用户名: 密码: 验证码:
X带吸波涂层的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着信息技术和电子工业的迅速发展,各种电子设备日益增多,电磁频带使用逐渐加,电磁波污染也日益严重,电磁波控制材料尤其是吸收材料的研究与应用已经成为国内外科技与产业的热点问题。目前,针对雷达波段电磁辐射的控制一般采用涂料和板材形式。涂料以其附着结构表面,与结构一体化和少占空间等特点被广泛使用。
     根据电磁波吸收理论进行电磁波吸收材料的设计与制备是新材料制备能有效缩短吸波材料研制的周期,提高实验工作的效率,是吸收材料制备的技术关键。传统方法一般先测量吸收剂的电磁参数,然后进行间接计算,设计缺乏准确性。本文对此进行改进,直接测试电磁波吸收涂层的介电常数,然后采用电磁波吸收的无反射曲线方法等方法进行X带吸波涂层涂层设计。
     单层吸波涂层要调节材料的介电常数和频率及厚度使其与无反射曲线进行拟合,偏离无反射曲线则吸波效能就差。研究发现:炭黑掺杂浓度为0.086g/ml时介电常数,接近无反射曲线,可以制备出在X带-10dB吸收带宽达到55%以上,在10GHz的最小吸收为-17dB的吸波涂料。其他掺杂浓度,由于介电常数偏离无反射曲线,所以吸收效果不好。
     对设计制备的λ/4吸波涂料进行测试发现,在X带,反射率在-10dB以下的带宽达到60%以上,并且不受电磁参数范围的限制,大大优于单层吸波涂层。
     为展宽吸收频带,通过对双层加膜吸波涂层的研究发现,在X带的整个波段有较好的吸收,在-10dB以下的吸收量,占到带宽的87.5%,-20dB以下占到带宽的50%
     本论文通过多层理论设计的方法研究吸波涂层的吸收特性,对电磁波吸收涂层的设计与制备具有较好的指导意义。
As the rapid development of information technology and electronic industry, diverse electronic equipments appear. The using limitation of Electromagnetic band is releasing. Therefore, electromagnetic pollution is becoming worse and worse. The research and application of functional material that can control electromagnetic wave (EMW), especially that can absorb EMW, has become a hot issue, nationally and internationally. Nowadays, to control the electromagnetic radiation from radar band, coating and plate absorbers are taken. As coating can adhere to surface and becomes one whole, it has be widely used.
     The design and prepare as electromagnetic wave absorption theory can effectively shorten preparing cycle times and improve experimental work efficiency. The traditional method is to measure electromagnetism parameters first and then calculate indirectly, which is short of accuracy. In this paper, method has been improved. Measure out coating's permittivity first and then take EMW absorbing Non-reflection Curve to design X-band coating absorber.
     To monolayer coating, material's permittivity, frequency and thickness would be adjusted as the limitation from Non-reflection curve, otherwise the absorption was not good. According to some research, when carbon black's doping concentration is 0.086g/ml, permittivities are closed to Non-reflection curve. Absorber's absorption over-lOdB in X-Band exceeds 55% and moreover at 10 GHz the Min absorption is-17dB. At doping concentration, as away from Non-reflection curve, the absorption is not good.
     When designing and preparingλ/4 absorbing coating, it is found that in X-Band the band of reflection loss over-10 dB exceeds 60%, and processing technology is easier. In order to enlarge absorption band, by researching double layers with a resistive film between, the absorption in whole X-Band are good. Absorption over-10dB accounts for 87.5%, and over-20dB 50%.
     By researching coating's absorption characteristic with multi-layer theory design, this paper is instructive to design and prepare EMW absorbing coatings.
引文
[2]卓长平,张雄.纳米六角晶系铁氧体吸波材料的制备方法及研究进展[J].材料导报2005,4(19):
    [3]张雄,李敏,窦丹若.纳米六角晶型吸波铁氧体的制备与性能研究[J].材料导报,2003,(17):69.
    [4]孟凡君王新强,刘爱祥等.替代M一型钡铁氧体纳米粒子的微波吸收性能[J].无机化学学报,2002,18(10):1067.
    [5]曾爱香等.纳米复合铁氧体微波吸收剂的研究进展[J].长沙电力学院学报(自然科版)2003.18(4),73-76.
    [6]姚学标,胡国光,尹萍,等.平面六角晶系铁氧体混合材料涂层的优良吸波特性[J].功能材料,2001,32(1):40-42.
    [7]黄小忠,李效东,冯春祥BaFe12O19铁氧体磁性碳纤维研制[J].功能材料,2000,31(4):446-448.
    [8]黄婉霞,陈家钊,涂铭胜,等PZT/Ni-Zn铁氧体复合材料电磁特性研究[J].功能材料,1996,27(5):431-433.
    [9]苏海林(Ni,Zn,Co)2-W型复合钡铁氧体的制备及其微波吸收特性[J].材料科学与工程,2002,20(4):568-571.
    [10]黄婉霞,陈家钊,涂铭胜,等.Ni粉/Ni-Zn铁氧体复合材料复合磁导率的研究[J].复合材料学报,1998,15(1):20-23.
    [11]阮圣平,王兢,刘永刚,等BaFe12O19铁氧体纳米复合材料微波吸收性能的研究[J].吉林大学学报(理学版),2003,41(1):70-72.
