用户名: 密码: 验证码:
高速深磨(HSDG)工艺中关键应用技术的研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程陶瓷具有高强度、高硬度、高耐热性、高耐磨性、高耐腐蚀性等优异特性,在工业领域中的应用日益广泛。然而,它的高硬度和高脆性也给其加工带来了很大困难,也因此加工成本比普通金属材料显著增加。磨削是工程陶瓷的主要加工工艺,磨削成本在整个加工成本中占了绝大部分份额。因此,提高磨削效率,可极大地降低加工成本。
     近几十年来,对于高速超高速磨削所带来的技术优势和经济效益,人们给予了充分的注意和重视。砂轮线速度的提高能够大大地减小单磨粒未变形切屑厚度,进而减小磨削力,改善加工表面质量,提高材料磨除率,实现高效加工。高速深磨(High Speed Deep Grinding,简称HSDG)工艺是其主要形式之一,它集高的砂轮线速度和大切深于一体,既能达到高的金属切除率,又能保证加工表面高质量的一种加工工艺。然而,工程陶瓷的硬脆难加工特性也给高速深磨技术带来了新的难题:加工中大磨削力与高磨削温度使加工条件急剧恶化,砂轮磨损因此加剧,进而发生钝化并渐失切削性能,加工质量也随之恶化。因此,在工程陶瓷的高速深磨过程中,保证砂轮磨粒始终处于稳定的切削状态显得尤为重要。文献分析和研究表明,在线电解修锐(Electrolytic in-process dressing,简称ELID)技术是保持磨粒切削稳定的有效方式,但是,将ELID技术应用于工程陶瓷的高速深磨(即高速深磨ELID)时,由此导致的一系列新问题亟待解决。这一系列问题的关键是如何提高工程陶瓷粗磨砂轮的ELID效率,并保持砂轮在高速深磨中的切削稳定性。此外,在高速深磨时,砂轮线速度的强化了磨削区附近的气障,从而影响到磨削液的有效注入,使磨削温度升高,进而影响磨削环境和加工质量。
     本课题针对以上问题,重点研究了工程陶瓷等硬脆难加工材料高速深磨所必需的三项关键技术,即金属结合剂金刚石砂轮的整形技术、在线电解修锐(ELID)技术和磨削液注入技术,所取得的成果总结如下:
     1)针对较粗粒度的金属结合剂金刚石砂轮无法单纯依靠电火花整形来实现整形的问题,本文提出了砂轮电火花—机械复合整形法。先利用电火花整形法去除砂轮偏心部分的金属结合剂,降低其对砂轮磨粒的把持强度:再以机械整形法去除偏心部分突出的磨粒。如此交替采用电火花与碳化硅滚轮对砂轮进行整形,直至砂轮达到整形精度要求为止。以此方法对100/120#青铜结合剂金刚石砂轮进行整形试验,试验结果表明它能够有效地解决较粗粒度金属结合剂砂轮的整形效率低的问题,整形精度可提高到6μm左右。
     2)为改善ELID预修锐阶段的效率问题,本文增加了机械预修锐环节,以及时去除电解预修锐在砂轮表面所形成的氧化膜,恢复电解能力,从而使砂轮磨粒的突出高度尽快达到最佳切削高度。此外,本文还以砂轮磨粒突出高度保持不变为控制条件,建立了ELID稳定磨削阶段的控制模型,从而解决了工程陶瓷高速深磨ELID磨削时砂轮表面很难形成致密连续氧化膜而引起磨削过程不稳定的难题。
     3)针对工程陶瓷高速深磨ELID磨削时ELID效率低下的问题,本文开发了封闭式电解阴极,并以此为核心构建了高速深磨ELID磨削试验平台,包括磨床、砂轮、电解装置、电源等部分;还对电解液的成膜性能进行了研究,开发出适用于青铜结合剂砂轮的ELID专用电解液。封闭式阴极与传统式阴极电解预修锐对比试验表明采用封闭式电解阴极可获得较高的电解电流,尤其是在砂轮线速度为150m/s时分别采用两阴极的电流差值可达1.1A,这充分表明了封闭式电解阴极在高速超高速磨削中的作用效果。
     4)对氧化锆陶瓷分别进行高速深磨ELID与非ELID高速深磨工艺试验,试验结果表明ELID技术的应用增加了砂轮表面的有效磨刃密度,改善了砂轮的切削状态,从而使磨削力减小到3/4,表面粗糙度值减小0.15μm左右。
     5)本文还提出一种新的磨削液注入方式,依此方式设计出了一种新型喷嘴——封闭式Y型喷嘴,并通过高速深磨试验验证了喷嘴的作用效果。试验结果表明:相对于普通L型喷嘴,采用封闭式Y型喷嘴供液能使工件得到更好的冷却,从而增加了工件材料磨除率;它还能及时清洗砂轮,使其处于良好的切削状态,有效地改善工件表面的加工质量。
Advanced engineering ceramics have been extensively used as structural materials in modern manufacturing industries due to their excellent properties,such as high hardness at both ambient and elevated temperatures,low thermal expansion, and excellent wear resistance and chemical inertness.Nevertheless,the high hardness and brittleness also make the machining of the ceramics very difficult.As a result,the machining process is associated with a high cost.Grinding is a commonly used machining process for engineering ceramics.Therefore,the improvement of efficiency in ceramics grinding shall greatly reduce the total machining cost.
