[J].地球物理学进展,24(1):154-158,2009.
    鲁来玉,张碧星,鲍光淑,电阻率随位置线性变化时的三维大地电磁模拟[J].地球物理学报, 46(4): 568-575, 2003.
    吕玉增,阮百尧,复杂地形条件下四面体剖分电阻率三维有限元数值模拟[J].地球物理学进展,21(4):1302-1308,2006.
    马晓冰,孔祥儒,刘宏兵,青藏高原东北部地区地壳电性结构特征,地球物理学报,48(3),2005.
    毛先进,钱家栋,点源两层大地三维地电模型视电阻率边界元解[J].西北地震学报,16(1):1-11,1994.
    毛先进,鲍光淑,宋守根,半空间中多个三维体电阻率响应的边界积分方程模拟[J]. 地球物理学报, 39(6): 823-834, 1996.
    明平剑,张文平,朱明刚,一种新的代数多重网格法及其在CFD中的应用[J],武汉理工大学学报,2009,33(1):87-90.
    强建科,罗延钟,三维地形直流电阻率有限元法模拟[J].地球物理学报,50(5):1606-1613,2007.
    强建科,阮百尧,周俊杰,三维坑道直流聚焦法超前探测的电极组合研究.地球物理学报,53(3):695-699,2010.
    屈有恒,张贵宾,赵连锋,文战久,井地有限线源三维电阻率反演研究.地球物理学进展,22(5):1393-1402,2007.
    阮百尧,熊彬,徐世浙,三维地电断面电阻率测深有限元数值模拟[J].地球科学,26(1):73-77,2001.
    阮百尧,熊彬,电导率连续变化的三维电阻率测深有限元模拟[J].地球物理学报,45(1):131-138,2002.
    阮百尧,邓小康,刘海飞等,坑道直流电阻率超前聚焦探测新方法研究.地球物理学报,52(1):289-296,2009.
    宋延杰,吕桂友,王春燕,李鹏举,混合泥质砂岩有效介质通用HB电阻率模型研究,石油地球物理勘探,38(3):275-280,2003.
    谭捍东,余钦范,John Booker,魏文博,大地电磁法三维交错采样有限差分数值模拟[J].地球物理学报,46(5):705-711,2003.
    谭捍东,魏文博,邓明,金胜,大地电磁法张量阻抗通用计算公式[J].石油地球物理勘探,39(1):113-116,2004.
    汤井田,肖晓,杜华坤,王武,ANSYS在直流电法正演中的应用[J].地球物理学进展,21(3):987-992,2006.
    田宪谟,黄兰珍,寸树苍,点源场电阻率法三维地形改正的边界元法[J].成都地质学院学报,13(3):170-175,1986.
    田宪谟,黄兰珍,寸树苍,任意三维地电模型视电阻率异常的边界元法数值解[J].物探与化探,13(2):136-143,1989.
    田小波,吴庆举,曾融生.弹性波场数值模拟的隐式差分多重网格算法[J].地球物理学报, 2004, 47(1): 81-87.
    宛新林,席道瑛,高尔根, LANCZOS迭代算法及其在三维地电场数值模拟计算中的应用研究[J].物探化探计算技术,26(1):47-52,2004.
    王大庆,许新刚,岳建华,均匀围岩介质中点源电流场的巷道影响模拟研究.中国煤田地质,15(2):55-58,2003.
    王国华,杨居友,于景泉,井下直流电法在掘进工作面超前探测中的应用.煤炭科学技术,31(专辑):42-45,2003.
    王进杰,直流电法在煤矿巷道找水中的应用,河北煤炭建筑工程学院学报,1:28-32,1995.
    王永胜,井下直流电法解释软件系统.煤田地质与勘探,26(增刊):52-54,1998.
    王志刚,何展翔,刘昱,井地直流电法三维数值模拟及异常规律研究.工程地球物理学报,3(2):87-92,2006a.
    王志刚,何展翔,魏文博,井地直流电法三维数值模拟中若干问题研究.物探化探计算技术,28(4):322-327,2006b.
    吴小平,徐果明,李时灿,利用不完全Cholesky共轭梯度法求解点源三维地电场[J]. 地球物理学报, 41(6): 848-855, 1998.
    吴小平,徐果明,李时灿,解大型稀疏方程组的ICCG方法及其计算机实现[J],煤田地质与勘探,1999,27(6):54-55.
    席玉萍,代数多重网格法在直流电法有限元模拟中的应用.硕士论文,中南大学,2009.
    谢鸿森,侯渭,周文戈,地幔中水的存在形式和含量,地学前缘,12(1):55-60,2005.
    徐果明,反演理论及其应用[M].北京:地震出版社,2003.
    徐世浙,地球物理中的有限单元法[M].北京:科学出版社, 1994.
    徐世浙,地球物理中的边界单元法[M].北京:科学出版社, 1995.
    徐世浙,倪逸,复杂地电条件下点源三维电阻率模拟的新方法[J].物探化探计算技术,15(1):13-20,1991.
    杨庭伟,阮百尧,周丽,段长生,聚焦电流法隧道超前探测导电纸模拟.矿产与地质,23(4):362-366,2009.
    游秀珍,吴小平,王威,余勇,鲁晶津,直流电阻率法的深部结构分辨_三维模型的二维反演[J].煤田地质与勘探,38(2):50-53,58,2010.
    岳建华,李志聃,巷道空间对矿井电测曲线影响的模型实验研究,煤田地质与勘探,21(2):56-59,1993.
    岳建华,李志聃,矿井直流电法及在煤层底板突水探测中的应用,中国矿业大学学报,26(1):94-98,1997.
    岳建华,李志聃,矿井直流电法勘探中的巷道影响.煤炭学报,24(1):7-10,1999(a).
    岳建华,刘树才,矿井直流电法勘探.徐州:中国矿业大学出版社,1999(b).
    岳建华,刘志新,井_地三维电阻率成像技术.地球物理学进展,20(2):407-411,2005.
    岳文正,陶果,朱克勤等,饱和多相流体岩石电性的格子气模拟,地球物理学报,47(5):905-910,2004.
