用户名: 密码: 验证码:
LCL滤波并网逆变器的数字单环控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
并网逆变器是连接分布式发电系统与电网最通用的接口设备,LCL滤波器由于具有良好的高频谐波抑制特性在分布式发电系统得到了广泛的应用。LCL滤波并网逆变器的单环数字控制策略不需要额外的传感器,具有结构简单,成本低,可靠性高的特点。但LCL滤波器存在固有的谐振问题,容易导致系统不稳定,对控制系统的设计提出了更高的要求。本文针对LCL滤波并网逆变器在系统建模、控制器、滤波器设计、谐振抑制以及对电网阻抗变化适应性等问题,对基于并网电流反馈的单环数字控制系统进行了系统的分析和研究。
     分析和建立了包含延迟环节的LCL滤波并网逆变器的连续和离散时间模型。为了能够采取直接数字法进行数字控制系统的分析和设计,对全桥变换器在各种采样方式和调制方式下的延时进行了详细分析,建立了包含延迟环节的连续时间模型,并进行离散化,得到了含延迟环节的离散时间模型。为了分析电网电压对数字控制系统的影响,建立了系统输出阻抗的精确离散模型,同时为便于分析,对精确离散模型进行线性化近似处理。
     在离散域下对基于并网电流反馈的数字单环控制系统的稳定性、稳定裕度进行了通用的定量分析,并提出了基于稳定裕度的系统参数设计方法。对两种单环控制策略进行了对比分析,同时揭示了基于并网电流反馈的数字单环控制系统的稳定机理。采用系统的离散时间模型和奈奎斯特图的频域分析方法,对单环数字比例控制、比例积分控制以及比例谐振控制的稳定性和相对稳定性进行了定量分析,得到了满足一定稳定裕度要求下的控制器及关键参数谐振频率比的取值范围,从而保证能够满足实际工程应用的要求。并引入矢量裕度指标描述系统的相对稳定性,推导了矢量裕度与比例、比例积分控制器参数、LCL滤波器参数之间的定量关系。对单环数字比例积分控制的稳态误差进行了定量分析。提出了基于稳定裕度的控制器设计方法,即在满足系统稳定裕度和稳态精度要求的条件下,以获得最大控制带宽为原则。提出了以优化闭环系统中频段为原则的系统参数优化设计方法,确定系统的控制参数,保证系统具有优良的动稳态性能以及鲁棒性。
     提出了结合控制策略的LCL滤波器参数优化设计方法。针对目前LCL滤波器参数设计依赖工程经验和多次试凑的问题,结合控制策略对谐振频率进行优化,然后可根据优化后的谐振频率进行LCL滤波器的设计,可大大简化设计过程;提出了基于并网电流谐波标准要求的总电感设计原则;同时讨论了前后电感比的设计原则。在单环控制下以实例说明了LCL滤波器的设计过程,并可推广应用到其他控制策略。基于控制系统稳定裕度的变化,分析了电网阻抗变化对单环控制系统的影响。为适应电网阻抗的变化,通过合理选择前后电感比对LCL滤波器的参数设计进行优化。
     对单环控制与双环控制、多环控制的控制性能进行了对比分析。分析了基于电容电流内环反馈双环控制的稳定性和相对稳定性,得到了系统的相角裕度与控制参数,LCL滤波器参数的定量关系。分析了基于滞后补偿全状态反馈控制的稳定性,对比了两种极点配置方法的控制性能,分析了电网电压前馈控制器的设计方法。在相同的控制带宽条件下,以系统的稳定裕度为比较原则,对双环控制、全状态反馈控制和单环控制的适用范围、控制器性能进行了对比分析。
The grid-connected inverters are the most universal interfacing topology forconnecting distributed power generation systems with the utility grid. The LCL Filters areapplied widely in the distributed power generation system because they show a goodperformance on suppression of high-frequency harmonics. The grid-connected inverterwith LCL filters adopted digital single-loop current controller has advantages of simple,low cost and reliable due to without extra sensor. However LCL filter has a resonant peakwith the filter resonance frequency which may raise oscillations and even instability if thecontroller is not suitably designed. This paper focuses on the investigation of systematicanalysis of digital single-loop control based on grid-side current feedback. The researchissues mainly include: the modeling of system, the design of controller parameters andfilter parameters, resonance suppression and adaptation performance to change of gridimpedance.
     The continuous-time model and discrete-time model of grid-connected inverter withLCL filter which contain delay link have been analyzed and implemented. In order toanalyze and design digital control system by the direct digital method, the delay of thefull-bridge PWM converter has been analyzed in detail under a variety of samplingmethods and modulation methods, and the system continuous-time model contains delayhas been established. And the discrete-time model contains delay has been deduced bymeans of discretization. In order to analyze the influence on digital control system by gridvoltage, the accurate discrete model of system output impedance has been derived, and hasbeen linearized approximation for convenient.