     In the past decades,a great attention has been paid to the development of high speed grinding technologies.In a high speed grinding process,the increase in grinding wheel velocity can significantly reduce the undeformed chip thickness per grit,and thus decrease the grinding force.This enables the improvement of ground surface quality and the elevation of material removal rate.High speed deep grinding (HSDG) is a process which integrated with high grinding velocity and large depth of cut in order to achieve high material removal rate while maintaining a high surface quality.
     The HSDG of ceramics is often accompanied with large grinding force and high grinding temperature.The deterioration of machining conditions thus accelerates the wear of the grinding wheel.Therefore,the active abrasives quickly lose their cutting abilities,and the machining quality is deteriorated.It is thus important to keep active abrasives in good cutting condition throughout the HSDG grinding process.Previous investigations have shown that electrolytic in-process dressing(ELID) is a good approach for continuously maintain the grit sharpness during grinding.However, this technique was mainly used for dressing the fine abrasive wheels.Several technical issues need to be resolved if the ELID technology is applied to a HSDG process for engineering ceramics.The key issue is how to maintain the ELID efficiency during a HSDG process.In a HSDG process,the increasing wheel velocity strengthens the air barrier around the grinding wheel,which affects the impinging of grinding fluid,thus results in low ELID efficiency and high grinding temperature.
     This project focused on the developments of key technologies for the HSDG of engineering ceramics,which tackled the key issues mentioned earlier.The technologies included the truing and ELID dressing for metal-bond diamond wheels, and the coolant supply technology.The significant results achieved are summarized below.
     1) It is challenging to true metal-bond diamond wheels with coarse abrasives directly using the electrical discharge truing(EDT).In this project,the electrical discharge/mechanical hybrid truing method was developed.In this new truing method,the bond material on the wheel surface was firstly removed by EDT, which also lowered the holding strength of the grits.The protruded abrasive grits was then abraded by mechanical removal.EDT and mechanical truing were carried out alternately until the wheel may meet the grinding requirements.Using this method,the coarser abrasive metal bonded wheels were efficiently trued,with a roundness error of smaller than 6μm.
     2) Mechanical pre-dressing was introduced into the ELID pre-dressing process. Using this approach,the oxide layer formed on the wheel surface was removed,and the electrical current during ELID pre-dressing was enhanced.This has significantly increased the pre-dressing efficiency.Additionally,a control model was also established,which effectively controlled the balance of metal bonded removal and wear of grinding wheel,and maintained the protrusion height of grits as a constant.
     3) A new electrolysis cathode was successfully developed and used as a core component in the HSDG-ELID system.The application of such a cathode has solved a long-standing problem,which is the low ELID efficiency at relatively high grinding speeds.The comparison between the closed and the conventional cathodes demonstrated that a much higher pre-dressing current,hence an improved ELID efficiency was obtained.In addition,a new electrolytic fluid specifically for dressing bronze-bond diamond wheels was developed,which enhanced the ELID efficiency as well.The comparison between the HSDG processes with and without ELID showed that ELID technology increased the number of effective cutting grits on the wheel surface and improved their cutting abilities,resulting in a decreased grinding force and improved surface roughness.
     4) A new coolant supply method was developed.This was accompanied with the design and fabrication of a closed Y-type nozzle.The HSDG experiments using the Y-type nozzle and the conventional L-type nozzle indicated that the closed Y-type nozzle improved the cooling conditions in the grinding zone,which enabled a higher materials removal rate.Additionally,the use of the new nozzle could better clean the wheel.This helped to maintain the wheel in a stable cutting condition and thus improve the quality of grinding.