    岳文正,李征,朱克勤等,格子玻尔兹曼方法计算混合物整体电导率,地球物理学报,48(3),2005.
    张辉,李桐林,董瑞霞,体积分方程法模拟复电阻率三维体电磁响应[J].煤田地质与勘探, 34(1): 70-74, 2006.
    张乃宏,李定鹏,矿井电法探测突水陷落柱在任楼煤矿的应用.煤田地质与勘探,31(6):56-57,2003.
    张平松,刘盛东,曹煜,坑道掘进立体电法超前预报技术研究.中国煤炭地质,21(2):50-53,2009.
    张彦湘,韩德品,赵镨,矿井电磁技术在煤矿安全领域的应用现状及进展.中国煤炭地质,20(12):60-63,2008.
    赵国泽,陈小斌,汤吉,中国地球电磁法新进展和发展趋势[J].地球物理学进展, 22(4): 1171-1180, 2007.
    赵国泽,汤吉,詹艳等,青藏高原东北缘地壳电性结构和地形变形关系的研究,中国科学(D辑),34(10),2004.
    周熙襄,钟本善,严忠琼,麦玉国,有限单元法在直流电法勘探正问题中的应用[J].物探化探计算技术,3:57-65,1980.
    周熙襄,直流电法正演计算中的有限单元法_第三讲[J].物化探电子计算技术:65-76,1982.
    周熙襄,钟本善,严忠琼,江玉乐,点源二维有限元技术应用的若干问题[J].物化探计算技术,7(3):226-233,1985.
    周熙襄,钟本善.电法勘探数值模拟技术[M].四川科学技术出版社, 1986.
    Adams M.F., Algebraic multigrid methods for direct frequency response analyses in solid mechanics. Comput. Mech., 39:497-507, 2007.
    Alcouffe R. E., Brandt A., Dendy J. E., and Painter J. W.. The multi-grid method for the diffusion equation with strongly discontionuous coefficients. SIAM J. Sci. Stat. Comput., 2(4): 430–454,1981.
    Alumbaugh D.L., Newman G.A., Prevost L., Shadid J.N., Three-dimensional wideband electromagnetics modeling on massively parallel computers. Radio Science, 31(1): 1~23, 1996.
    Anderson W.L., Computation of Green's tensor integrals for three-dimensional electromagnetic problems using fast Hankel transforms. Geophysics, 49(10): 1754~1759, 1984.
    Anderson W.L., A hybrid fast Hankel transform algorithm for electromagnetic modeling. Geophysics, 54(2): 263~266, 1989.
    Archie G.E., The electrical resistivity log as an aid in determining some reservoir characteristics, Trans. Am.Inst. Min. Metall. Pet. Eng. 146 (1942) 54-62.
    Aruliah D.A., Ascher U.M., Haber E., Oldenburg D., A method for the forward modeling of 3-D electromagnetic quasi-static problems. Mathematical Models and Methods in Applied Sciences, 11(1): 1~21, 2001.
    Aruliah, D., and U. Ascher, Multigrid preconditioning for time harmonic maxwell’s equations in 3D[J], SIAM Journal of Scientific Computing, 2002, 24: 702–718.
    Avellaneda M., Cherkaev A.V., Lurie K.A., Milton G.M., On the effective conductivity of polycrystals and a 3D phase-interchange inequality. J. Appl. Phys., 63(10): 4989-5003,1988.
    Axelsson O., Vassilevski P.S., Algebraic multilevel preconditioning methods I, Numer. Math. 56 (1989) 157–177.
    Axelsson O., Vassilevski P.S., Algebraic multilevel preconditioning methods II, SIAM Numer. Anal. 27 (1990)1569–1590.
    Axelsson O., Neytcheva M., Algebraic multilevel iteration method for Stieltjes matrices, Numer. Linear Algebra Appl. 1 (3) (1994) 213–236.
    Badea E.A., Everett M.E., Newman G.A., Biro O., Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials. Geophysics, 66(3): 786~799, 2001.
    Bailey R.C., Cheesman S., A multigrid solver for inductive limit EM responses in orebody delineation. SEG Expanded Abstracts 15, 265 ,1996.
    Balberg I., Binenbaum N., Computer study of percolation threshold in a two-dimensional anisotropic system of conducting sticks. Physical Review B, 28(7): 3799-3812,1983.
    Balberg I., Binenbaum N., Wagner N., Percolation thersholds in the 3D sticks system. Physical Review Letters, 52(17): 1465-1468,1984.
    Bao K., Axell J., Grimvall G., Electrical conduction in checkerboard geometries, Phys. Rev. B 41(7):4330-4333, 1990.
    Beekmans and Heyne, 1976. N.M. Beekmans and L. Heyne, Correlation between Impedance, Microstructure, and compositions of Calcia-Stabilized Zirconia. Electrochim. Acta 21 (1976), pp. 303–310.
    Berg C.R., A simple, effective-medium model for water saturation in porous rocks. Geophysics,60(4):1070-1080, 1995.
    Bergmann T., Robertsson J.O.A., Hlliger K., Finite-difference modeling of electromagnetic wave propagation in dispersive and attenuating media. Geophysics, 63(3): 856~867, 1998.
    Bibby H.M., Direct current resistivity modeling for axially symmetric bodies using the finite element method. Geophysics, 43(3): 550~562, 1978.
    Bigalke J., Investigation of the conductivity of random networks, Physica A, 272, 281–293, 1999.
    Bigalke J., A study concerning the conductivity of porous rocks, Phys.Chem. Earth A, 25, 189– 194, 2000.
    Bigalke J., Analysis of conductivity of random media using dc, MT, and TEM, GEOPHYSICS, 68(2): 506–515, 2003.
    Bing Z., Greenhalgh S.A., Finite element three-dimensional direct current resistivity modelling-- accuracy and efficiency considerations. Geophys. J. Int., 145: 679~688, 2001.
    Bolfan-Casanova N. Water in the Earth’s mantle. Mineral Mag, 69: 229-257, 2005.
    Braess D., Towards Algebraic Multigrid for Elliptic Problems of Second Order. Computing, 1995, 55: 379~393.
