用户名: 密码: 验证码:
船舶吊舱式液压推进系统的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶是船舶行业、航运业的主要载体,而船舶主推进装置作为船舶的核心,其性能的好坏直接决定了整条船舶性能的好坏。随着现代船舶逐渐向高速化、大型化、专业化方向发展,柴油机直接推进这种传统的船舶推进方式逐渐表现出-些不适应其发展的缺点。因此,探寻机动性能良好、综合性能优良的推进方式是现代船舶发展的要求。
     本文分析了船舶吊舱式液压推进和现有的船舶主推进方式的优缺点,证明了研究船舶吊舱式液压推进的实际意义。本文的主要工作包含以下四个方面:
     (1)分析了船舶吊舱式液压推进系统的工作原理和系统的组成,在此基础上对船舶吊舱式液压推进的液压系统进行了设计,并从系统的主回路、补油回路、过载保护回路、其它负载回路等方面对液压系统进行了研究和分析。
     (2)对船舶吊舱式液压推进系统的吊舱推进器进行了设计,并从几个方面对推进器的结构进行分析。对液压系统的关键元件进行了选型计算,比较了液压推进与电力推进的吊舱推进器舱体的大小。
     (3)根据液压推进系统泄漏量以及系统发热功率计算出液压系统需要的最小补油量以及补油泵的最小排量;分析了液压油箱的结构,并根据热平衡的方法计算出了油箱的最小容积。
     (4)基于AMESim仿真软件,建立船舶吊舱式液压推进系统的仿真模型。通过对船舶吊舱式液压推进系统进行仿真分析,证明了船舶吊舱式液压推进是一种性能优良的推进方式,为进一步研究提供了理论依据。
Ship is the main carrier of ship industry and ship business. As the core of the ship, the main propulsion system's performance directly determines whether the whole ship can perform well or not. However, with the developing of modern ships gradually towards to high-speed, large-scale and professional direction, the traditional direct propulsion of diesel engine mode gradually show some disadvantages to the development of modern ship. Therefore, exploring a new propulsion mode of good maneuvering characteristics and comprehensive properties is the requirement of the development of modern ships.
     This paper analyzes the advantages and disadvantages of podded hydraulic propulsion of ship and modern existing ship main propulsion mode, the passage proofs that research the podded hydraulic propulsion of ship has practical significance. This paper mainly includes the following four aspects:
     (1) Analyzes the podded hydraulic propulsion system of ship's working principle and system composition, based on that designed the hydraulic propulsion system of podded hydraulic propulsion system of ship. Research and analyzes the hydraulic propulsion system from its major circuit, fill oil circuit, overload protection circuit, other load circuit and so on.
     (2) Design the pod thruster of podded hydraulic propulsion system, and analyzes the structure of the thruster from several aspects. Selecting the key components of hydraulic system, and compare the size of the pod of hydraulic propulsion's and electric propulsion's.
     (3) According to the leakage of hydraulic propulsion system and the system heat power, calculated the needed minimum amount of fill oil and the minimum displacement of fill oil pump of the hydraulic propulsion system; and then analyze the structure of hydraulic oil tank, and calculated the minimum volume of the oil tank according to the method of heat balance.
     (4) Established the podded hydraulic propulsion system's simulation model based on AMESim simulation software. Through simulation analyzes of the podded hydraulic propulsion system proved that the podded hydraulic propulsion is a propulsion mode with excellent performance, and provides theoretical base for further developing of the podded hydraulic propulsion.
引文
[1]“船舶综合液压推进基础研究”项目申请书
    [2]阎欣.新型船舶推进方式一船舶综合液压推进.液压气动与密封,2006(02):38-39.
    [3]张乐天.民用船舶动力装置.武汉:人民交通出版社,1985:7-8
    [4]徐筱欣.船舶动力装置.上海:上海交通大学出版社,2007:12-18
    [5]樊印海.电力推进自动控制.大连:大连海事大学出版社,1998:1-3
    [6]金德昌.船舶电力推进原理.北京:国防工业出版社,1993:10-28
    [7]Yuri AlDreizinl. The electromagnetic chemical propulsion concept.1 IEEE Transactions on Magnetics,1995,31 (1):279-283
    [8]谭作武.磁流体推进.北京:北京工业大学出版社,1998:15-29
    [9]D.L. Mitchell, D. U. Gubser. Magnetohydrodynamic ship propulsion with superconducting magnets. Journal of Superconductivity,1988,1 (4):349-364
    [10]王天奎,顾建民.船舶超导磁流体推进技术展望.船舶工程,1994(05):9-13
    [11]刘柱.船舶喷水推进技术发展.水路运输文摘,2004(11):40-41
    [12]Zeng Bo-wen, Zhu Qi-Dan. NN-adaptive output feedback for course tracking control of a waterjet propulsion ship. HarBin Engineering University,2010:1-3
    [13]杨国平,刘忠.现在工程机械液压与液力实用技术.北京:人民交通出版社,2003.
    [14]刘柱.几种船舶推进系统的比较.青岛远洋船员学院学报,2003(03):40-44
    [15]M. E. Lngrim, G. Y. Masada. The Extend Bond Graph Notation Journal of Dynamic System, Transaction of ASME Measurement and Control. Vol113,1991.3:113-116
    [16]M. E. Lngrim, Extend Bond Graph Representation of the ASME. Vol113, 1991.3:118-121
    [17]殷乾训.国外新型船舶液压推进装置.船海工程,1984:30-33
    [18]菊地忠雄.船舶液压化的展望.内田油压机器工业(株),1977:45-58
    [19]Ji Yulong, and Sun Yuqing. Modelling and simulation of IHP ship. The 2nd International Conference On Computational Methods in Fluid Power(FPNI'06).2006:38-39
    [20]Ji Yulong, Sun Yuqing et al. STUDY ON INTEGRATED HYDRAULIC PROPULSION SHIP. IEEE International Symposium On Industrial Electronics(ISIE2007):Spain,2007.
    [21]魏德宝.船舶综合液压推进系统设计.液压气动与密封,2008:25-28
    [22]Zhu Shuwen, and Lu Zhiqing. Working Condition Matching characteristics of Ship&Engine&Propeller. Shanghai Transportation University Press, 1990,141-143:147-150
    [23]He Cunxing. Hydrostatic and Pneumatic Transmission. HuaZhong University of Science and Technology Press (China),2000,4:101-102
    [24]程国瑞.船舶动力装置原理.人民交通出版社,2001.
    [25]吴伯才.船舶液压推进的可行性探讨.宁波:宁波大学学报(理工版),2002:1-3
    [26]“船舶综合液压推进基础研究”验收材料
    [27]何连明.船舶综合液压推进液压泵站的设计研究.硕士论文.大连:大连海事大学,2011
    [28]Ken Ichiryu. Recent trend and future forecast of hydraulic system and control. Achener Fluid Technisches Kolloquium,1990:345-369
    [29]吴时飞,胡军科,何国华,等.功率反馈式闭式液压泵、液压马达系统研究.机床与液压,2007:119-124
    [30]Duan SL, Qi XD, Cheng GW. Micro-computer-based measuring systems for the characteristic of electro-hydraulic servo valve[C]. ISM/2005:6th International Symposium on Test and Measurement. Vols 1-9, Conference Proceedings 8979-8982,2005.
    [31]董伟亮,罗红霞.液压闭式回路在工程机械行走系统中的应用.工程机械,2004:38-39
    [32]彭秀英,卢飞平.溢流阀的压力整定值及其确定方法.贵州:贵州工业大学学报(自然科学版),2005:22-24
    [33]陈海泉.船舶辅机.大连:大连海事大学出版社,2010:84-92
    [34]蔡林霞,卢志珍,倪学虎等.内嵌双输油管两用起重机设计.科技信息,2010:82-83
    [35]朱孝录.齿轮传动设计手册(第二版).化学工业出版社,2010:5-7
    [36]韩芸,沈兴荣,张峥.吊舱式推进器敞水性能研究.2008年船舶水动力学学术会议暨中国船舶学术界进入ITTC30周年纪念会论文集,杭州,2008.
    [37]桑月仙.闭式液压系统补油泵研究.硕士论文.成都:西南交通大学,2007.
    [38]桑月仙,于兰英,王国志.闭式液压系统补油泵研究.机械工程与自动化,2010:83-85
    [39]薛白,余建福.内燃叉车液压油箱设计.起重运输机械,2011:33-35
    [40]李彦彬.浅谈液压油箱的分类与设计.科学与财富,2011:345-346
    [41]李红船,冯忠绪,李飞舟.液压系统开式油箱设计.起重运输机械,2007:58-61
    [42]机械设计手册委员.会机械设计手册(第三版)[Z].北京:机械工业出版社,2005:581-582
    [43]余佑官,龚国芳,胡国良AMESim仿真技术及其在液压系统中的应用.液压气动与密封,2005:28-31
    [44]A. Albrecht, V. Knop, G.. Corde, L. Simonet and M. Castagne. Observer Design for ownsized Gasoline Engine Control Using ID Engine Simulation. Oil & Gas Science and Technology-Rev. IFP.2006,61(1):165-179
    [45]付永领,祁晓野AMESim系统建模和仿真-从入门到精通.北京:北京航空航天出版社.2006.
    [46]世冠公司.世冠AMESim多学科负载系统建模与仿真平台.航空制造技术,2008:103-104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700