引文
[1]Spriggs R M.Advanced ceramic materials,applications and opportunities.In:Intersociety Symposium on Machining of advanced Ceramic Materials and Components.Westerville,OH,Am.Ceram.Society,1987,4:1-9
    [2]Jahanmir S,Ives L K,Ruff A W,et al.Ceramic machining:assessment of current practice and research needed in the United States.NIST Special Publication,1992,6:834
    [3]李长河,修世超,蔡光起.高速超高速磨削工艺及其实现技术.金刚石与磨料磨具工程,2004,142(4):16-20
    [4]李伯民,赵波.现代磨削技术.北京:机械工业出版社,2003,243
    [5]Ohmori H,Nakagawa T.Utilization of nonlinear conditions in precision grinding with ELID(Electrolytic In-process Dressing)for fabrication of hard material components.Annals of the CIRP Manufacture Technology,1997,46(1):261-264
    [6]Zhang B,Howes T,Zhu Z.Grinding of GS-44 silicon nitride using both vitrified and CIFB diamond wheels.Cost-Effective Ceramic Grinding:the Effect of Machine Stiffness on the Grinding of Silicon Nitride,DE-AC0596 OR 22464:SU:366-419
    [7]Zhu Z Q,Wang X H,Thangam S.Simulation and analysis of rigid/foil electrolytic in-process dressing(ELID) systems for grinding.Journal of Manufacturing Science and Engineering,2004,126(3):565-570
    [8]Zhu Z Q,Liu X M,Thangam S.Development and analysis of foil electrodes for high speed electrolytic in-process wheel dressing.Journal of Machining Science and Technology,2003,7(1):65-81
    [9]马明霞,应宝阁,王先逵等.金属结合剂金刚石微粉砂轮电火花整形精度研究.金刚石磨料与磨具工程,1999,111(3):20-23
    [10]Suzuki K,Uematsu T,Nakagawa T.On-machine truing/dressing of metal bond diamond grinding wheels by electro-discharge machining.Annals of the CIRP,1987,36(1):115-118
    [11]Wang X,Ying B,Liu W.EDM dressing of fine grain super abrasive grinding wheel.Journal of Materials Process Technology,1996,62:299-302
    [12]赵万生.先进电火花加工技术.北京:国防工业出版社,2003
    [13]应宝阁,王先逵.电火花修整金刚石微粉砂轮的磨削特性.制造技术与机床,1996,(5):8-11
    [14]金卫东,任成祖,华瑾海等.基于实时监控的金属结合剂金刚石微粉砂轮电火花精密整形.金刚石与磨料磨具工程,2004,144(6):43-47
    [15]Gong Y D,Li H,Cai G Q,et al.The effect of wheel velocity and shape on rotating airflow in super-high-speed grinding.Key Engineering Materials,2004,260:302-306
    [16]Shimizu J,Zhou L B,Eda H.Simulation and experimental analysis of super high-speed grinding of ductile material.Journal of Materials Processing Technology,2002,129:19-24
    [17]Opitz H,Ernst W,Meyer K F.Grinding at high cutting speeds.In:Proc.6th Int.MTDR.Conference.Manchester:1965
    [18]Opitz H,Koenig W,Werner G.Kinematics and mechanics in grinding with regards to the machining process.New development in grinding.Carnegie Press,1974:259-282
    [19]Kienzle O.Wege zur erhohlung der unfangsgeschwindigkeit von schleifscheiben,1963,VDI-Z.105,26
    [20]Opitz H,Guhring W.High speed grinding.Annals of the CIRP,1968,16(1):61-73(in French)
    [21]Klocke F,Brinksmeier E,et al.High-speed grinding fundamentals and state of art in Europe,Japan and the USA.Annals of the CIRP,1997,46(2):715-724
    [22]Brinksmeier E,Heinzel M,Wittmann M.Friction,cooling and lubrication in grinding.Annals of the CIRP,1999,48(2):1-18
    [23]Koenig W.Schleifen im ueberschallbereich.Industrie Anzeige,1991,113(1):90
    [24]Koenig W,Ferlemann F.New dimension for high-speed grinding.Industrial Diamond Review,1991,51(546):237-241
    [25]Koenig W,Fromlowitz J.High-performance grinding-possible methods for increasing the metal removal rate.Journal of Advanced Manufacturing Processes,1987,2(1-2):141-167