    Brandt A. Multi-level adaptive solutions to boundary-value problems[J]. Math. Comp , 1977, 31(138): 333–390.
    Brandt A., McCormick S., Ruge J., Algebraic multigrid (AMG) for sparse matrix equations[M]. Sparsity and its Application, 1985.
    Brandt A., Algebraic multigrid theory: The symmetric case. Appl. Math. Comput., 1986, 19(1-4): 23~56
    Brandt A., General highly accurate algebraic coarsening schemes, Proceedings of the Ninth Copper Mountain Conference on Multigrid Methods, Copper Mountain, April 11–16, 1999.
    Brewitt-Taylor C.R., Weaver J.T., On the finite difference solution of two-dimensional induction problems. Geophys. J. R. astr. Soc., 47: 375~396, 1976.
    Brezina M., Falgout R., Maclachlan S., Manteuffel T., McCormick S., Ruge J., Adaptive Algebraic Multigrid Methods. SIAM J. Scientific Computing, 27(4), 2004. Briggs W. L. A Multigrid Tutorial[M]. SIAM, Philadelphia, 1987.
    Brovelli A., Cassiani G., Dalla E., et al, Electrical properties of partially saturated sandstones: Novel computational approach with hydrogeophysical applications. Water Resources Research, 41, 2005.
    Brovelli A., Cassiani G., Effective permittivity of porous media- a critical analysis of the complex refractive index model. Geophysics Prospecting, 56: 715-727, 2008.
    Bruggeman D.A.G., Berechnung verschiedener physikalischer konstanten von heterogenen substanzen, Ann. Physik, 24, 636-664,1935.
    Bunks C., Saleck F.M., Zaleski S., Chavent G. Multiscale seismic waveform inversion[J]. Geophysics, 60(5): 1457-1473, 1995.
    Bussian A.E., Electrical conductance in a porous medium. Geophysics, 48(9):1258-1268, 1983. Caginiard L., Principle of the magneto-telluric method, a new method of geophysical prospecting. Ann. De Geophys., Vol.9,95-125,1953.
    Champagne N.J., Berryman J.G., Buettner H.M., FDFD: A 3D Finite-Difference Frequency-Domain Code for Electromagnetic Induction Tomography. Journal of Computational Physics, 170: 830~848, 2001.
    Chen, L., J.R. Booker, A.G. Jones,et al. Electrically conductive crust in southern Tibet from INDEPTH magnetotelluric surveying, Science, 274, 1694-1696,1996.
    Clavier C., Coates G., Dumanoir J., The theoretical and experimental bases for the‘Dual Water’model for the interpretation of shaly sands.52nd Annual Fall Technical Conference and Exhibition of the SPE of AIME, Denver, October 9-12, 1977.
    Cleary A.J., Falgout R.D., Henson V.E., Jones J.E., Manteussel T.A., McCormick S.F., Miranda G.N., Ruge J.W.,Robustness and scalability of algebraic multigrid, SIAM J. Sci. Comput., special issue on the“Fifth Copper MountainConference on Iterative Methods”, 1998.
    Clees T., Stueben K., Algebraic Multigrid for Industrial Semiconductor Device Simulation. Challenges in scientific computing—CISC 2002 by Eberhard Baensch. Available from http://www.scai.fraunhofer.de/fileadmin/download/samg/paper/Clees_Device_Simulation.pdf
    Coggon J.H., Electromagnetic and electrical modeling by the finite element method. Geophysics, 36(1): 132~155, 1971.
    Commer M., Newman G., A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources. Geophysics, 69(5): 1192~1202, 2004.
    Commer M., Newman G.A., An accelerated time domain finite difference simulation scheme for three-dimensional transient electromagnetic modeling using geometric multigrid concepts [J]. Radio Science, Vol 41, RS3007, 2006.
    Coverdale R.T., Jennings H.M., Garboczi E.J., An improved model for simulating impedance spectroscopy. Computational Materials Science, 3: 465-474,1995.
    Daniels J.J., Three-dimensional resistivity and induced-polarization modeling using buried electrodes. Geophysics, 42(5):1006~1019, 1977.Day D., Heroux M., Solving complex-valued linear systems via equivalent real formulations. Sandia repart, 2000.
    Das U.C., Parasnis D.S., Resistivity and induced polarization responses of arbitrarily shaped 3-D bodies in a two-layered earth. Geophysical Prospecting, 35 (1), 98-109, 1987.
    Day D., Heroux M., Solving complex-valued linear systems via equivalent real formulations. Sandia repart, 2000.
    Day D., Bochev P., Pendley K., Weiss C., Robinson A., Geophysical subsurface imaging and interface identification. Sandia Report, 2005.
    Dey A, Morrison H.F., Resistivity modeling for arbitrarily shaped three-dimensional structures. Geophysics, 44(4): 753~780, 1979a.
    Dey A., Morrison H.F., Resistivity modeling for arbitrarily shaped two-dimensional structures. Geophysical Prospecting, 27(1): 106–136, 1979b.
    Dieter K, Paterson N R, Grant F S. IP and resistivity type curves for three-dimensional bodies, Geophysics, 1969, 34: 615~632.
    Falls S.D., Young R.P., Acoustic emission and ultrasonic-velocity methods used to characterise the excavation disturbance associated with deep tunnels in hard rock. Tectonophysics, 289:1-15, 1998.
    Fang S., Gao G., Torres-Verdin C., Efficient 3D electromagnetic modelling in the presence of anisotropic conductive media, using integral equations. ASEG Extended Abstracts, 2003.
    Fedorenko R.P. The speed of convergence of one iterative process[J]. Zh. Vych. Mat, 1964, 4(5): 559–564.
    Feigh S., Clemens M., Weiland T., Geometric Multigrid Method for Electro and Magretostatic Field Simulation Using the Conformal Finite Integration. Available from http://www.mgnet.org/mgnet/conferences/CopperMtn03/Papers/feigh.pdf
    Fiori A., Jankovic I., Dagan G. Effective Conductivity of Heterogeneous Multiphase Media with Circular Inclusions, PHYSICAL REVIEW LETTERS 94, 224502 (2005).
