用户名: 密码: 验证码:
食品物料的电特性及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据食品物料电特性进行的电磁处理方法主要有微波加热、高频波加热、通
    电加热、高压静电处理、高压脉冲电场杀菌、电渗透脱水等。这些方法具有传统
    方法所不能达到的许多优点,如:1)食品电磁处理可以减少营养成分的损失。
    采用通电加热,物料的升温速率快,而且均匀,对固液混合物可实现固体颗粒和
    液体的同时升温。采用高压脉冲电场杀菌可实现非热杀菌等;2)构成食品的分
    子或粒子,大都具有某种荷电的性质,因此,使用电场或电磁场可以对构成食品
    的最小单位进行最富效果的加工处理;3)利用食品电磁加工和检测,可实现加
    工自动化及食品品质的精确控制;4)电磁加工具有高效、节能、方便、卫生、
    易控制等特点。通电加热的电能利用率可达90%以上。电渗透脱水为一种节能脱
    水技术;5)由于煤、石油、天然气等能源的不可再生性,而核电站的逐渐完善,
    为食品的电磁加工提供了可能。因此,食品电磁加工技术的应用将越来越广泛。
    与食品热物性相比,对食品电特性的研究较晚,利用食品电特性完成的食品加工
    技术,才是近几十年的事。因此,开展对食品的电特性及其加工技术的研究是十
    分必要的。
     本论文首先在研究各种食品物料电导特性的基础上,对豆浆的通电加热和肉
    的通电加热解冻做了较深入的研究,并为提高电渗透脱水速率提出了新的解决措
    施。其主要内容有:
     1.建立了固体和液体食品电导率测量实验台,在该实验台上对豆浆、淀粉悬
    浊液以及肉的电导率等进行了测量研究,得到:1)豆浆的电导率随温度和固形
    物含量的增加成线性增加;对于相同浓度的豆浆,含渣时的电导率和加热速率略
    低于不含渣时的电导率和加热速率;电场强度对豆浆的电导率没有影响;2)豆
    渣悬浊液的电导率在60℃左右发生突变。经400MPa、10min超高压处理的豆渣
    所配成的悬浊液,其电导率在60℃以下高于未经处理的豆渣悬浊液的电导率,并
    且在60℃左右不再发生突变。这证明了大豆在磨浆后仍有一部分细胞组织没被破
    坏。通电加热或超高压处理破坏了这部分细胞组织,使其电导率升高。通过测量
    带渣和不带渣豆浆加热后的固形物和蛋白质含量,得到带渣加热的豆浆的固形物
    和蛋白质含量高于不带渣豆浆的固形物和蛋白质含量;3)淀粉悬浊液在通电加
    热时,在电导率随温度的变化曲线上表现为在糊化温度点上电导率下降,因此,
    可以用电导率的变化来判断糊化温度。水分含量50%以上不同浓度的淀粉悬浊液
    的糊化温度值基本不变;糊化温度随电场强度的增大而升高。这些变化规律与用
    其它方法测量所得结果是一致的;4)肉的电导率与肌肉纤维在电场中的方向有
    关,肌肉纤维平行于电场方向时的电导率高于垂直电场时的电导率;冻肉的电导
    率与肉内不冻结水分含量有关。
     2.建立了浸泡通电加热解冻的模拟电路模型和导热模型。用模拟电路模型分
    析了肉内产热量和电能利用率;用有限差分法求解电场和温度场,得到肉在解冻
    