    [26]Koenig W.High wheel speeds require a new wheel concept,lndustrie Diamonten Rundschau,1990,24:3
    [27]Koenig W,Steffens K,Ludwig T.Single grit tests to reveal the fundamental mechanism in grinding.In:Proc.Grind.Conf.ASME,1985:141-154
    [28]Hwang T W,Whitenton E P,Hsu N N,et al.Acoustic emission monitoring of high speed grinding of silicon nitride.Ultrasonic,2000,38:614-619
    [29]Hwang T W,Evans C J,Malkin S.High speed grinding of silicon nitride with electroplated diamond wheels,part 1:wear and wheel life.Transactions of the ASME,2000,122(2):32-41
    [30]Hwang T W,Evans C J,Malkin S.High speed grinding of silicon nitride with electroplated diamond wheels,part 2:wheel topography and grinding mechanisms.Transactions of the ASME,2000,122(2):42-50
    [31]Shih A J,McSpandden S B,Morris T Q,et al.High speed and high material removal rate grinding of ceramics using the vitreous bond CBN wheel.Journal of Machining Science and Technology,2000,4(1):43-58
    [32]蔡光起,冯宝富,赵恒华.磨削磨料加工技术的最新进展.航空制造技术,2003,(4):31-40
    [33]Werner P G.Application and technological fundamentals of deep and creep feed grinding.Manufacturing Engineering Transactions,1980:26-32
    [34]Werner P G.Erhohen Abtragsleistungen und Bearbeitungsguten dutch moderne Schleifverfahren.Automobil Industrie,1988,3
    [35]Werner P G.New message in advaced grinding.Abrasives,1994,3-4:4
    [36]Werner P G.Advance in high efficiency deep grinding.SME paper.MR88-588
    [37]Werner P G.Forschritte beim HEDG-Verfahren mit CBN-Schleifscheiben.Industrie Diamonten Rundschau,1988,1
    [38]Tawakoli T.High Efficiency Deep Grinding.London:Mechanical Engineering Publications Limited,1993
    [39]Tawakoli T.Hochleistungsschleifen(HEDG) von Inconel und anderen Werkstoffen,VDI-Z 134(1992),Nr.1-Januar,Seite 48-57
    [40]Tawakoli T.Hochleistungsschleifen,Technologie,Verfahrensplanung und wirschaftlicher Einsatz,Duesseldorf:VDI-Verlag 1990:15-17
    [41]Tawakoli T.New machine concept for the mass production of cylindrical workpiece.Abrasives,1996,(8-9):4
    [42]Tawakoli T.Technologische Voraussetzungen und Theoretische Grundlagen fuer das Hochleistrungsschleifen.Industrial Diamond Review,1990,2
    [43]Tawakoli T.High efficiency deep grinding(HEDG) with shaved CBN wheels,In:4th Internatinal grinding conference.Dearborn,Michigan:SME,1990,MR90-506
    [44]Warnecke G,Rosenberger V.Hochleistungs-Schleifenzentrum fuer die praxisnahe Forschung.1944,VDI-Z,Nr.1/2-Januar/Februar:136
    [45]荣烈润.高速磨削技术的现状及发展前景.机电一体化,2003,(1):6-10
    [46]Klaus M.Hochgeschwindigkeitsschleifen-Alternative zum Drehen und Fraesen? VDI-Z.Nr.7-Juli
    [47]Frederick M,First U S.High-efficiency deep grinding(HEDG)machine.American Mechanist,1993,4:4-6
    [48]Jin T,Rowe W B,Mccormack D.Temperatures in deep grinding of finite workpieces.Journal of Machine Tools & Manufacture,2002,42:53-59
    [49]Rowe W B.Thermal analysis of high efficiency deep grinding.Journal of Machine Tools & Manufacture,2001,41:1-19
    [50]Jin T,Stephenson D J.Analysis of grinding chip temperature and energy partitioning in high-efficiency deep grinding.Proc.IMechE,PartB:Engineering Manufacture,2005,220:615-625
    [51]Jin T,Stephenson D J.Heat flux distributions and convective heat transfer in deep grinding.Journal of Machine Tools &Manufacture,2006,46:1862-1868