     Universal quantitative stability and stability margin analysis of digital single-loopcontrol based on grid-side current feedback in the discrete domain are demonstrated in thispaper, and the parameters design method based on stability margin is proposed. Thecomparison of two single-loop current control strategies is analyzed. The stabilizingmechanism of the digital single-loop current control system based on grid-side currentfeedback has been revealed. By means of Nyquist diagram based on discrete time model ofthe system, the quantitative analyses of stability and relative stability with digital Pcontroller, PI controller and PR controller have been carried out. And the stable range ofcontroller parameters and the resonant frequency ratio have been derived under a certain gain and phase margin. So it could be ensured to meet the requirements of practicalengineering applications. Furthermore, the vector margin is introduced to evaluate therelative stability of control system. The quantitative analyses of vector margin with digitalP and PI controller have been also derived. In this paper a controller design method basedon stability margin is proposed. The design principle is to optimize medium frequencyband characteristic to obtain the filter and controller parameters under a certain stabilitymargin. So it could be ensured to have excellent control performance and robustness.
     The optimization design methods of LCL filter parameters combined with the controlstrategy is proposed in the paper. The traditional design methods of LCL filter parametershave the random of parameters and trial-and-error problem. The design method is tooptimize the resonant frequency of LCL filter based on control strategy. According to thedesign method, the design process could be simplified obviously. This paper also proposesan inductance design principle based on grid current harmonic standards. Furthermore, thedesign principles of ratio of inverter-side inductance to grid-side inductance have beenanalyzed. The design procedure of digital single-loop current control strategy has beendemonstrated, and the design method could be applied to other control strategy. The effectsof grid impedance variation on single-loop control system have been analyzed in detailbased on the change of stability margin. In order to adapt to the change of grid impedance,the LCL filter parameters could be optimized by suitable choice of inductance ratio.
     The performances of single-loop control, dual loop control and full state feedbackcontrol have been compared. The stability and relative stability of dual loop controlstrategy based on capacitor current inner feedback have been analyzed, and the quantitativerelationship of phase margin with controller parameters and filter parameters have beencarried out. And the stability, pole assignment method and grid voltage feed-forwardcontrol of full state feedback control strategy have been analyzed. The comparativeanalyses of single-loop control with dual loop control and full state feedback control havebeen implemented. The comparative issues include the scope of filter parameters,especially the scope of resonance frequency ratio and controller performance, and thecomparative principle is to compare the stability margin of the system under differentcontrol strategies under the same control bandwidth.
引文
[1]马胜红,赵玉文,王斯成等.光伏发电在我国电力能源结构中的战略地位和未来发展方向.太阳能,2005,4:12-13.
    [2]蔡宣三.太阳能光伏发电发展现状与趋势.电力电子,2007,2:3-6.
    [3]张新房,徐大平,吕跃刚等.风力发电技术的发展及若干问题.现代电力,2003,20(5):29-34.
    [4] Frede Blaabjerg. Power electronics as efficient interface in dispersed powergeneration systems. IEEE Transactions on Power Electronics,2003,19(5):347-349.
    [5] Robert H. Lasseter. Microgrids and distributed generation. Journal of EnergyEngineering, American Society of Civil Engineers,2007,133(3):144-149.
    [6]彭方正.变流技术在分布式发电和微电网上的应用.变流技术与电力牵引,2006,2:23-27.
    [7]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [8]陈坚.电力电子学-电力电子变换和控制技术.高等教育出版社,2002.
    [9] IEEE Std929-2000: IEEE Recommended Practice for Utility Interface ofPhotovoltaic (PV) System. IEEE Standards Coordinating Committee21,2000.
    [10] IEEE Std519-1992: IEEE Recommended Practices and Requirements for HarmonicControl in Electric Power System. IEEE Standards Coordinating Committee21,1992.
    [11] IEEE Std1547-2003: IEEE Standard for Interconnecting Distributed Resources withElectric Power System. IEEE Standards Coordinating Committee21,2003.
    [12] Wernekinck E, Kawamura A, Hoft R A. A high requency AC-DC converter with unitypower factor and minimum harmonic distortion. IEEE Transactions on PowerElectronics,1991,6(3):364-370.
    [13] Dixon J W, Ooi B T. Indirect current control of a unity power factor sinusoidalcurrent boost type three-phase rectifier. IEEE Transactions on Power Electronics,1998,35(4):508-515.