    Fox R.C., Hohmann G.W., Killpack T.J., Rijo L., Topographic effects in resistivity and induced-polarization surveys. Geophysics, 45(1): 75~93, 1980.
    Franke A., B?rner R.U., Spitzer K., 2D Finite Element modelling of plane-wave diffusive time-harmonic electromagnetic. IAGA WG I.2 on Electromagnetic Induction in the Earth, Proceedings of the 17th Workshop, Hyderabad, India, October 18-23, 2004.
    Franke A., B?rner R.U., Spitzer K., Adaptive unstructured grid finite element simulation of 2D magnetotelluric fields for arbitrary surface and seafloor topography. Geophys. J. Int., 171: 71~86, 2007.
    Garboczi E.J., Thorpe M.F., DeVries M.S., Day A.R., Universal conductivity curve for a plane containing random holes. Physical Review A, 43(12): 6473-6482,1991.
    Garboczi E. J., Finite Element and Finite Difference Programs for Computing the linear Electric and Elastic Properties of Digital Images of Random Materials, NISTIR 6269, United States Department of Commerce Technology Administration, National Institute of Standards and Technology.
    Glover P.W. J.,Hole M. J., Pous J.A modified Archie’s law for two conducting phases.EarthPlanet Sci Lett,2000,180(3-4):369-383.
    Sterck H.D., Falgout R.D., Nlolting J.W., Yang U.M., Distance-two interpolation for parallel algebraic multigrid. Numerical Linear Algebra with Applications, 15(2): 115-139, 2008.
    Gravemeier V., Gee M.W., Kronbichler M., Wall W.A., An algebraic variational multiscale–multigrid method for large eddy simulation of turbulent flow. Computer Methods in Applied Mechanics and Engineering, 199(13-16):853-864, 2010.
    Groot-Hedlin C. de, Finite-difference modeling of magnetotelluric fields Error estimates for uniform and nonuniform grids. Geophysics, 71(3): 97~106, 2006.
    Gu G.Q., Yu K.W., Effective conductivity of nonlinear composites. Physical Review B, 46(8): 4502-4507,1992.
    Gueguen Y. and V. Palciauskas, Introduction to the Physics of Rocks, Princeton University Press, Princeton, NJ, 1994.
    Günther T., Rücker C., Spitzer K., Three-dimensional modelling and inversion of dc resistivity data incorporating topography– II. Inversion. Geophys. J. Int., 166: 506~517, 2006.
    Haber E., Ascher U.M., Fast Finite Volume Simulation of 3D Electromagnetic Problems with
    Highly Discontinuous Coefficients. SIAM J. Sci. Comput., 22(6): 1943~1961, 2001.
    Hackbusch W. Multigrid Methods and Application[M]. Berlin: Springer-Verlag, 1985.
    Hakobyan Y., Papoulia K. D., Grigoriu M. D., Physical and geometrical percolations of effective conductivity on a lattice, Phys. Rev. B 76, 144205(2007)
    Hanai T., Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsions. KolloidZeitschrift, 171:23-31, 1960.
    Hanai T., Dielectric theory on the interfacial polarization for two-phase mixtures. Bull. Inst. Chem. Res., Kyoto Univ., 39:341-367, 1961.
    Hashin Z., Shtrikman S., A variational approach to the theory of e?ective magnetic permeability of multiphase materials, J. Appl. Phys. 33 (1962) 3125-3131.
    Hautot S., Tarits P., Effective electrical conductivity of 3-D porous media. Geophysical Research Letters, 29(14): 1669,2002.
    Hohmann G.W., Electromagnetic scattering by conductors in the earth near a line source of current. Geophysics, Vol 36, 101-131, 1971.
    Hohmann G.W., Three-dimensional induced polarization and electromagnetic modeling. Geophysics, 40(2), 309-324, 1975.
    Hohmann G.W., Three-dimensional EM modeling. Geophysical Surveys, 6, 27-53, 1983. Holcombe H.T., Jiracek G.R., Three-dimensional terrain corrections in resistivity surveys. Geophysics, 49(4): 439~452, 1984.
    Holland K. G., Ahrens T. J. Melting of (Mg, Fe)2SiO4 at the Core-Mantle Boundary of the Earth. Science 275(5306): 1623– 1625,1997.
    Huang X. G., Xu Y.S., Karato S., Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite, Nature, 434: 746-749, 2005.
    Hursán G., Zhdanov M.S., Contraction integral equation method in three-dimensional electromagnetic modeling. Radio Science, 37, 1089-1092, 2002.
    Hvozdara M., Kaikkonen P., An integral equations solution of the forward D.C. geoelectric problem for a 3-D body of inhomogeneneous conductivity buried in a halfspace. Journal of Applied Geophysics, 39, 95-107, 1998.
    James B.A., Efficient microcomputer-based finite-difference resistivity modeling via Polozhii decomposition. Geophysics, 50(3): 443~465, 1985.
    Jepsen A.F., Numerical modeling in resistivity prospecting. Ph.D. thesis, University of California, Berkeley, 1969.
    Ji S.C. A generalized mixture rule for estimating the viscosity of solid-liquid suspensions an d mechanical pro perties of polyphase rocks and composite materials, J. Geophys. Res, 109:B10207, 2004a.
    Ji S.C. Generalized means as an approach for predicting Young~moduli of multiphase materials, Mater. Sci. Eng. A366: l95-20l, 2004b
    Kaltenbacher M., Reitzinger S., Algebraic multigrid for static nonlinear 3D electromagnetic field computations. Report 2000, Available from http://www.sfb013.uni-linz.ac.at/reports/2000/ps-files/sfb00-07.ps.gz
    Karato S. 1990. The role of hydrogen in the electrical conductivity of the upper mantle. Nature , 347: 272-273.
    Key K., Weiss C., Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example. Geophysics, 71(6): 291~299, 2006.
    Kuo J.T., Cho D., Transient time-domain electromagnetic. Geophysics, 45(2): 271~291, 1980.
    Lahaye D., Gersem H., Vandewalle S., Hameyer K., Algebraic Multigrid for Complex Symmetric Systems. IEEE Trans. On Magnetics, 36(4):1535-1538,2000.