    [52]Stephenson D J,Jin T,Corbett J.High efficiency deep grinding of low alloy steel with plated CBN wheels.Annals of the CIRP Manufacturing Technology,2002,51(1):241-244
    [53]Huang H,Liu Y C.Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding.Journal of Machine Tools & Manufacture,2003,43(8):811-823
    [54]Huang H.Machining characteristics and surface integrity of yttria partially stabilized zirconia in high speed deep grinding.Materials Science and Engineering A,2003,345(1-2):155-163
    [55]Huang H,Yin L.Grinding characteristics of engineering ceramics in high speed regime.Abrasive Technology,2007,1(1):78-93
    [56]Yin L,Huang H,Ramesh K,et al.High speed versus conventional grinding in high removal rate machining of alumina and alumina-titania.Journal of Machine Tools & Manufacture,2005,45(6):897-907
    [57]蔡光起,宋贵亮.超高速磨削工艺技术.机械工艺师,1995,(9):35-37
    [58]蔡光起.磨削技术现状与新进展.湖南大学学报,1999,26(2):1-4
    [59]金滩,蔡光起.高速钢的高速深磨研究.金刚石与磨料磨具工程,1999,112(4):19-22
    [60]金滩,蔡光起.深磨条件下磨削区的热流和温度分布.湖南大学学报,1999,26(2):15-20
    [61]郭成,金滩.超高速磨削条件下的磨削液净化过滤技术.磨床与磨削,1998,(1):20-21,72
    [62]金滩,蔡光起.超高速磨削的热传递机制探讨.东北大学学报,1999,20(4):384-387
    [63]金滩.高效深切磨削技术的基础研究:[东北大学博士论文].沈阳:东北大学,1999,5
    [64]刘文志.超高速大功率磨削主轴系统及其动静压混合轴承的研究:[东北大学博士论文].沈阳:东北大学,1996,12
    [65]刘文志,宋贵亮.紊流大流量液体动静压混合轴承的设计计算.东北大学学报,1996,17(4):425-429
    [66]刘文志,蔡光起,宋贵亮等.用于超高速磨削主轴系统的液体动静压混合轴承的研制.机械制造,2001,31(1):19-21
    [67]宋贵亮.超高速磨削金属及其机理的若干基础研究:[东北大学博士论文].沈阳:东北大学,1997,5
    [68]宋贵亮,刘文志.高速深磨的最新发展与技术分析.机械制造,1996,9:6-8
    [69]盛晓敏,邓朝辉.高效磨削技术发展前瞻.湖南大学学报,1999,26(2): 39-42
    [70]谢桂芝,黄红武,黄含等.工程陶瓷材料高速深磨的试验研究.机械工程学报,2007,43(1):176-184
    [71]Shang Z T,Huang H,Wang S Q,et al.Effects of ELID on high speed grinding of partially stabilized zirconia.Key Engineering Materials,2007,329:131-136
    [72]Shang Z T,Huang H,Tang K,et al.Coolant Effect on Grinding Performance in High Speed Deep Grinding of 4OCr Steel.Metal Finishing,2008,(5):16-21
    [73]尚振涛,黄含,王树启等.粗粒度青铜结合剂金刚石砂轮电火花-机械复合整形试验研究.金刚石与磨料磨具工程,2006,(6):42-48
    [74]尚振涛,黄含,盛晓敏等.氮化硅陶瓷的ELID高速磨削工艺试验研究.湖南大学学报(自然科学版),2007,34(12):30-34
    [75]唐昆,尚振涛,盛晓敏等.40Cr钢高速深磨磨削力试验研究.制造技术与机床,2007,(7):58-62
    [76]王树启,黄红武,尚振涛等.在线电解修锐(ELID)磨削液的成膜特性试验研究.精密制造与自动化,2005,(4):14-23
    [77]王树启,黄红武,尚振涛等.电源参数对氧化锆ELID高速磨削表面粗糙度的影响.机械,2006,(9):56-58
    [78]傅玉灿.关于进一步开发高效磨削潜力的基础研究:[南京航空航天大学博士论文].南京:南京航空航天大学,1999,3-4
    [79]邹峰,于爱兵,王长昌.金属基金刚石砂轮修整技术的研究进展.精密制造与自动化,2003,2:12-14
    [80]Syoji K,Tuemot,Kuriyagawa,et al.Truing of super-abrasive wheel for form grinding.Journal of Japan Society Precision Engineering,1993,59:485-490
    [81]Syoji K,Zhou L,Matsui S.Studies on truing and dressing of diamond wheels(1st report):The measurement of protrusion height of abrasive grains by using a stereo pair and the influence of protrusion height on grinding performance.Journal of Japan Society Precision Engineering,1990,24(2):124-129
    [82]庄司克雄.金属结合剂金刚石砂轮的修整研究.磨料磨具与磨削,1993,76(4):5-11
    [83]Ma M X,Ying B,Wang X K.Soft-elastic dressing of fine grain diamond wheels.Journal of Materials Processing Technology, 2000,103:194-199
    [84]Hoffmeister H W,Timmer J H.Laser conditioning of super abrasive grinding wheels,lndustrial diamond review,2000,60(586):209-219
    [85]左敦稳.金刚石砂轮的CO_2脉冲激光修锐研究.机械工程学报,1999,35(2):42-45
    [86]陈根余,李力均,刘劲松.超硬磨料砂轮激光修整试验系统的研究.新工艺新技术,2000,29(3):49-52
    [87]康仁科,原京庭.超硬磨料砂轮的激光修锐技术研究.中国机械工程,2000,5(11):493-496
    [88]张建中,左敦稳,张永康等.激光修锐砂轮的单片微机控制研究.电加工与模具,2002,(3):32-34