    
     博十学位论文 摘要
    。过程中各节点的电场强度、产热量和温度的变化;并实验研究了肉的解冻过程,
     实验所得到的结果与模型求解所得结果是一致的。认为在一定电导率的液体中通
     电加热解冻可大大缩短解冻时间,并且肉最大面平行电场时的解冻效果优于垂直
     电场时的解冻效果;
     3.提出了提高电渗透脱水速率的措施一采用不等占空比的交变电场法。并建
     立了电渗透脱水实验台。在该实验台上,使用不间断直流、等占空比交变电场和
     不等占空比交变电场对豆腐皮和豆渣进行了电渗透脱水实验,得到:l)采用较
     低频率的等占空比交变电场可提高电渗透脱水速率,并且,对于一定厚度的物料
     在一定的电场强度下,具有最佳值;二)采用不等占空比的交变电场,脱水速宇
     与不间断直流和等占空比交变电场相比,有了明显提高;3)探讨了豆腐皮和豆
     渣在不间断直流、等占空比交变电场和不等占空比交变电场下的电渗透脱水机
     理。认为采用不等占空比交变电场不论从提高电惨透脱水效果,还是从竹能人山,
     都是较好的方法。
     本文最后对通电加热解冻和淀粉糊化的测量以及电渗透技术提出了若干进一
     步研究的建议。
There are many processing methods which use the electrical properties of foods such as microwave heating, high frequency wave heating, ohmic heating, high voltage electrostatistic field processing, high electric field pulses, and electroosmotic dewatering et al. These methods have many advantages, compared with the conventional methods. Among them, the advantages of electromagnetic processing are as follows: I) The loss of nutrient content is very low. The foods can be heated fast and uniformly with ohmic heating. The nonthermal sterilization can realize by high voltage field pulses. 2) Most molecules and granules of foods carry electrical charge, so they can be dealt with effectively by electrical field or electromagnetic field. 3) The processing automation and precise control of food quality can be achieved by using the electrical properties of foods. 4) The electromagnetic processing possesses many traits:
    effective, energy saving, facile, sanitary, and controlled easily. 5) Because the energy resources of coal, oil, natural gas can’t regenerate and become exhausted gradually, the nuclear power will have more and more importance on food processing in the future. It would play an important role in the food processing in future to process by using the food electric properties. Compared with thermal processing, the electrical properties of foods and their applications just have attracted many interests to study in recent several decades. It is necessary to do more research about the electrical properties of foods and their applications.
     Based on the study of the electrical properties of foods, heating of soybean milk and thawing of frozen meat by ohmic heating were investigated. The new measure to enhance electroosmotic dewatering was used in this thesis. The main contents of the thesis are as follows:
    1. An experimental device is erected to measure the electric conductivity of foods. The conductivities of soybean milk, mixture of water-starch and meat are measured on this device. The main results are: 1) The conductivity of soybean milk increases linearly with temperature and solids content. The conductivity of soybean milk which contains okara is little lower than that of the soybean milk without okara. There is no effect of electric field strength on the conductivity of soybean milk. 2) The conductivity of okara suspension increases with solid content and transits abruptly at about 60℃. The conductivity of okara suspension, which treated with 400MPa for 10mm, is larger than that of okara suspension which didn’t treated, which illustrates that there are some cells undestroyed by the grinder. Heating or super high-pressure handling can destroy the cell, and lead to higher conductivity. After heated, the solid content of soybean milk, which has okara, is larger than that of soybean milk, which has not okara. 3) The conductivity of starch suspension decreases at the gelatinization temperature point on the curve of conductivity and temperature. So the gelatinization temperature can be judged by the change of electrical conductivity of starch suspension. The gelatinization temperature of the starch suspensions with water content above 50% keeps almost the same. The
    
    
    
    gelatinization temperature increases with electric field strength. These results are similar to the results that measured by other methods. 4) The electrical conductivity of meat is relative to musculature direction in electrical field. When the musculature fibre is parallel to the field, the electrical conductivity of meat is larger than that of meat when the fibre is perpendicular to the field. The conductivity of frozen meat is relative to the unfrozen water content.
    2. The mathematical models of circuit analogy and unsteady heat conduction about thawing meat in solution were developed. The use factor of electrical energy, electrical distribution and temperature distribution are analyzed with these models. Experimental studies are also investigated. Ohmic heating in the solution that has certain conductivity can shorten the thawing time.
引文
1 Durance, T D. Improving canned food quality with variable retort temperature processes,Trends in Food Science & Technology, 1997,8(4),113-118
    2 Ramesh, M. N. Optimum sterilization of food processing - a review, Food Science and Technology, 1997,9(4), 217-227
    3 Rao, R. A. and Rizvi, S. S. H. Engineering properties of foods, Marcel Dekker, Ine. 1994
    4 刘钟栋,微波技术在食品工业中的应用,中国轻工业出版社,1998
    5 远藤敬一訳,食品の电気物理的加工,日.ソ通信社
    6 Alwis A. A. P. & Fryer,P.J., The use of direct resistance heating in the food industry, Journal of Food Engineering, 1990, 11,3-27
    7 Gould, G. W. New methods of food preservation, Blackie Academic & Professional, 1995
    8 Segars, R. A. and Kapsalis, J. G., The Use of Joule Heating for the rapid thawing and heating of frozen foods. 1~(st) Int. Cong. on Eng. And Food, p68
    9 Theimer, E. T And Heinz, G. E.. Electrically conductible gellable composition with ionized salt.US Patent 4 016 301
    10 Naveh, D. Kopelman, I. J. And Mizrahi, S.. Electrocnductive Thawing by liquid contact, Journal of Food Technology, 1983, 18 171-176
    11 Alwis A. A. P. & Fryer, P.J.. A finite element analysis of heating generation and transfer during ohmic heating, Chemical Engineering Science, 1990, 45(6), 1547-1559
    12 Anon, Ohmic heating - a new product development for in-line heating. The Electricity Council-Ec4655/7.85
    13 Lee, W. M.. Automatic circuit control for electrical resistance cooking apparatus.. US Patent 4 554 440
    14 Biss, C. H. Coombes, S.A. and Skudder, P. J.. The development and applications of ohmic heating for the continuous processing of particulate foodstuffs. In Process Engineering in the food industry, ed. Field, R. W. AND Howell, J. A.. Elsevier, London, p17
    15 Mitchell, F. R. G. and Alwis,A. A. P.. Electrical conductivity meter for food samples, Journal of Physics E: Sci. Instrum. 1989, 22, 554-556
    16 Palaniappan, S. and Sastry, S. K.. Electrical conductivity of selected solid foods during ohmic heating, Journal of Food Process Engineering, 1991, 14,221-236
    17 Schreier, P. J. R. Reid, D. G. and Fryer, P. J.. Enhanced diffusion during the electrical heating of food, International Journal of Food Science and Technology, 1993, 28, 249-260
    18 Stapley, A. G. F. Sousa, J. A.. NMR pulsed field gradient study of the electrical and conventional heating of carrot, International Journal of Food Science and Technology, 1995, 30,639-654
    19 今井哲哉,通电处理食品素材発熱関研究,博士论文,筑波大学,1996
    
    
    20 Halden, K. Alwis A. A. P. & Fryer,P.J.. Changes in the electrical conductivity of foods during ohmic heating, Intermational Journal of Food and Technology, 1990, 25, 9-25
    21 Palaniappan, S. and Sastry, S. K.. Electrical conductivity of selected juices: influences of temperature, solid content, applied voltage, and particle size, Journal of Food Process Engineeering, 1991, 14,247-260
    22 Yongsawatdiggul, J. Park, J. W. And Kolbe, E.. Electrical conductivity of whiting surimi paste during ohmic heating, Journal of Food Science, 1995, 60(5), 922-925,935
    23 Alwis, A. A. Halden,K. And Fryer, P. J.. Shape and conductivity effects in the ohmic heating of foods, chemical engineering research and design, 1989, 67, 159-168
    24 Fryer. P. J. Alwis, A. A. P. Koury, E. Stapley, A. G. F and Zhang, L.. Ohmic processing of solidliquid mixture: heating generation and convection effects, Journal of Food Engineering, 1993,18, 101-125
    25 Khalaf, W, G. and Sastry, S. K.. Effect of fluid viscosity on the ohmic heating rate of solidliquid mixture, Journal of Food Engineering, 1996, 27, 145-158
    26 Sastry, S. K. and Qiong, Li, Modeling the ohmic heating of foods, Food Technology, 1996, 50(5),246-248
    27 Kim, H. J. Choi, Y. M. et al..Validation of ohmic heating for quality enhancement of food products, Food Technology, 1996, 50(5), 253-261
    28 朴圣俊,金道彦,植村邦彦,野口明德,鱼肉通电加熱周波数带の影响,日本食品科学工学会誌,1995,42(8),569-574
    29 植村邦彦,通电加熱の加工原理と応用,食品工业,1993,36(20),57-63
    30 Sastry, S. K. and Palaniappan, S.. Mathematical modeling and experiment studies on ohmic heating of solid-liquid mixture in a static heating, Journal of Food Process Engineering, 1992,15,241-261
    31 Sastry, S. K. A model for heating of liquid-particle mixtures in a continuous flow ohmic heater,Journal of Food Process Engineering, 1992, 15,263-278
    32 Zhang, L. and Fryer, P. J.. Methods for the electrical heating of solid-liquid food mixtures,Chemical Engineering Science, 1993, 15, 213-227
    33 Zhang, L. and Fryer, P. J.. A comparison of alternation formulations for the prediction of electrical heating rates of solid-liquid food materials, Journal of Food Process Engineering, 1995,18, 85-97
    34 植村邦彦,五十部誠一郎,今井哲哉,野口明德,有限要素法通电加熱温度分布の解析,日本食品科学工学会誌,1996,43(5),510-519
    35 植村邦彦,五十部誠一郎,今井哲哉,野口明德,有限要素法连続通电加熱温度分布分析,日本食品科学工学会誠,1996,43(11),1190-1196
    36 Sanders, H. R.. Pub. No. 143 Torry research station, Aberdeen, UK, 1963
    37 Sanders, H. R. Electrical resistance thawing of fish, Publ. No. 403, Torry research Station,Aberdeen, UK, 1967
    