    [14] Junbum, K., Sunjae, Y., Sewan, C. Indirect Current Control for Seamless Transfer ofThree-Phase Utility Interactive Inverters. IEEE Transactions on Power Electronics,2012,27(2):773-781.
    [15]李杰,宋文祥,马炜等.三相PWM并网逆变器在幅相控制下的启动性能改善.电工技术学报,2009,24(4):152-156.
    [16]张承慧,叶颖,陈阿莲等.基于输出电流控制的光伏并网逆变电源.电工技术学报,2007,22(8):41-45.
    [17] Shuitao, Y., Qin, L., Peng, F. Z., et al. A Robust Control Scheme for Grid-ConnectedVoltage-Source Inverters. IEEE Transactions on Industrial Electronics,2011,58(1):202-212.
    [18] L. A. Serpa, J. W. Kolar, S. Ponnaluri, et al. A modified direct power control strategyallowing the connection of three-phase inverter to the grid through LCL filters. IEEETransactions on Industry Applications,2007,43(5):1388-1400.
    [19] M. Lindgren and J. Svensson. Control of a voltage-source converter connected to thegrid through an LCL-filter-application to active filtering. in:29th Annual IEEEPower Electronics Specialists Conference:1998.229-235.
    [20] M.Lindgren, J.Svensson. Connecting fast switching Voltage-source converters to theGrid-Harmonic Distortion and its reduction. in: IEEE Stockholm Power TechInternational Symposium on Electric Power Engineering:1995.191-195.
    [21]段善旭.模块化逆变电源全数字化并联控制技术研究:[博士学位论文].华中理工大学,1999.
    [22]彭力.基于状态空间理论的PWM逆变电源控制技术研究:[博士学位论文].华中科技大学,2004.
    [23]杨水涛,张帆,钱照明. DSP-Based Multiple-Loop Control Strategy for UPSInverters With Effective Control Delay Elimination.电工技术学报,2008,23(12):84-91.
    [24] Dannehl, J., Fuchs, F. W., et al. PI State Space Current Control of Grid-ConnectedPWM Converters With LCL Filters. IEEE Transactions on Power Electronics,2010,25(9):2320-2330.
    [25] Dannehl, J., Wessels, C., Fuchs, F. W. Limitations of Voltage-Oriented PI CurrentControl of Grid-Connected PWM Rectifiers With LCL Filters. IEEE Transactions onIndustrial Electronics,2009,56(2):380-388.
    [26]刘飞,段善旭,查晓明.基于LCL滤波器的并网逆变器双环控制.中国电机工程学报,2009,29(s):234-240.
    [27]周德佳,赵争鸣,袁立强等.300kW光伏并网系统优化控制与稳定性分析.电工技术学报,2008,23(11):116-122.
    [28]王斯然,吕征宇. LCL型并网逆变器中重复控制方法研究.中国电机工程学报,2010,30(27):69-75.
    [29] Wei XueLiang, Dai Ke, Fang Xin, et al.Performance analysis and improvement ofoutput current controller for three-phase shunt active power filter. in:32nd AnnualConference on IEEE Industrial Electronics:2006.1757-1762.
    [30] Aurelio Garcia-Cerrada, Omar Pinzon-Ardila. Application of a repetitive controllerfor a three-phase active power filter. IEEE Transactions on Power Electronic,2007,22(1):237-246.
    [31]刘飞,查晓明,周彦等.基于极点配置与重复控制相结合的三相光伏发电系统的并网策略研究.电工技术学报,2008,23(12):130-136.
    [32] K. Nishida, M. Rukonuzzman, and M. Nakaoka. Advanced current controlimplementation with robust deadbeat algorithm for shunt single-phase voltage-sourcetype active power filter. IEE Electric Power Applications,2004,151(3):283-288.
    [33] M. J. Newman, D. N. Zmood, D. G. Holmes. Stationary frame harmonic referencegeneration for active filter systems. IEEE Transactions on Industry Application,2002,38(6):1591–1599.
    [34] Teodorescu, R., Blaabjerg, F., Borup, U., Liserre, M. A new control structure forgrid-connected LCL PV inverters with zero steady-state error and selective harmoniccompensation. in: IEEE APEC’04:2004.580-586.
    [35] Zeng, G., Rasmussen, T. W. Design of current-controller with PR-regulator forLCL-filter based grid-connected converter. in:2nd International Symposium onPower Electronics for Distributed Generation Systems:2010.490-494.
    [36] C. Lascu, L. Asiminoaei, I. Boldea, et al. Frequency response analysis of currentcontrollers for selective harmonic compensation in active power filters.IEEETransactions on Industry Application,2009,56(2):337-347.
    [37] R. I. Bojoi, G. Griva, V. Bostan, et al. Current control strategy for power conditionersusing sinusoidal signal integrators in synchronous reference frame. IEEETransactions on Power Electronic,2005,20(6):1402-1412.
    [38]赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究.中国电机工程学报,2009,27(16):60-64.
    [39]武健,徐殿国,何娜.并联有源滤波器输出LCL滤波器研究.电力自动化设备,2007,27(1):17-20.
    [40] Cobreces, S., Bueno, E., Rodriguez, F. J., Huerta, F., et al. Influence analysis of theeffects of an inductive-resistive weak grid over L and LCL filter current hysteresiscontrollers. in: IEEE Power Electronics and Applications:2007.1-10.
    [41] Elsaharty, M. A., Hamad, M. S., Ashour, H. A. Digital hysteresis current control forgrid-connected converters with LCL filter. in: IEEE IECON’11:2011.4685-4690.
    [42] Suul, J. A., Ljokelsoy, K., Midtsund, T., Undeland, T. Synchronous Reference FrameHysteresis Current Control for Grid Converter Applications. IEEE Transactions onIndustry Applications,2011,47(5):2183-2194.
    [43]戴训江,晁勤.基于LCL滤波的光伏并网逆变器电流滞环控制.电力电子技术,2009,43(7):33-35,57.
    [44] Papavasiliou, A., Papathanassiou, S. A., Manias, et al. Current Control of a VoltageSource Inverter Connected to the Grid via LCL Filter. in: IEEE38th Annual PowerElectronics Specialists Conference:2007.2379-2384.
    [45] Kadri, R., Gaubert, J., Champenois, G., Mostefai, M. Design of a single-phasegrid-connected photovoltaic system based on deadbeat current control with LCLfilter. in:14th International Power Electronics and Motion Control Conference:2010.147-153.
    [46] Ahmed, T., Nishida, K., Nakaoka, M. Deadbeat current control of LCL-filter for gridconnected three-phase voltage source inverter. in: IEEE9th International Conferenceon Power Electronics and Drive Systems:2011.459-467.
    [47] Yang, H., Lin, X., Khan, M. M., et al. Robust Deadbeat Control Scheme for a HybridAPF With Resetting Filter and ADALINE-Based Harmonic Estimation Algorithm.IEEE Transactions on Industrial Electronics,2011,58(9):3893-3904.
    [48]谢俊虎,赵莉华. LCL滤波并网逆变器的多速率采样数字控制.电力系统及其自动化学报,2011,23(6):81-86.
    [49] Yi, T., Poh Chiang, L., Peng, W., et al. Improved one-cycle-controlled activerectifiers with high-order input filters. in: IEEE Energy Conversion Congress andExposition:2009.960-967.
    [50] Yushui, H., Zhiqiang, Z., Cunying, W. The Modified Strategy of Active Power FilterBased on One-Cycle Control. in:2008Pacific-Asia Workshop on ComputationalIntelligence and Industrial Application:2008.170-174.
    [51] Housheng, Z. Research and design of three-phase six-switch high power factorrectifier with one cycle control. in: IEEE6th International Power Electronics andMotion Control Conference:2009.1704-1707.
    [52] Jalili K, Bernet S. Design of LCL filters of active-front-end two-level voltage-sourceconverters. IEEE Transactions on Industrial Electronics,2009,56(5):1674-1689.
    [53] Rockhil, A. A., Liserre, M., Teodorescu, R., et al. Grid-filter design for amultimegawatt medium-voltage voltage-source inverter. IEEE Transactions onIndustrial Electronics,2011,58(4):1205-1217.
    [54] Luiz, A. A., Filho, B. C., Minimum reactive power filter design for high powerthree-level converters, in:34th Annual Conference of the IEEE Industrial ElectronicsSociety:2008.3272-3277.
    [55] Kui-Jun, L., Nam-Ju, P., Rae-Young, K., et al. Design of an LCL filter employing asymmetric geometry and its control in grid-connected inverter applications. in:39thIEEE Annual Power Electronics Specialists Conference:2008.963-966.
    [56] Araujo, S. V., Engler, A., Sahan, B., et al. LCL filter design for grid-connected NPCinverters in offshore wind turbines. in:7th Internatonal Conference on PowerElectronics:2007.1133-1138.
    [57] Min-Young, P., Min-Hun, C., Jong-Hyoung, P., et al. LCL-filter design forgrid-connected PCS using total harmonic distortion and ripple attenuation factor. in:2010International Power Electronics Conference:2010.1688-1694.
    [58] Muhlethaler, J., Schweizer, M., Blattmann, R., et al. Optimal design of LCLharmonic filters for three-phase PFC rectifiers. in:37th Annual Conference of IEEEIndustrial Electronics:2011.1503-1510.
    [59] