用户名: 密码: 验证码:
特种车辆救援机械手控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以主、从随动控制系统为核心的视觉临场感远距离操作车辆救援机械手系统,可以在非确定性环境或极限环境下(如空间、海底、强辐射、战场等)进行复杂的操纵作业。操作者的操纵质量与对“从环境”信息(如视觉)的真实获得能力以及控制系统的动静态特性密切相关。借助于远距离操作机械手系统提供的视觉反馈,可以使操作者真实地感觉到机械手与被救援车辆的动态相互作用,使操作者完成复杂精密的操纵作业。
    以主、从随动控制系统为核心的视觉临场感远距离操作机械手系统的工作原理是由处在安全处的操作者,通过主手操纵杆操作现场工作的从手,从手做出与主手动作相似,位置关系按一定比例放大的动作,实现随动。从手上安装有摄像头,视频系统将作业现场的图像传回到操作者面前的屏幕上,为操作者提供视觉反馈。这种具有视觉反馈提示的操作方式,既有效地避免了操作者与危险环境直接接触,又能保证从手完成预定要求的工作。该系统用于特种车辆的救援可以确保救援人员的安全,大大提高工作效率,节约宝贵的时间。
    本文在对国内外主从随动远距离操纵机械手系统进行了广泛调研的基础上,建成一个具有视觉反馈的远距离操作车辆救援机械手系统。该远距离操纵车辆救援机械手系统由主从机械手、电液控制子系统、伺服控制子系统、视觉反馈子系统组成。并且讨论了各子系统的组成及功能的实现方法。
    针对电液伺服控制远距离操纵机械手的特点,进行了液压系统特性的研究,系统深入地分析了电液伺服控制算法和控制策略,提出了位置控制的试验方案,根据控制策略周密地设计了控制系统硬件,以及相应的软件。并分别针对从手各自由度,通过主从位置控制试验来验证所设计的位置控制器的合理性及有效性;
    结合理论与试验研究,现将完成的研究工作及创新性成果总结如下:
    1.建立了一个基于电液伺服控制系统的具有视觉临场感的远距离操作车辆救援机械手系统,它具有远距离操作、精确位置控制、视觉反馈的功能。应用该系统可完成人难以接近或非确定环境下的操纵作业,达到对被救援车辆实施抢救的目的。
    
    2.在考虑实际课题中主手操作空间的要求,且满足控制系统功能的前提下,又出于节省成本和操纵舒适性的考虑,自行设计了主手。
    3.设计了三自由度电液伺服控制异构型从手、位置控制器。根据控制系统所建立起来的传递函数,设计出相应的控制方案和控制策略,并通过Matlab仿真和台架试验的方法来整定控制器的参数,设计出PID串联校正控制器,并对比例阀的死区进行了补偿,使液压缸的位置控制获得了良好的动态和静态特性。使用彩色摄像机、监视器和通信单元构成视觉反馈系统,显著提高了操作者对现场的临场感和工作效率。全面实现了远距离操作救援机械手的各项功能。
    4.考虑从手的运动学特性,进行了主从手的坐标变换,系统深入地比较分析了伺服控制算法和控制策略,为进行电液伺服控制提供了理论基础。通过分析液压系统的特性,提出伺服控制试验方案。分别针对从手的各自由度,通过主从位置控制试验来验证所设计的位置控制器的合理性及有效性,以及所使用的控制算法的正确性。
    5.在综合考虑远距离操纵控制系统各种特性的基础上,设计了控制系统的硬件,并设计了相应的软件。其中包括中央处理器的选型及外围电路的设计;针对三位四通比例换向阀的各方面特性,进行了电液比例控制器的设计,解决了传统比例控制器与传感器因电源不匹配而造成二者之间不能组成闭环控制的难题;提出伺服电机的控制方案,使得电机既可以实现正反转,又能够可靠制动;介绍了硬件和软件两方面采用的抗干扰技术。
    本文研究的具有视觉反馈的电液伺服远距离操作车辆救援机械手系统,可借助视觉反馈提示使操作者真实地感觉到机械手与被救援车辆的动态相互作用,完成人难以接近环境的复杂操纵作业。所进行的控制策略和试验研究,为具有电液伺服远距离操作救援机械手系统的实用化提供了经验和关键技术。本系统的推广应用将在未来抢险及特殊领域中发挥得天独厚和无可替代的作用,创造出巨大的经济效益与社会效益。
The special vehicle rescue manipulator with vision master-slave control system can work in uncertain or extreme environment (such as space, seabed, strong radicalizations, battlefield, etc.) The quality of operation is correlation with the ability of getting information (such as vision, etc.) about the slave side. The operator can experience the interaction between the manipulator and the rescued vehicle with feedback of vision system. It can fulfill the complicated and exact manipulation work.
