用户名: 密码: 验证码:
电磁场驱动下的液体流动实验与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算流体力学作为经典流体力学、数值分析方法和计算机技术的有机结合体,近年来,得到不断发展和壮大,成为科研和工程设计的有效手段。理论、实验和模拟三者相互渗透,既推动了流体力学理论的新发展,同时也加强了流体力学的工程应用。
     从电场和磁场当中导电的液体受力出发,分析了电解质溶液在电磁场中的驱动与运动,根据电磁驱动模型,针对被驱动流场中微观粒子图像测速技术进行研究,并设计了流体多尺度下的驱动显示实验装置,进行了测试。
     首先,分析电解质溶液在电磁场中驱动的机理,建立出理想条件下的数学模型,归纳液体在电磁力驱动下的运动方程,得到电场和磁场与运动的关系。
     其次,自行研制不同材料与结构的电磁场驱动电解质溶液的实验装置,采用图像分析与转换技术研制设计出“宏观与微观尺度下”的电磁驱动液体流动观测实验装置,通过激光光源的改进与在流场显示中的应用设计,提出流场内粒子的“微观”显示与测速方法,得到流场的图像和数据等。
     然后,使用有限元法对通道内的液体流动进行分析,应用ANSYS软件建立数值模拟模型,获得电磁场驱动下的流场运动分析结果。
     最后,对比实验数据及数据分析与数值模拟结果可知,电磁场驱动下的流体运动规律。并为电磁驱动液体流场中,不同深度内的粒子流速的测量提供了一种测量手段。
As the organic the body combination of a classical fluid dynamics, numerical analysis methods and computer technology, recently, computational fluid dynamics becomes stronger, and is the efficient methods of both science research and engineering design.
     Based on the stress of liquid in EMF, we analysis drive and motion of electrolyte solution in EMF. According to the electromagnetic drive model, we made study on microscopic DPIV in driven flow field, and multi-scale of driven design display unit of flow field.
     First, we analyzed the principle of the electrolyte solution propelled in electromagnetic field, set up a mathematic model on the ideal condition, instructed a motion equations of the liquid propelled by both direct and alternating current, and then received the relations between EF/MF and motion.
     Second, self-developed materials and structure of experimental installation for electrolyte solution drive by electromagnetic of field different, use image analysis and conversion techniques to design experimental installation of electrolyte solution drive by electromagnetic“in Microscopic and Macroscopic Condition”. With improvement of LASER source and indication application in flow field, we put forward“micro display”light engine of particle in flow field and method of measuring speed, and then we get images and data of flow field.
     Third, we analyzed the liquid in passageway with finite element method, set up a numerical simulation model by ANSYS, and got the results of EMF driven by Flow Motion Analysis.
     Finally, we compared experimental data and data analysis with numerical simulation to get motion law of ghost fluid in driven magnetic field. And supply a method to measure particle’s velocity in different depth of flow field where liquid is driven by EMF.
引文
[1]王皓.电解质溶液在电磁场作用下的流动研究[D].辽宁:辽宁工程技术大学. 2007
    [2] Wang Hao. Liu Li-ly. Analysis on coupled fields inside passage by finite element method and its applications[C]. IFPFA 2009
    [3] Wang Hao. Liu Li-li. Application of ANSYS Analysis in Electromagnetic Drive Liquid Flow[C]. ICIC 2009
    [4] E.Blums, A. Cebers, M.M.Maiorov.Magnetic Fluids.Berlin[M], New York: de Gruyter.1997
    [5]苑淑云.舶交流磁流体推进新方法研究[D].哈尔滨:哈尔滨工程大学. 2007. 59-64 Vol.3.
    [6]安伟光,洪国钧,蔡荫林等.基于随机有限元的舰船结构可靠性优化设计方法[R].北京:中国国防科学技术报告. 2002
    [7]严陆光,王子凯,薛翠玲.磁流体船舶推进用超导磁流体系统的研制[J].电工电能新技术. 1999.
    [8]刘玲.玻璃微细加工工艺的研究与磁流体推进式微型泵样机的研制[D].浙江:浙江大学. 2004
    [9]邵长金,李相方.流体分布对电阻率的影响[J].北京:物探与化探. 2005. 4
    [10]韩江.交流磁流体推进的基础研究[D].北京:中国科学院电工研究所. 2002
    [11]许振明,刘向阳等.电磁分离技术及其研究现状[J].上海:铸造技术.2003,24(05)
    [12] Yoshiro Saji,Akira Iwata,Manabu Sato,Hiroyuki Kita, Fundamental Studies of a Superconducting Electromagnetic Ship Thruster to be Driven by an Alternating Magnetic Field[C], Proceedings of the 1991 Cryogenic Engineering conference. Jun 11-14, 1991
    [13]晃立东,王仲奕等.工程电磁场基础[M].陕西:西北工业大学出版社.2002
    [14]柴捷,李朗如,沙次文.直管式磁流体推进系统的数值仿真和试验研究[J].北京:中国电机工程学报. 2000, 11
    [15] Seong-jae Kim, Choung Mook Lee. Control of flows around a circular cylinder: suppression of oscillatory lift force [J]. Fluid Dynamics Research.2001, 29, 47-63
    [16] Kim, S J, Lee, Choung M. Investigation of the flow around a circular cylinder under the influence of an electromagnetic field [J]. Exp. Fluids. 2000, 28: 252-260
    [17]王沫然,李志信.基于MEMS的微泵研究进展[J].传感器技术. 2002, 21: 59-61
    [18]于亚婷,杜平安,王振伟.有限元法的应用现状研究[J].机械设计. 2005, 03
    [19]马治国,夏毅敏. ANSYS软件应用介绍[J].凿岩机械气动工具. 2005, 02
    [20]李遇春,楼梦麟.渡槽中流体非线性晃动的边界元模拟[J].地震工程与工程振动. 2000, 02
    [21]孙利民,张庆华,赵勇.卧式圆形储油罐液固耦合模态分析[J].郑州大学学报(工学版). 2005, 02
    [22]王华,曹刚.基于ANSYS的含液容器流固耦合模态分析[J].重庆科技学院学报(自然科学版). 2006, 02
    [23] Minoru Takeda and Tsukasa Kiyoshi. Fundamental Studies of Helical-Type Seawater MHD Generation System [J]. IEEE TRANSACTIONS ON APPLIED SUPER CONDUCTIVITY, 2005, VOL.15, No.2,
    [24] Robert M. Mayo, Randall L. Mills,and M. Nansteel. On the Potential for Direct or MHD Conversion of Power from a Novel Plasma Source to Electricity for Micro distributed Power Applications [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, VOL.30, No.4
    [25]方生,张培强.旋转磁场作用下磁流变液体颗粒运动及结构演化的模拟[J].化学物理学报. 2001, 5: 562-566
    [26]方莹.磁流体自由表面流动及传热特性的数值研究[D].江苏:南京航空航天大学. 2007
    [27] Imaichi K. Superconducting Electromagnetic Propulsion for Ship [J]. Diesel and Gas Turbine Worldwide. 1991: 22-35
    [28] Realse 11.0 Documentation for ANSYS
    [29]吴颖川,王慧玲,杨辉.复杂流场的全息干涉定量分析和计算干涉技术[C].激波与激波管学术论文集. 2002:189-192
    [30]刘儒勋,舒其望.计算流体力学的若干新方法[M].科学出版社.2003
    [31]黄国华译,黄绪琼校.采用磁流体推进的水下运载器[J].国外舰船工程. 2001(6)
    [32] Kim, S J, Lee, Choung M.Investigation of the flow around a circular cylinder under the influence of an electromagnetic field [J].Exp.Fluids. 2000, 28:252-260
    [33]周本谋,范宝春,陈志华等.电磁力连续控制圆柱绕流态变化的研究[J].流体力学实验与测量.2004,18(1):10-14
    [34] Clough R W, the Finite Element Method of Structural Analysis[C], Proc.2nd Conf.Electronic Computation, ASCE, Pittsburgh, Pa, Sept. 1960
    [35]黎永前,徐征,刘冲,王立鼎.电动微流体显微粒子图像测速误差修正方法[J],大连理工大学学报. 2006, 05
    [36]张辉,菅从光.电磁场对瓦斯爆炸影响的实验研究与理论分析[J],矿业安全与环保,
    2007, 01
    [37]陶文锉.计算传热学的近代进展[M].科学出版社.2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700