    Landauer R. The electrical resistance of binary metallic mixtures, J. Appl. Phys. 23:779-784,1952.
    Lanteri S., Raffourt C., Strategies for Reducing Computing Time of Nuclear Waste Management Simulations Using the PORFLOW Software [J]. Computational Geosciences, 8: 203-215, 2004.
    Leahy G. M., Bercovici D. On the dynamics of a hydrous melt layer above the transition zone. J. Geophys. Res., 112(B7), 2007.
    Lebovka N. I., Tarafdar S., Vygornitskii N. V. Computer simulation of electrical conductivity of colloidal dispersions during aggregation, PHYSICAL REVIEWE 73, 031402(2006).
    Lee K.H., Pridmore D.F., Morrison H.F., A hybrid 3D electromagnetic modeling scheme. Geophysics, 46(5): 796~805, 1981.
    Lee T., An integral equation and its solution for some two- and three-dimensional problem in resistivity and induced polarization. Geophys. J. R. Astr. Soc., 42(1):81~95, 1975.
    Leem K.H., Pelekanos G., Algebraic Multigrid Preconditioner for Homogeneous Scatters in Electromagnetics. IEEE Trans. On Antennas and Propagation, 2006, 54(7): 2081~2087.
    Leppin M., Electromagnetic modeling of 3-D sources over 2-D inhomogeneities in the time domain. Geophysics, 57(8): 994~1003, 1992.
    Li M.H.,Cheng H.P., Yeh G.T., An adaptive multigrid approach for the simulation of contaminant transport in the 3D subsurface [J]. Computers&Geosciences, 31: 1028-1041, 2005.
    Li Y., Key K., 2D marine controlled-source electromagnetic modeling: Part 1—An adaptive finite-element algorithm. Geophysics, 72(2): 51~62, 2007a.
    Li Y., Constable S., 2D marine controlled-source electromagnetic modeling: Part 2—the effect of bathymetry. Geophysics, 72(2): 63~71, 2007b.
    Li Y., Spitzer K., Three-dimensional DC resistivity forward modelling using finite elements in comparison with finite-difference solutions. Geophys. J. Int., 151: 924~934, 2002.
    Li Y., Spitzer K., Finite element resistivity modelling for three-dimensional structures with arbitrary anisotropy. Physics of Earth and Planetary Interiors, 150: 15~27, 2005.
    Lu H. Bao K. Effective conductivity in a checkerboard geometry at high conductance ratio and high concentration, Phys. Rev. B 46(14):9209-9212, 1992.
    Lu J.J., Wu X.P., Spitzer K., Algebraic multigrid method for 3D DC resistivity modeling. Chinese Journal of Geophysics, 53(3): 700~707, 2010.
    Lowry T., Allen M.B., Shive P.N., Singularity removal: a refinement of resistivity modeling techniques. Geophysics, 54(6): 766~774, 1989.
    Ma Q Z. The boundary element method for 3-D dc resistivity modeling in layered earth, Geophysics, 67(2): 610~617, 2002.
    Machlachlan S.P., Oosterlee C.W., Algebraic multigrid solvers for complex-valued matrices. SIAM J. Sci. Comput., 30(3):1548-1571,2008.
    Mackie R.L., Three-Dimensional magnetotlluric modeling and inversion with applications to the California basin and range province [Ph. D. thesis]. America: Massachusetts Institute of Technology, 1991
    Mackie R.L., Madden T.R., Wannamaker P.E., Three-dimensional magnetotelluric modeling using difference equations—Theory and comparisons to integral equation solutions. Geophysics, 58(2): 215~226, 1993a.
    Mackie R.L., Madden T.R., Conjugate direction relaxation solutions for 3D magnetotelluricmodeling. Geophysics, 58(7): 1052~1057, 1993b.
    Mackie R.L., Smith J.T., Madden T.R., Three-dimensional electromagnetic modeling using finite difference equations: The magnetotelluric example. Radio Science, 29(4): 923~945, 1994.
    Madden T.R., Random networks and mixing laws. Geophysics, 41(6A): 1104-1125,1976.
    Madden T.R., Mackie R.L., Three-dimensional magnetotelluric modelling and inversion. Proceeding of the IEEE, 77(2): 318~333, 1989.
    Marescot L., Rigobert S., Lopes S.P., Lagabrielle R., Chapellier D., A general approach for DC apparent resistivity evaluation on arbitrarily shaped 3D structures. Journal of Applied Geophysics, 60: 55~67, 2006.
    Martensson E., Gaefvert U., Three-dimensional impedance networks for modelling frequency dependent electrical properties of composite materials. J. Phys. D: Appl. Phys., 36: 1864-1872,2003.
    Martensson E., Gaefvert U., A 3D network model describing a non-linear composite material. J. Phys. D: Appl. Phys., 37: 112-119,2004.
    Martinelli P., Osella A., Pomposiello C., Comparative Magnetotelluric Modeling of Smooth 2D and 3D conducting bodies using Reyleigh-Fourier codes. Pure appl. Geophys., 157: 383~405, 2000.
    Maxwell J C.A treatise on electricity and magnetism.Clarendon Press,Oxford,1873
    McCartney L.N., Kelly A., Maxwell's far-field methodology applied to the prediction of properties of multi-phase isotropic particulate composites. Proc. R. Soc. A, 464: 423-446,2008.
    McLachlan D. S. Measurement and analysis of a model dual conductivity medium using a generalized effective medium theory, Physica A, 157(1): 188-191, 1988
    Mehanee S., Zhdanov M., A quasi-analytical boundary condition for three-dimensional finite difference electromagnetic modeling. Radio Science, 39: RS6014, 1~19, 2004.
    Mertens R., Gersem H., Belmans R., Hameyer K., An algebraic multigrid mehtod for solving very large electromagnetic systems. IEEE Trans. On Magnetics, 34(5): 3327–3330, 1998.
    Mitsuhata Y., 2-D electromagnetic modeling by finite-element method with a dipole source and topography, Geophysics, 65(2): 465~475, 2000.
    Mitsuhata Y., Uchida T., 3D magnetotelluric modeling using the T-Omega finite-element method. Geophysics, 69(1): 108~119, 2004.