    [12]胡国光,尹萍,吕庆荣LaxSr1-xMnO3微波吸收特性的研究[J].磁性材料及器件,2000,31(6):14-17.
    [13]Jingjing Sun, Jiaobao Li, Geliang Sun. Effects of La2O3and Gd2O3 on some properties of Ni-Zn ferrite[J]. J of Magnetism and Magnetic Materials,2002,(250):20-24.
    [14]秦嵘,陈雷.隐身技术的研究进展[J].宇航材料工艺,1997,27(4):17-19.
    [15]WONG PTC, CHAMBERS B, ANDERSON A P. Large area con-ducting polymer composites and their use in microwave absorbing material [J].Electronics Letters,1992,28(17):1651-1653.
    [16]FRANCHITTOM,FAEZ R,ORLANDOA, J F.Electromagnetic behavior of radar absorbing materials based on conducting polymers [DB/OL] 2001. (10).
    [17]赵东林等,炭纤维及其复合材料的吸波性能和吸波机理[J].新型炭材料,2001,16(2).
    [18]Gan Y X, Wang F H. Permeability and permittivity measurement and reflectivity calculation for a microwave-absorbing composite material containing a resonator and an electromagnetic loss substance[J]. Composites,1992,23(6):435-439.
    [19]赵东林,周万城.新型隐身材料的研究与发展[J].飞机设计,1997,(2):27-31.
    [20]赵东林,沈曾民,迟伟东,等.炭纤维结构吸波材料及其吸波炭纤维的制备[J].高科技纤维与应用,2000,25(3):8-14.
    [21]赵东林,周力城.纳米雷达波吸收剂的研究与发展[J].材料工程,1998,(5):3-5.
    [23]Motojima S, Asakura S, Hirata M, et al. Effect of metal imurity on the growth of micro-coiled carbon fibers by pyrolysis of acetylene[J]. Mater Sci Eng B,1995,4: L9-L11.
    [24]Moto jima S,Itoh Y,Asakura S,et al. Preparation of micro-coiled carbon fibers by metal powder-activated pyrolysis of acetylene containing a small amount of sulphur compounds[J]. J Mater Sci,1995,30(5):5049-5055.
    [25]Motojima S, Kawaguchi M, Nozaki K, et al. Preparation of coiled-carbon fibers by catalytic pyrolysis of acetylene, and its morphologyand extension characteristics[J]. Carbon,1991,29(3):379-385.
    [26]Motojima S, Asakura S, Kasemura T, et al. Catalytic effects of metal carbides,oxides and Ni single crystal on the vapor growth of micro-coiled carbon fibers [J]. carbon,1996,34(3):289-296.
    [28]欧阳国恩.炭化硅-炭功能纤维[J].功能材料,1994,25(4):300-305.
    [29]莫美芳.雷达吸波复合材料和雷达吸波结构(RAS)的研制与发展[J].材料工程,1993,(5):38-41.
    [30]莫美芳.国外结构隐身材料的研制和发展概况[J].材料工程,1991,(5):46-49.
    [31]周旭,新型纳米吸波材料研究现状[J]舰船防化,2006,增刊5-9.
    [32]张中太,林元华,唐子龙等.纳米材料及其技术的应用前景.材料工程,2000,(3):42-48.
    [33]焦恒,罗发,周万成.雷达吸收剂研究进展.材料导报,2000,14(3):11-12.
    [34]陈利民等.纳米γ-(Fe,Ni)合金颗粒的微观结构及其微波吸收特性.兵器材料科学与工程,1999,(4):2-6.
    [35]焦桓,罗发,周万城.纳米吸波材料研究与发展趋势.宇航材料工艺,2001,(5):9-11.
    [36]陆怀光等.复合磁性吸收剂研究.功能材料,1995,增刊:266-270.
    [37]蔡树芝,牟季美.纳米非晶氮化硅键态结构X射线径向分布函数研究.物理学报,1992,411(10):1620-1623.
    [38]Suzuki M,Hasegawa Y,Aizawa M.Characterization of silicon carbide-silicon nitride composite ultrafine particles synthesized using a CO2. laser by silicon 2p magic angle sprinning NMR andESR.J.Am.Ceram.Soc.,1995,78(1):83~89.
    [39]DRESSLHA US M S. Down the straight and narrow[J].Nature,1992,358:195-198.
    [40]JEROEN W G,WILDER J W. Electronic structure of atomically resolved carbon nano tubes [J].Nature,1998,391:59-62.
    [41]SANDLER J,SHAFFER M S P, PRASSE T. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties[J].Polymer,1999,40:5967-5971.
    [42]JOSE K A,VASUADARA V, VIJARY K V. Free-spacevsone-horn interferometer techniques for radar absorber measurements[J]. Microwave Journal,1998,41(9):148-154.
    [43]SLEPYAN G Y,MAKSIMENKO S A,LAKHTAKIA A. Electromagnetic response of carbon nanotubes and nanotube ropes[J].Synthetic Metals,2001,124:121-123.
    [44]沈增民,赵东林.镀镍碳纳米管的微波吸收性能研究[J].新型碳材料,2001,16(1):1-4.
    [45]曹茂盛,高正娟,朱静CNTs/Polyester复合材料的微波吸收特性研究[J].材料工程,2003,(2):34-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700