用户名: 密码: 验证码:
硫脲浸出废旧电路板中金及其发电过程回收研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了电子废弃物的现状、利用价值、金属含量、金的分布和回收利用的意义,对现有的废旧电路板中金的回收方法做了综述。本文采用硫脲浸出废旧电路板中的金,再采用发电过程将其回收,使得贵金属资源得到再生和重复利用。
     在本研究中,采用手工拆解方法先对电路板进行预处理,然后将预处理过的电路板粉碎,再用硝酸将贱金属浸出,至不再反应为止,进行多次过滤与洗涤,得到下一步所需的原料。用硫脲进行浸泡,将废旧电路板中的金浸出到浸出液中。然后用活化石墨电极做阴极材料,锌做阳极材料,构成发电系统,在阴极获得单质形态的金。对硫脲金络合物溶液进行电化学研究。
     研究结果表明:
     1)硫脲浸出的最佳条件为:固液比为1:5,浸出温度为35℃,硫脲浓度为12g/L,pH值为1.5,铁离子质量分数为0.3%,浸出时间为1h,此工艺条件下金的浸出率在93%左右。
     2)发电法回收金的最佳条件为:在35℃下,采用锌电极做阳极,0.1mol·l~(-1)的KCl溶液为阳极区溶液,阴极为石墨电极,硫脲浸出溶液为阴极溶液,搅拌情况下进行发电2000min,可得到金的回收率为95%以上。对最大输出功率的影响因素进行研究,发现温度、阳极区溶液、阳极区溶液浓度这三个因素不影响最大输出功率对应负载电阻值。但对最大输出功率值有影响。采用最佳工艺条件,发电最大功率可达到1620 mW左右。
     3)对硫脲金溶液进行循环伏安研究,在扫描速度为0.05 mV/s时,在0.0336 mV处出现氧化峰,说明在0.0336 mV时,发生反应: 2[Au(SC(NH_2)_2)_2]~(+)+2e=2Au+4SC(NH_2)_2,增大扫速,峰电流明显增加,表明反应阳极过程的不可逆性,扫描速度增加,峰向正向移动。
     由实验后石墨棒的电镜扫描图可知碳棒上沉积了较平整致密的金层。
This article describes the status,use value,metal content,the distribution of gold and the significance of recycling of electronic waste, it also summarizes the methods of gold recovery from waste printed circuit board. In this paper, gold was leached from circuit board by thiourea, and be recovered by the power generation process, making precious metals recycling and reuse of resources.
     In this study, the circuit board was pretreated using manual disassembly methods, and then comminuted the disassembed circuit board. Using nitric acid to leach base metal until no response happen, circuit board was filtered and washed several times, then got the raw materials which were required in the second step. Leach them with thiourea, let the gold of the waste printed circuit boards enter into the solution. Then the activated graphite electrode is used as cathode material and zinc as anode material, constituting the generation system, metallic gold was obtained from the cathode. Using electrochemical to research the complex solution of thiourea gold .
     The results show that:
     1) The optimum conditions of thiourea leaching are: solid-liquid ratio is 1:5, the leaching temperature is 35℃, thiourea concentration is 12g/L, pH is 1.5, ferric ion mass fraction is 0.3%, the leaching time is 1h, In this condition, the gold recovery rate is about 93%.
     2) The best conditions of recovery gold by generation method are: at 35℃,using zinc as anode electrodes, 0.1mol·l(-1) of KCl as anode region solution, graphite electrode as cathode, gold thiourea complex solution as the cathode region solution. Under the stirring condition, lasts 2000 min of eledctrogenerat experimental,available gold recovery is 95% or more. Researching the factors of the maximum output power found that the three factors of temperature、the anode zone solution、the anodic solution concentration do not affect the maximum output power corresponding to the load resistance. But affect the value of the maximum output power. Using optimal conditions, the maximum power generation reach to 1620 mW.
     3) Gold thiourea solution was researched by cyclic voltammetry, under the scanning speed is 0.05mV/s, the oxidation peak occurs at 0.0336mV, It is indicate that the reaction of +2[Au(SC(NH_2)_2)_2]~(+)+2e=2Au+4SC(NH_2)_2 happened in 0.0336 mV. Increasing scan rate, peak current increased significantly, indicating that the irreversible process of anodic reaction, scanning speed increases, the peak shift positively.
     The SEM images of the experimental graphite electrode shows that the layer of gold was deposited relatively smooth and dense on carbon rod.
引文
[1]陈艳,胡显智.电子废料中贵金属的回收利用方法.中国矿业,2006,15(12):102-104
    [2]孙云丽,段晨龙,左蔚然等.电子废弃物的资源循环研究.中国资源综合利用,2007,25(3):35
    [3]朱经发,林辉东,黄德汉等.电子废弃物现状评述与资源化初探.土壤与环境,2002,11(3):307-310
    [4]周翠红,路迈西.废旧电路板的组成与解离特性研究.环境污染治理技术与设备,2005,6(4):28-31
    [5]胡远军,李麒麟,徐东军.废旧印制电路板物理回收及综合利用.印刷电路信息,2007,(4):60
    [6]明果英.废印制电路板的物理回收及综合利用技术.印刷电路信息,2007,(7):48
    [7]熊集兵,徐晓军,董典同等.废旧电脑的处理及利用.青岛建筑工程学院学报, 2004,25(2):71-74
    [8]江博新.电子废弃物回收利用领域技术开发难点问题探讨.再生资源研究,2006,15(1):17-20
    [9]周全法,朱雯.废电脑及其配件中金的回收.中国资源综合利用,2003,7:31
    [10]周全法,刘玉海,李锋等.金在电脑板卡中的应用.黄金,2003,24(8):5-7
    [11]阮德水,李卫萍.金的化学.高等函授学报自然科学版,2002,13(1):26
    [12]周全法.贵金属深加工及其应用.北京:化学工业出版社,2002,238
    [13]杨玉芬,盖国胜,徐盛明.印刷线路板中稀贵金属的回收现状.稀有金属,2004, 28(4):717
    [14]张伟刚,吴丰顺,吴懿平等.国外电子废弃物的回收利用技术.有色金属的再生与利用,2006,(8):716-718
    [15]刘博洋,霍国元,刘永长.废旧电子材料回收利用现状及发展展望.再生资源研究,2007,(7):26-27
    [16]德国电子废弃物回收处理的法律要求及实施情况.节能环保,2006,(08):22-24
    [17]吴峰.电子废弃物的环境管理与处理处置技术初探——国外现状综述.中国环保产业,2001,(2):38-39
    [18]王保士.国外电子废件的贵金属回收预处理(加工)工艺综述.再生资源研究,2006,(2):20-22
    [19] Jirang Cui,Eric Forssberg. Mechanical recyling of waste electric and electronic equipment a reviem. Journal of Hazardous materials,2003,9(9): 262
    [20]向磊.我国贵金属回收产业发展综述.技术与装备,2007,(6):29-31
    [21]胡远军(7):李麒麟,徐东军.废旧印制电路板物理回收及综合利用.废水处理与环境保护,2007,(7):60-61
    [22] Maixi Lu,Cuihong Zhou. Recovermaterials from electronic scrap by dry separation. Proceedings of the 21st International Symposium on Dry CoalCleaning. Clean CoalTechnology ,2002, 259-262
    [23]秦川.电子废料中的贵金属的回收和利用.材料导报,1992,(4):70-71
    [24]胡天觉,曾光明,袁兴中.从家用电器废物中回收贵金属.中国资源综合利用,2001,(07):12-15
    [25]来清民,李金铭,高霞.电子垃圾资源化和无害化的综合处理模式研制报告.河南教育学院学报(自然科学版),2006,15(1):1-5
    [26] L.A.D. Barbosa,L.G.S.Sobral,A.J.B.Dutra. Gold electrowinning from diluted cyanide liquors:performance evaluation of different reaction systems,Minerals Engineering, 2001,14(9):963-974.