    [89]张广玉.超声振动在砂轮修整及磨削中应用技术和机理的研究:[哈尔滨工业大学博士学位论文].哈尔滨:哈尔滨工业大学,1995:2-7
    [90]张春河,谭业发.铸铁基超硬磨料砂轮的电化学机械整形工艺及其作用机理.中国机械工程,1998,9(5):70-72
    [91]Nakagawa T,Suzuki K.Highly efficient grinding of ceramics and hard metals on grinding center.Annals of the CIRP,1986,35(1):205-210
    [92]Ohmori H.Electrolytic in-process dressing(ELID) grinding technique for ultra-precision mirror surface machining.Journal of Japan Society Precision Engineering,1992,26(4):273-278
    [93]Ohmori H,Li W.Efficient and precision grinding of small hard and brittle cylindrical parts by the centerless grinding process combined with electro-discharge truing and electrolytic in-process dressing.Journal of Materials Processing Technology,2000,98:322-32
    [94]Lim H S,Fathima K.A fundamental study on the mechanism of electrolytic in-process dressing(ELID) grinding.Journal of Machine Tools & Manufacture,2002,42:935-943
    [95]Ohmori H,Nakagawa T.Mirror surface grinding of silicon wafers with electrolytic in-process dressing.Annals of the CIRP,1990,39(1):329-332
    [96]Ohmori H.Electrolytic in-process dressing(ELID) grinding technique for ultraprecision mirror surface machining.Journal of Japan Society Precision Engineering, 1992, 26(4): 273-278
    [97] Ohmori H. Efficient and precision grinding technique for ceramics with electrolytic in-process dressing(ELID). In: Proc. Int. Conf. on Machining of Advanced Materials.Gaithersburg , MD : NIST publication, 1993, 359-382
    [98] Ohmori H, Takahashi I.Efficient grinding technique utilizing electrolytic in-process dressing for precision machining of hard materials. In: Proc. 7th Int. Conf. on Production - Precision Engineering.Chiba, Japan: 1994
    [99] Kumar A S, LIM H S, Rahman M, et al.A study on the grinding of glass using Electrolytic in-process dressing. Electronic Materials, 2002, 31(10): 1039-1046
    [100] Lee E S, KIM J D. A study on the analysis of grinding mechanism and development of dressing system by using optimum in-process electrolytic dressing. Journal of Machine Tools & Manufacture,1997, 37(12):1673-1689
    [101] Fathima K, Kumar A S, Rahman M, et al. A study on wear mechanism and wear reduction strategies in grinding wheels used for ELID grinding.Wear, 2003, 254: 1247-1255
    [102] Bandyopadhyay B P. Efficiency and stable grinding of ceramics by ELID. Journal of Materials Processing Technology , 1997 ,66(1 -3): 18-24
    [103] Ohmori H,Takahashi I,Bandyopadhyay B P. Ultra-precision grinding of structural ceramics by electrolytic in-process dressing (ELID) grinding. Journal of Materials Processing Technology, 1996, 57:272-277
    [104] Chen H, James C M Li.Anodic metal matrix removal rate in electrolytic in-process dressing I: Two-dimensional modeling.Journal of Applied Physics, 2000, 87(6): 3151-3158
    [105] Tonshoff H K, Friemuth T. In-process dressing of fine diamond wheels for tool grinding.Journal of Precision Engineering,2000, 24: 58-61
    
    [106] Lee E S.Surface characteristics in the precision grinding of Mn-Zn ferrite with in-process electro-discharge dressing. Journal of Materials Processing Technology, 2000, 104:215-225
    [107]Bifano T,Krishnamoorthy R,Caggiano H,et al.Fixed-load electrolytic dressing with bronze bonded grinding wheels.Journal of Manufacturing Science and Engineering,Transactions of the ASME,1999,121(1):20-27