    The principle of the special vehicle rescue manipulator with vision master-slave control system is that the slave manipulator on spot is controlled by an operator in safe. The operator controls the master hand and the slave hand moves similar to main hand. The relation between them is in certain enlarged proportion in the position. So they are follow-up. There are several video cameras on the slave manipulator. Video frequency system affords pictures to the screen in front of the operator. And it provides vision feedback for the operator. So the system can avoid the operator keep in touch with dangerous environment effectively, and fulfill scheduled work as well. The system used in the special vehicle can ensure the safety of rescuer, improve working efficiency greatly, and economize valuable time.
    In this paper, we have set up a special vehicle rescue manipulator with vision master-slave control system after analyzing rescue manipulator system with vision feedback in home and abroad. The system comprises master-slave manipulator, electricity hydraulic control subsystem, servo control subsystem, vision feedback subsystem. I also discuss the structure and function of all subsystem.
    To electricity being servo to control remote characteristic to handle manipulators hydraulic, I go on hydraulic pressure research of the characteristic systematically. I analyze systematically ervo to control algorithms and control strategy hydraulic electricity deeply. At the same time, I have put forward the testing program of position control, and have designed the hardware of control system and the corresponding software carefully according to the control strategy. According to each freedom degree of the slave hand separately, I come and verify the rationality and validities of controller designed through principal and
    
    
    subordinate position control experiment.
    Combining the theory and experimental study, I summarize the research work that will get innovative achievement when it finished as follows:
    It has set up a control system of the special vehicle rescue manipulator with vision feedback, whose characteristics are remote-controlled, high precision position control, vision feedback. This system can finish complex tasks in uncertain or extreme environment, and rescue works.
     2. After considering actual subjects main hands the requests of operation space, satisfying the function of control system, in view of saving the cost and handle the comfortableness, I have designed main hands by myself.
    3. I Designed servo to control different types slave hands that has three freedom degree, position controller hydraulics. According to the transmitting function that control system set up, I designed and published corresponding control scheme and control strategy. And through Matlab emulation and shelf test exactly, I fixed the parameter of the controller. I designed the PID tandem correct controller, and have compensated the death district of the proportion valve. At the same time, I made hydraulic pressure jar position control obtain the good trends and static characteristic. Using colored camera, the monitor and communication unit to form the vision feedback system, I have improved approach sense and working efficiency to the scene of operator notably. We have realized all-sided that rescues every function of the manipulator in remote-controlled operation.
    4. Considering it from the kinematics characteristic of hands, the coordinate one which has been carried on principal and subordinate hands is varied, the system has servo to control al
引文
[1] 路甬祥,胡大纮.电液比例控制技术[M].机械工业出版社,1988.11
    [2] 黎啟柏.电液比例控制控制与数字控制系统[M].机械工业出版社,1997.6
    [3] 顾俊仁译.遥控主从机械手[M].原子能出版社,1982
    [4] 王春行.液压伺服控制系统[M].机械工业出版社,1987.10
    [5] 姚琼荟译.变参数控制系统自动机械手随动系统[M].重庆大学出版社,1991.12
    [6] [美]詹姆斯E·约翰逊[M].电液伺服系统.国防工业出版社,1981,3
    [7] 曾乐生,施妙和.随动系统[M].北京工学院出版社,1988,6
    [8] 王承义.机械手及其应用[M].机械工业出版社,1981,6
    [9] 张毅刚等。MCS-51单片机应用设计[M] .哈尔滨工业大学出版社,1997,12,第二版
    [10] 王顺晃等.带积分型的智能随动系统[J].北京科技大学学报,1994,4
    [11] 宫文斌等.电液比例PWM方法研究[J].吉林大学学报(工学版),2003,3
    [12] 杨汝清. “勇士号”电随动主从机械手及其控制系统[J].机械与电子,1997,1
    [13] 曾庆军等.基于虚拟现实的临场感遥控作业系统研究[J].系统仿真学报,2001,13
    [14] 段秀兵.具有力觉反馈的电液位置伺服控制系统的研究[硕士学位论文].长春,吉林大学2001,3
    [15] 王素秋.装载机工作装置工作过程的自动控制[硕士学位论文].长春,吉林大学,2002,3
    [16] 陶永华.新型PID控制及其应用[M].机械工业出版社,2003,7
    [17] 魏中魁.液压挖掘机功率匹配控制系统研究[硕士论文].长春,吉林大学2003,7
    [18] 曾孟雄等.基于单片机-电液比例阀的工作装置控制系统[J].矿山机械 2000(2),第28卷第2期 35~36
    [19] 王庆丰等.电液比例方向阀稳态流量控制特性的试验及分析液压与气动[J].1994(4),17~19
    
    [20] 张琳娜,刘武发.传感检测技术及应用[M].中国计量出版社,1999(12)
    [21] 王福瑞.单片微机测控系统设计大全[M].北京航空航天大学出版社, 1999(3)
    [22] 涂时亮,张友德.单片微机控制技术[M].复旦大学出版社,1994(1)
    [23] 宋占伟,闻邦椿.装载机电子控制技术的发展及应用[J].工程机械,2000(10)第31卷第10期 19~22
     [24] 龚烈航,涂群章.军用工程机械工作装置微机控制技术[J].工程机械, 1995.7: 13~15
    [25] 龚烈航,那波.最优控制在电液伺服控制系统设计上的应用[J].工程机械, 1992.10: 24~27
    [26] 张钹.从完全自由走向交互技术—智能机器人研究和新动向[J]. 机器人情报,1992, 1: 1~5
    [27] 朱广超,游松,刘毅敏等.机器人臂/手集成系统的图形仿真及其在遥控操作中的应用[J].系统仿真学报,2000,12(6):671~674
    [28] 姜山,程君实,包志军.面向对象机器人实时仿真系统的实现[J].上海交通大学学报,1999,33(11):1386~1390
    [29] 欧阳黎明.Matlab控制系统设计[M]. 国防工业出版社,2000第一版: 155~163
    [30] G.J.Raju. Design Issues in 2-port Network Models of Bilateral Remote Manipulator[J]. Proceedings IEEE International Conference on Robotics and Automation. 1989: 1316~1321
    [31] A.A.Goldenberg, D.Bastas. On the Bilateral Control of Master-Slave Teleoperators[J]. Robot Systems, 1991,7: 91~99
    [32] Peter M..Bobgan, H.Kazerooni. Achievable Dynamic Performance in Telerobotic Systems. Proceedings IEEE International Conference on Robotics and Automation[J]. April 1991: 2040~2046
    [33] H.Kazerooni et al.. Telefundtioning: An Approach to Telerobotic Manipulators[J]. Proc. American Control Conf., 1990: 2278~2783
    [34] Y.Strassberg. et al. A New Control Scheme for Bilateral Teleoperation. Proc. Robotics Res. [J]. 1990 ASME Nov.1990: 233~239
    [35] R.J.Anderson. et al.. A Modular Architercture for Robotics and Teleoperation. Proc[J]. of IEEE International Conference on
    
    
    Robotics and Automation. 1993: 416~421
    [36] B.Hannaford. Stability and Performance Tradeoffs in Bilateral Telemanipulation[J]. Proc. of IEEE International Conference on Robotics and Automation. 1989: 1764~1767
    [37] R.J.Anderson. Improved Tracking for Bilateral Teleoperators with Time Delay[J]. Proc. of IEEE International Conference on Robotics and Automation. 1990: 964~977
    [38] N.R.Parker, S.E.Salcudean, P.D.Lawrence. Application of Force Feedback to Heavy Duty Hydraulic Machines[M]. IEEE Transactions on Robotics and Automation,1993: 375~381
    [39] M.R.sirouspour, S.E.Ssalcudean. On the Nonlinear Control of Hydraulic Servo-systems[J]. Proc.Int.conf.Robotics and Automation, Apr.2000: 1276~1282
    [40] G.A. Sohl, J.E. Boborow. Experiments and Simulations on the Nonlinear Control of a Hydraulic Servosystem[M]. IEEE Trans.Contr.Syst.Technol., 1999,7(3): 238~247
    [41] Jagersand, Martin. Image Based Predictive Display for Tele-manipulation[m]. Proceedings IEEE International Conference on Robotics and Automation 1999,1(5): 550-556
    [42] 陈宝萍等.智能型通用位置闭环伺服控制系统[J].机械与电子,1997,2
    [43] 巩明德.具有临场感的遥操作工程机器人系统研究[博士论文].长春,吉林大学,2003,1
    [44] 刘鸿春.随动型水下作业机械手[J].机电设备,1997,6
    [45] 孟繁华.机器人应用技术[M].哈尔滨工业大学出版社,1989第一版
    [46] 窦振中.PIC系列单片机原理和程序设计[M].北京航空航天大学出版社,1998,10
    [47] 王庭树.机器人运动学及动力学[M].西安电子科技大学出版社,1990.12
    [48] 吴广玉.姜复兴.机器人工程导论[M].哈尔滨工业大学出版社,1988.3
    [49] 王正良.微机电液控制技术[M].大连理工出版社,1993.1
    [50] 王占林.液压伺服控制[M].北京航空学院出版社,1987.1
    [51] 胡寿松.自动控制原理[M].国防工业出版社(第3版),1994.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700