    [27]张凤玲.冶金方法处理废旧镍镉电池的研究进展.中国资源综合利用,2007,25 (6):14-16
    [28] Jirang Cui,Eric Forssberg. Mechanical recyling of waste electric and electronic equipment a reviem. Journal of Hazardous materials,2003,9(9):262
    [29]鲁志祥,王英滨,陈力平.硫脲浸金的现状和发展前景.黄金,2003,24(7):35
    [30]郑粟.高稳定性碱性硫脲体系清洁浸金的理论研究:[中南大学博士学位论文].长沙:中南大学冶金科学与工程学院,2006, 27-49
    [31]王艳丽,黄英.硫脲提金技术发展现状.湿法冶金,2005, 24(1):1-4
    [32]闫樱桃,武西社,刘建等. SLS-H2SO4体系中铝粉置换回收硫脲金的研究.湿法冶金,1998(6):32
    [33]崔毅琦,童雄,何剑.从浸金溶液中回收金的研究概况.有色金属(冶炼部分), 2004,(5):32
    [34] P A Riveros. The extraction of Fe(III) using cation-exchange carboxylic resins . Hydrometallurgy,2004,72(3-4):279-290
    [35]崔毅琦,童雄,何剑.从浸金溶液中回收金的研究概况.有色金属(冶炼部分),2004, (5):32
    [36] Chin Yean Yap,Norita Mohamed. Electrogenerative gold recovery from cyanide solutions using a flow-through cell with activated reticulated vitreous carbon. Chemosphere,2008,73(5):685-691
    [37]吴文健.铜镍硫化矿常压直接溶浸及硫化矿发电冶金研究:[中南工业大学博士论文].长沙:中南工业大学, 1994,56-62
    [38] Zhang H Z, Fang Z,Zhang P M. An investigation on electrogenerative leaching of Ni3S2. Proc.of ICHM’92,Beijing:Inter.Academic Pub.1992,1:286-289
    [39]王少芬.硫化矿发电浸出工艺及其基础理论研究:[中南大学博士论文].长沙:中南大学化学化工学院,2003,19-23
    [40]肖利,柳建设,方正等.黄铜矿发电浸出体系输出功的影响因素.过程工程报,2006,6(4):576-579
    [41]刘博洋,霍国元,刘永长.废旧电子材料回收利用现状及发展展望.再生资源研究,2007,(2):24-29
    [42]鲁志祥,王英滨,陈力平.硫脲浸金的现状和发展前景.黄金,2003,24(7):34-38
    [43]郑粟,王云燕,柴立元.基于配位理论的碱性硫脲选择性溶金机理.中国有色金属学报,2005,15(10):1629-1634
    [44] S. Akita,M. Rovira,A. Sastre,H. Takeuchi. Cloud-point extraction of gold(III) with nonionic surfactant—fundamental studies and application to gold recovery from printed substrate. SepSci. Technol, 1998,33 (14):2159-2177
    [45]鲁志祥,王英滨,陈力平.硫脲浸金的现状和发展前景.黄金,2003,24(7):34-38
    [46]程瑞学.硫脲浸金和银的微观机理.黄金,1987,9(2):41-46
    [47]郭观发,胡岳华,邱冠周等.硫脲提金理论研究——金溶解动力学.黄金,1994,15(4):30-34
    [48]刘书敏.电沉积法从含金废液中回收金的试验研究:[广东工业大学硕士论文].广东:广东工业大学,2008,25-28
    [49] C.Y. Yap,N. Mohamed. An Electrogenerative Process for the Recovery of Gold fromCyanide Solutions. Chemosphere, 2007,67(8):1502-1510
    [50] V.Reyes-Cruz,I.Gonzalez,M.T.Oropeza. Electro-recovery of gold and silver from a cyanide leaching solution using a three-dimensional reactor. Elecrtrochemical Acta,2004,(49):4417-4423
    [51] V.Reyes-Cruz,C.Ponce-de-leon et al .Electrochemical deposition of silver and gold from cyanide leaching solutions.Hydrometallurgy,2002(65):187-203
    [52]王素红.浓、稀硝酸氧化能力解析,青海师范大学民族师范学院学报, 2006,17(1):66-67
    [53]周翠红,路迈西.废旧电路板的组成与解离特性研究.环境污染治理技术与设备,2005,6(4):28-31
    [54]王清江,程圭芳,宗巍.硫脲法浸取硫化金矿的工艺改进研究.华东师范大学学报,1998,1(1):61-65
    [55] J.C. Yannopoulos. The Extractive Metallurgy of Gold. Van Nostrand Reinhold, 1991,20
    [56] Stanley H. Langer,Stephen J. Pietsch,George P. Sakellaropoulos. Electrogenerative chemical reactors. Energy,1979,4(12):225-233
    [57]滕祥国,赵永涛,武增华等.温度对钒电池性能的影响.研究与设计电源技术,2009,33(27):587-589
    [58]黄浩.化学沉积银和银钨合金的工艺研究:[福州大学硕士论文].福州:福州大学材料科学与工程学院, 2004,20-30
    [59]金玉健,梅光军,李树元.废锂离子电池LiCoO2电极中钴的超声辅助浸出.湿法冶金,2006,25(2):97-99
    [60]易艳萍.铝的钝化性及其在硝酸溶液中的腐蚀及防腐.宜春师专报,1999,21(5):32-37
    [61] S. Akita,M. Rovira,A. Sastre, et al. Cloud-point extraction of gold(III) with nonionic surfactant—fundamental studies and application to gold recovery from printed substrate. SepSci. Technol. 1998,33 (14):2159-2177
    [62]赵庆良,张金娜,尤世界等.不同阴极电子受体从生物燃料电池中发电的比较研究.环境科学报,2006,26(12):2052-2057
    [63]藤岛昭,相泽益男,井上辙.电化学测定方法.北京:北京大学出版社,1989,150-169

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700