    [108]Fathima K,Kumar A S,Rahman M,et al.A study on wear mechanism and wear reduction strategies in grinding wheels used for ELID grinding.Wear,2004,254:1247-1255
    [109]张春河,袁哲俊,张飞虎等.在线电解修整(ELID)超精密镜面磨削的影响因素初探.金刚石与磨料磨具工程,1996,93(3):21-23
    [110]周曙光,关佳亮,郭东明等.ELID镜面磨削技术——综述.制造技术与机床,2001,2:38-40
    [111]朱 波,袁哲俊,张飞虎等.ELID超精密磨削钢结硬质合金及其表面质量分析.中国机械工程,2000,11(8):866-868
    [112]关佳亮,袁哲俊,张飞虎等.ELID精密镜面磨削用新磨削液的研制.哈尔滨工业大学学报,1998,30(5):69-71
    [113]关佳亮,袁哲俊,张飞虎.ELID精密镜面内孔磨削技术的应用.制造技术与机床,1998,(1):25-26
    [114]张飞虎,朱波,栾殿荣等.ELID磨削硬脆材料精密和超精密加工的新技术.宇航材料工艺,1999,(1):51-55
    [115]张飞虎,张春河,欧海涛等.在线电解修整镜面磨削中砂轮耐用度的研究.哈尔滨工业大学学报,1999,31(6):9-11
    [116]Zhang F H,Qiu Z J,Kang G W,et al.High efficiency ELID grinding of garnet ferrite.Journal of Materials Processing Technology,2002,129:41-44
    [117]关佳亮,栾殿荣,陈霞等.ELID砂轮结合剂作用机理的研究.哈尔滨理工大学学报,1998,3(4):23-26
    [118]关佳亮,郭东明,周曙光等.ELID镜面磨削技术金属结合剂砂轮的研制.制造技术与机床,2001(3):25-27
    [119]关佳亮,郭东明,袁哲俊.ELID镜面磨削砂轮氧化膜生成机理.中国机械工程,1999,10(6):630-632
    [120]关佳亮,郭东明,袁哲俊.ELID镜面磨削中砂轮氧化膜特性及其作用的研究.机械工程学报,2000,36(5):89-92
    [121]林彬,张春河,徐燕申.ELID超精密镜面磨削砂轮磨损规律的研究.天津大学学报,1999,32(1):74-76
    [122]关佳亮,范晋伟,马春敏.ELID精密镜面磨削技术的应用.北京工业大学学报,2001,27(4):420-421
    [123]关佳亮,范晋伟.ELID精密镜面外圆磨削技术的应用.江苏机械制造与自动化,2001(4):115-117
    [124]关佳亮,范晋伟,黄旭东等.硬脆材料专用ELID磨削液的研制.金刚石与磨料磨具工程,2003,138(6):22-25
    [125]史兴宽,原京庭,任敬心等.铸铁结合剂微粉金刚石砂轮的在线电解修整的试验研究.航空学报,1997,18(5):611-614
    [126]王平,赵文福,居冰峰等.铸铁砂轮电解氧化膜在ELID镜面磨削中的作用机理研究.金刚石与磨料磨具工程,1996,96(6):25-28
    [127]段明扬,杨玲.电解修整青铜结合剂金刚石砂轮的研究.机械制造,1995(7):28-30
    [128]肖强.ELID镜面磨削工艺与设备工程化研究:[西安工业学院硕士论文].西安:西安工业学院,2004
    [129]Malkin S.Grinding Technology:Theory and application of machining with abrasives.London:Ellis Horwood Limited,1989
    [130]Ebbrell S,Woolley N H,Tridimas Y D,et al.Effects of cutting fluid application methods on the grinding process.Journal of Machine Tools & Manufacture,2000,40(2):209-223
    [131]Wang C Y,Wei X,Pan Z C,et al.Effects of surfactant in stone machining.Key Engineering Materials,2003,250:194-199
    [132]Webster J A,Cui C.Flow rate and jet velocity determination for design of a grinding cooling system.In:Technical Papers Supplement of the First International Machining and Grinding Conference.Dearborn,Michigan:Society of Manufacturing Engineers,1995
    [133]Ge P Q,Li J F,Lu C H,et al.Performance evaluation and action mechanism analysis of extreme pressure additives used for oil-based cutting fluids.Key Engineering Materials,2003,250:281-286
    [134]Campbell J D.Tools to measure and improve coolant application effectiveness.Abrasives,1998,10-11:9
    [135]Rowe W B,Jin T.Temperatures in high efficiency deep grinding (HEDG).Annals of the CIRP,2001,50(1):205-208
    [136]Webster J A,Brinksmeier E,Heinzel C,et al.Assessment of grinding fluid effectiveness in continuous-dress creep feed grinding.Annals of the CIRP, 2002, 48(2): 581-598
    [137] Webster J A, Cui C. Flow rate and jet velocity determination for design of a grinding cooling system. In : Technical Papers Supplement of the First International Machining and Grinding Conference. Dearborn, Michigan, 1995, 9: 12-14
    [138] Webster J A,Brinksmeier E,Heinzel C,et al. Assessment of grinding fluid effectiveness in continuous-dress creep feed grinding.Annals of the CIRP, 2002, 8(2): 581-598
    [139] Webster J A, Cui C, Mindek Jr. R B. Grinding fluid application system design. Annals of the CIRP, 1995, 44(1): 333-338
    [140] Webster J A.Optimizing coolant application systems for high productivity grinding. Abrasives, 1999, (10-11): 34-41
    [141] Da Silva E J, Bianchi E C, De Oliveira J F G, et al. Evaluation of grinding fluids in the grinding of a martensitic valve steel with CBN and alumina abrasives. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2003, 217(8): 1047-1055, 1059
    [142] Salmon S C. Modern grinding process technology.New York: McGraw Hill, 1992
    [143] Ninomiya S, Iwai M, Uematsu T, et al. Effect of the floating nozzle in grinding of mild steels with vitrified CBN wheel.Key Engineering Materials, 2004, 257-258: 315-320
    [144] Xu H J, Fu Y C, Sun F H. Research on enhancing heat transfer in grinding contact zone with radial water jet impinging cooling.Key Engineering Materials, 2001, 202-203: 53-56
    [145] Chang L Z, Satoshi A, Masahiro N. Influence of grinding oil viscosity on grinding heat and burn damage in creep-feed grinding.Lubrication Engineering, 1995, 51(8): 647-651
    [146] Graham W, Whiston M G.Some observations of through-wheel application in grinding. Journal of Machine Tool Design and Research, 1978, 18: 9-18
    [147] Rezaei S M, SutoT, WaidaT, et al. Creep feed grinding of advanced ceramics. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 1992, 206(2): 93-99
    [148]Zitt U,Schaefer L.Nozzles and grinding wheel concepts for optimization of cooling in high performance grinding.Abrasives,1998,10-11:31-37
    [149]Yokogawa M,Yokogawa K.Improving grinding performance of CBN wheels by dual-fluid supply method.Journal of Japan Society Precision Engineering,1993,27(1):11-16
    [150]Suto T,Waida T,Noguchi H,et al.High performance creep feed grinding of difficult to machine materials with new-type wheels.Journal of Japan Society of Precision Engineering,1990,24(1):39-44
    [151]Okuyama S,Nakamura Y,Kawamura S.Cooling action of grinding fluid in shallow grinding.Journal of Machine Tools and Manufacture,1993,33(1):13-23
    [152]Hwang T W,Whitenton E P,Hsu N N,et al.Acoustic emission monitoring of high speed grinding of silicon nitride.Ultrasonic,2000,38:614-619
    [153]Hundt W,Leuenberger D,Rehsteiner F.An approach to monitoring of the grinding process using acoustic emission(AE) technique.Annals of the CIRP,1994,43(1):295-298
    [154]Webster J,Marinescu I,Bennett R,et al.Acoustic emission for process control and monitoring of surface integrity during grinding.Annals of the CIRP,1994,43(1):299-304
    [155]Tonshoff H K,Karpuschewski B,Regent C.Process monitoring in grinding using micromagnetic techniques.Journal of Advanced Manufacturing Technology,1999,15:694-698
    [156]周玉.陶瓷材料学.北京:科学出版社,2004
    [157]袁立伟,任成祖,舒展.ELID超精密镜面磨削钝化膜状态变化的研究.航空精密制造技术,2006,42(1):5-8
    [158]Bourgoin B.Sprinkling device for grinding wheels.America.Patent,4320600.1982-03-23
    [159]徐祖耀,李鹏兴.材料科学导论.上海:上海科学技术出版社,1986
    [160]哈宽富.金属力学性质的微观理论.科学出版社,1983
    [161]葛庭燧,冯端.金属物理学第一卷结构与缺陷.科学出版社,1987
    [162]Klocke F,Baus A,Beck T.Coolant induced forces in CBN high speed grinding with shoe nozzles.Annals of the CIRP,2000,49(1): 241-244
    
    [163] Xie G Z, Huang H. An experimental investigation of temperature in high speed deep grinding of partially stabilized zirconia.Journal of Machine Tools & Manufacture, 2008, 48(14): 1562-1568

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700