    
    38 Rao, C. V N. and Mathen, C.. Thawing frozen prawns electrically, Indian Food Packer, 1974,11-12,26
    39 Yano, T. Matsumo, R. and Nakamura, K.. Development in food engineering, Blackie Academic & Professional, 1994
    40 Giese, J.. Commercial development of ohmic heating garners 1996 industrial achievement award,Food Technology, 1996, 7, 114-115
    41 Allen, K. Eidman, V. and Kinsey, J.. An economic-engineering study of ohmic food processing,Food Technology, 1996, 50(5), 269-273
    42 李里特,食品物性学,中国农业出版社,1998
    43 Yoshida, H. and Shinkawa, T.. Water content and electric potential distributions in gelatinous bentonite sludge with electroosmotic dewatering, Journal of Chemical Engineering of Japan,1985, 18(4), 337-342
    44 Rabie, H. R. Mujumdar, A. S. and Weber, M. E.. Separation Technology, 1994, 38(4)
    45 Vijh, A. K.. Electrochemical aspects of electroosmotic dewatering of clay suspensions, Drying Technology, 1995, 13(1 & 2), 215-224
    46 Yoshida, H.. Practical aspects of dewatering enhanced by electroosmosis, Drying Technology,1993, 11(4), 787-814
    47 Lockhart, N. C. and Hart, G. H.. Electroosmotic dewatering of fine suspensions: the efficacy of current interruptions, Drying Technology, 1988, 6(3), 415-423
    48 吉田裕志,周期的极性反転交流电埸下の电器浸透脱水,1995,7,47-52
    49 吉田裕志,小松达也,小船秀典,电埸印加方法电気浸透脱水特性,Filtration and Separation Symposium,1995,42-46
    50 吉田裕志,佐藤志保等,半波整流断続的印加电埸电気浸透脱水,Filtration and Separation Symposium,1997,61-66
    51 吉田裕志,电気浸透脱水过程电极脱水试料との接触阻抗,小山工业高等专门学校研究纪要,1999,31,147-154
    52 Yoshida, H. Kitajyo, K. and Nakayama, M. Electroosmotic dewatering under AC electric field with periodic reversals of electrode polarity, Drying Technology, 1999, 17(3), 539-554
    53 lsobe, S. Zuber, F, Manebog, E.S., Li Lite, Uemura,K and Noguch, A. Solid-liquid separation of agricultural products using twin screw press and electroosmsis, JARQ, 1997,31(2),137-146
    54 吉田裕志,石川律子等,电気浸透脱水过程电极材料の评価関基礎的研究,小山工业高等专门学校研究纪要,1998,30,143-149
    55 Yoshida, H. and Yukawa, H.. Kagakku Kogaku Ronbunshu, 1986, 12, 707
    56 Yoshida, H. and Yukawa, H.. Kagakku Kogaku, Ronbunshu, 1987, 13,466
    57 Kobayashi, K. Hakoda, M. Yosoda, Y. Iwata, M. and Yukawa, H.. Electroosmotic flow through particle beds and electroosmotie pressure distribution, Journal of Chemical Engineering of Japan,1979, 12(6) 492-496
    
    
    58 Iwata, M. Igami, H. and Murase, T. Analysis of electroosmotic dewatering, Journal of Chemical Engineering of Japan, 1991,24(1), 45-50
    59 岩田政司,鼋気浸透脱水 1996,6,57-64
    60 铃木康夫,今野政惠等,电気浸透鱼肉の连続脱水装置の関発,化学工学论文集,1990,16(6),1133-1137

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700