    Mogi T., Three-dimensional modeling of magnetotelluric data using finite element method. Journal of Applied Geophysics, 35: 185~189, 1996.
    Moucha R., Bailey R.C. An accurate and robust multigrid algorithm for 2D forward resistivity modeling[J]. Geophys. Prospect. 52(3): 197-212, 2004.
    Mufti I.R., Finite-difference resistivity modeling for arbitrarily shaped two-dimensional structures. Geophysics, 41(1): 62~78, 1976.
    Mufti I.R., A practical approach to finite-difference resistivity modeling. Geophysics, 43(5):930~942, 1978.
    Mufti I.R., Finite-difference evaluation of apparent resistivity curves. Geophysical Prospecting, 28: 146–166, 1980.
    Mulder W.A., A multigrid solver for 3D electromagnetic diffusion [J]. Geophys. Prospect. 54: 633-649, 2006.
    Mulder W.A., Geophysical modelling of 3D electromagnetic diffusion with multigrid [J]. Comput. Visual. Sci., 11(3): 129-138, 2008a.
    Mulder W.A., Wirianto M., Slob E.C., Time-domain modeling of electromagnetic diffusion with a frequency-domain code [J]. Geophysics, 73(1): 1-8, 2008b.
    Mundry E., Geoelectrical model calculations for two-dimensional resistivity distributions. Geophysical Prospecting, 32: 124~131, 1984.
    Nam M.J., Kim H.J., Song Y., Lee T.J., Son J.S., Suh J.H., 3D magnetotelluric modelling including surface topography. Geophyscal Prospecting, 55: 277~287, 2007.
    Newman G.A., Alumbaugh D.L., 3D electromagnetic modeling using staggered finite differences. Geoscience and Remote Sensing, 2: 929~932, 1997.
    Notay Y., An aggregation-based algebraic multigrid method. Electronic Transactions on Numerical Analysis, 37: 123-146, 2010.
    Ogawa Y., On Two-Dimensional Modeling Of Magnetotelluric Field Data. Surveys in Geophysics, 23: 251~272, 2002.
    Okabe M., Boundary element method for the arbitrary inhomogeneity problem in electrical prospecting. Geophysical Prospecting, Vol.29: 39-59,1981.
    Okabe M., Reciprocal averaging techniques in the geoelectrical boundary element approach. Geophysical Prospecting, Vol.30: 653-672,1982.
    Oldenborger G.A., Routh P.S., Theoretical development of the differential scattering decomposition for the 3D resistivity experiment. Geophysical Prospecting, 54: 463~473, 2006.
    Oppliger G.L., Three-dimensional terrain corrections for mise-a-la-masse and magnetometric resistivity surveys. Geophysics, 49(10):1718~1729, 1984.
    Oristaglio M.L., Hohmann G.W., Diffusion of electromagnetic fields into a two-dimensional earth: A finite-difference approach. Geophysics, 49(7): 870~894, 1984.
    Osella A., Martinelli P., Cernadas D., Two-Dimensional Geoelectrical Modeling Using a Rayleigh-Fourier Method. IEEE Trans. On Geoscience and Remote Sensing, 38(3): 1344~1351, 2000.
    Pankratov O.V., Kuvshinov A.V., Avdeev D.B., High performance 3D electromagnetic modelingusing modified Neumann series, anisoropic earth. J. Geomag. Geoelectr., 49: 1541~1547, 1997.
    Patrick F.W., Bostick F.X., Magnetotlluric modelling techniques. Tech. Rep. No. 59, Electrical Geophysics Res. Lab., University of Texas, Austin,1969.
    Pessel M., Gibert D., Multiscale electrical impedance tomography [J],Journal of Geophysical Research, 108(B1), 2054, 2003.
    Plaks A., Tsukerman I., Painchaud S., Tabarovsky L., Multigrid Methods for Open Boundary Problems in Geophysics [J]. IEEE Trans. On Magnetics, 36(4): 633-638, 2000.
    Plessix R.E., Darnet M., Mulder W.A., An approach for 3D multisource, multifrequency CSEM modeling [J]. Geophysics, 72(5): 177-184, 2007.
    Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical Recipes in Fortran 77: The Art of Scientific Computing. Second Edition, 1992.
    Pridmore D.F., Hohmann G.W., Ward S.H., Sill W.R., An investigation of finite-element modelling for electrical and electromagnetical data in three dimensions. Geophysics, 46(7): 1009~1024, 1981.
    Queralt P., Pous J., Marcuello A., 2-D resistivity modeling: An approach to arrays parallel to the strike direction. Geophysics, 56(7): 941~950, 1991.
    Rayleigh L., On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phil. Mag. 34: 481–489, 1892.
    Reddy I.K., Philipps R.J., Rankin D., Three-dimensional modelling in magnetotelluric and magnetic variational sounding. Geophysical Journal, 51(2): 313~325, 1977.
    Rey E., Jongmans D., Gotteland P., Garambois S., Characterisation of soils with stony inclusions using geoelectrical measurements. J. Appl. Geophys., 58:188-201, 2006.
    Rey E., Jongmans D., A 2D numerical study of te effect of particle shape and orientation on resistivity in shallow formations. Geophysics, 72(1):F9-F17, 2007.
    Reitzinger S., Schreiber U., Rienen U., Algebraic multigrid for complex symmetric matrices and applications. J. Comput. Appl. Math., 155:405-421,2003.
    Riyanti C.D., Erlangga Y.A., Plessix R.E., Mulder W.A., Vuik C., Oosterlee C., A new iterative solver for the time-harmonic wave equation [J]. Geophysics, 71(5): 57-63, 2006.
    Ruge J W, Stüben K. Efficient solution of finite difference and finite element equations by algebraic multigrid(AMG). in: D.J. Paddon, H. Holstein (Eds.), Multigrid Methods for Integral and Differential Equations, The Institute of Mathematics and its Applications Conference Series, Clarendon Press, Oxford, 1985, New Series vol. 3: 169~212
    Ruge J W, Stüben K. Algebraic multigrid (AMG). In: S.F. McCormick (Ed.), Multigrid Methods, Frontiers in Applied Mathematics, Vol. 5, SIAM, Philadelphia, 1986
    Ruge J W, Stüben K. Algebraic multigrid. In: Stephen F. McCormick, eds., Multigrid Methods,1987
    Rücker C., Günther T., Spitzer K., Three-dimensional modelling and inversion of dc resistivity data incorporating topography– I. Modelling. Geophys. J. Int., 166: 495~505, 2006.
    SanFilipo W.A., Hohmann G.W., Integral equation solution for the transient electromagnetic response of a three-dimensional body in a conductive half-space. Geophysics, 50(2), 798-809, 1985.
    Saskia M., Grotenhuis et al., Melt distribution in olivine rocks based on electrical conductivity measurements. Journal of Geophysical Research 110, B12201 (2005).
    Schilling F.R., Partzsch G.M., Brasse H., Schwartz G., Partial melting below the magmatic arc in the central Andes dedu ced from geoelectric field experiments and laboratory data, Phys. Earth Planet. Int. 103 (1997) 17-31.
    Schulz V., Bardossy A., Helmig R., Conditional statistical inverse modeling in groundwater flow by multigrid methods [J]. Computational Geosciences, 3: 49-68, 1999.
    Schwartz L.M., Garboczi E.J., Bentz D.P., Interfacial transport in porous media: Application to dc electrical conductivity of mortars. J. Appl. Phys., 78(10): 5898-5908,1995.
    Scriba H. Computations of the electrical potential in the three-dimensional structure, Geophys. Prospect., 29: 790~802, 1981.
    Shankland T.J., Waff H.S., Partial melting and electrical conductivity anomalies in the upper mantle, J. Geophys.Res. 82 (1977) 5409-5417.
    Siekierski M., Nadara K., Modeling of conductivity in composites with random resistor networks. Electrochimica Acta, 50: 3796-3804,2005.
    Siripunvaraporn W., Egbert G., Lenbury Y., Numerical accuracy of magnetotelluric modeling: A comparison of finite difference approximations. Earth Planets Space, 54: 721~725, 2002.
    Smith J.T., Conservative modeling of 3-D electromagnetic fields, Part I: Properties and error analysis. Geophysics, 61(5): 1308~1318, 1996a.
    Smith J.T., Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator. Geophysics, 61(5): 1319~1324, 1996b.
    Snyder D.D., A method for modeling the resistivity and IP response of two-dimensional bodies. Geophysics, 41(5):997~1015, 1976.
    Spiegel R.J., Sturdivant V.R., Owen T.E., Modeling resistivity anomalies from localized voids under irregular terrain. Geophysics, 45(7):1164~1183, 1980.
    Spitzer K., A 3-d finite-difference algorithm for dc resistivity modeling using conjugate gradient methods. Geophys. J. Int., 123: 903~914, 1995.
    Spitzer K., Kümpel H.J., 3D FD resistivity modelling and sensitivity analyses applied to a highly resistive phonolitic body. Geophysical Prospecting, 45: 963~982, 1997.
    Spitzer K., The three dimensional DC sensitivity for surface and subsurface sources. Geophys. J. Int., 134:736~746, 1998.
    Spitzer K, Wurmstich B. Speed and accuracy in 3D resistivity modeling, in Three-dimensional Electromagnetics, eds Oristaglio, M.L. & Spies, B.R., SEG Book Series, Geophysical Developments, Society of Exploration Geophysicists, Vol. 7: 161~176, 1999a.
    Spitzer K., Chouteau M., Boulanger O. et. al., Grid-independent electrode positioning for 3D DC resistivety and IP forward modeling. Extended Abstracts Book, 2nd International Symposium on Three-Dimensional Electromagnetics, October 27-29, Salt Lake City, Utah, USA, 189~192, 1999b.
    Stauffer D., Aharnoy A. Introduction to percolation theory. London: Taylor&Francis, 1991 Stephen K. P., Can in situ measurements of mantle electrical conductivity be used to infer properties of partial melts? Journal of Geophysical Research 108, 2270 (2003)
    Stephen K. P., Mantle heterogeneity beneath eastern California from magnetotelluric measurements. Journal of Geophysical Research 109, B09406 (2004)
    Stüben K, Algebraic multigrid (AMG): Experiences and comparisons, Appl. Math. Comput., 1983, 13: 419~452
    Stüben K. Algebraic multigrid (AMG): an introduction with applications. In: U. Trottenberg, C.W. Oosterlee, A. Schueller (Eds.), Multigrid, Academic Press, New York, 2000. Also GMD Report 53, March 1999
    Stüben K. A review of algebraic multigrid. J. Comput. Appl. Math., 2001, 128: 281~309 Stüben K., Algebraic Solving Reservoir Simulation Equations. 9th International forum on Reservoir Simulation, Dec. 9-13, Abu Dhabi, United Arab Emirates, 2007.
    Suzuki K., Nakata E., Minami M., et al, Estimation of the zone of excavation disturbance around tunnels, using resistivity and acoustic tomography. Exploration Geophysics, 35:62-69, 2004. Swift C.M., Theoretical magnetotelluric and turam response from two-dimensional inhomogeneities. Geophysics, 36(1): 38~52, 1971.
    Tikhonov A., On the determining electrical characteristics of the deep layers of the earth’s crust. Dokl. Akad. Nauk SSSR, 73: 295-297, 1950.
    Trottenberg U., Oosterlee C.W. and Schuller A. Multigrid[M]. Academic Press, Inc, 2001. Uyeshima M., Schultz A., Geoelectromagnetic induction in a heterogeneous sphere: a new three-dimensional forward solver using a conservative staggered-grid finite difference method. Geophys. J. Int., 140:636~650, 2000.
    Vanek P., Mandel J., Brezina M., Algebraic multigrid on unstructured meshes, University of Colorado at Denver, Report No. 34, 1994.
    Vanek P., Mandel J., Brezina M., Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Computing 56 (1996) 179–196.
    Vanek P., Brezina M., Mandel J., Convergence of algebraic multigrid based on smoothed aggregation, Report 126, 1998.
    Waff H.S., Theoretical consideration of electrical conductivity in a partially molten mantle and implications for geothermometry, J. Geophys. Res. 79 (1974) 4003-4010.
    Wagner C. Introduction to algebraic multigrid. Course notes of an algebraic multigrid course, Universit?t Heidelberg, 1999.
    Wagner C., On the algebraic construction of multilevel transfer operators, IWR-Report, Universit?t Heidelberg, Computing (2000).
    Wang T., Hohmann G.W., A finite-differece,time domain solution for three-dimensional electromagnetic modelling. Geophysics, 58(6): 797~809, 1993.
    Wang T., Fang S., Mezzatesta A.G., Three-dimensional finite-difference resistivity modeling using an upgridding method. IEEE Trans. On Geoscience and Remote Sensing, 38(4): 1544~1550, 2000.
    Wang T., Mezzatesta A.G., 3-D dc resistivity modeling using the sweeping-seed, conjugate-gradient method. Geophysics, 66(2): 441~447, 2001a.
    Wang T., Fang S., 3-D electromagnetic anisotropy modeling using finite differences. Geophysics, 66(5): 1386~1398, 2001b.
    Wannamaker P.E., Hohmann G.W., SanFilipo W.A., Electromagnetic modeling of Three-dimensional bodies in layered earths using integral equations. Geophysics, 49 (1), 60-74, 1984a.
    Wannamaker P.E., Hohmann G.W., Ward S.H., Magnetotelluric responses of three-dimensional bodies in layered earths. Geophysics, 49 (9), 1517-1533, 1984b.
    Wannamaker P.E., Advances in three-dimensional magnetotelluric modeling using integral equations. Geophysics, 56 (11), 1716-1728, 1991.
    Warren J.E., Price A.S., Flow in heterogeneous porous media. Trans. AIME (SPEJ) 222 (1961) 153-183.
    Waxman M.H., Smits L.J.M., Electrical conductivities in oil-bearing shaly sands. Soc. Petr. Eng. J., 8:107-122, 1968.
    Webman I., Jortner J., Cohen M.H., Numerical simulation of electrical conductivity in microscopically inhomogeneous materials. Physical Review B, 11(8): 1465-1468,1975.
    Webster R., Algebraic multigrid, mixed-order interpolation, and incompressible fluid flow. Numerical Linear Algebra with Applications, 17(1): 17-42, 2010.
    Wesseling P. W. An introduction to multigrid methods[M]. Chichester: Wiley & Sons, 1992.
    Wu X. P., Xiao Y., Qi Ch., Wang T., Computations of secondary potential for 3-D DC resistivity modelling using an incomplete Cholesky conjugate gradient method[J],Geophys. Prospect., 51(6): 567-577, 2003a.
    Wu X., 3-D finite-element algorithm for DC resistivity modelling using the shifted incomplete Cholesky conjugate gradient method. Geophys. J. Int., 154: 947~956, 2003b.
    Xiong Z., Luo Y., Wang S., Wu G., Induced polarization and electromagnetic modeling of a 3D body buried in a two-layer anisoropic earth. Geophysics, 51 (12), 2235-2246, 1986.
    Xiong Z., Electromagnetic modeling of 3D structures by the method of system iteration using integral equations. Geophysics, 57 (12), 1556-1561, 1992.
    Xiong Z., Tripp A.C., 3-D electromagnetic modeling for near-surface targets using integral equations. Geophysics, 62 (4), 1097-1106, 1997.
    Xu S Z, Gao Z C, Zhao S K. An integral formulation for 3-D terrain modeling for resistivity surveys, Geophysics, 53(4): 546~552, 1988.
    Xu S Z, Zhao S K, Ni Y. A boundary element method for 2-D dc resistivity modeling with a point current source, Geophysics, 63(2): 399~404, 1998.
    Xu S Z. The boundary element method in geophysics, Geophysicalmonograph series, Society of exploration geophysics, 2001.
    Xu Y. S., Shankland T. J., Poe B. T. Laboratory-based electrical conductivity in the Earth's mantle, J. Geophys. Res. 105(B12): 27865-27876,2000.
    Yang L., Truyen B., Cornelis J., A global optimization approach to electrical impedance tomography. Proceedings-19th International Conference-IEEE/EMBS Oct. 30-Nov. 2, Chicago, IL. USA, 1997.
    Zeeuw P M. Matrix-dependent prolongations and restrictions in a blackbox multigrid solver, J. Comput. Appl. Math., 1990, 33:1~27.
    Zhang L., Poulton M.M., Wang T., Borehole electrical resistivity modeling using neural networks. Geophysics, 67(6): 1790~1797, 2002.
    Zhang J., Mackie R.L., Madden T.R., 3-D resistivity forward modeling and inversion using conjugate gradients. Geophysics, 60(5): 1313~1325, 1995.
    Zhang J. Acceleration of Five-point red-black Gauss-Seidel in MG for Poisson Equation [J]. Applied Mathematics and Computation, 1996, 80: 73-93.
    Zhang T., Yi Y.B., Monte Carlo simulations of effective electrical conductivity in short-fiber composites, J. Appl. Phys. 103, 014910 (2008)
    Zhao S., Yedlin M.J., Some refinements on the finite-difference method for 3-d dc resistivity modeling. Geophysics, 61(5): 1301–1307, 1996(a).
    Zhao S., Yedlin M.J., Multidomain Chebyshev spectral method for 3-D dc resistivity modeling. Geophysics, 61(6): 1616~1623, 1996(b).
    Zhebel E. A multigrid method with Matrix-dependent transfer operators for 3D diffusion problems with jump coefficients [Ph. D. theses]. Germany: TU Bergakademie Freiberg, 2006
    Zhdanov M.S., Fang S., Quasi-linear approximation in 3D electromagnetic modeling. Geophysics,61(3): 646~665, 1996.
    Zhdanov M.S., Dmitriev V.I., Fang S., Hursan G., Quasi-analytical approximations and series in electromagnetic modeling. Geophysics, 65(6): 1746~1757, 2000.
    Zhdanov M.S., Lee S.K., Yoshioka K., Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity. Geophysics, 71 (6), 333-345, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700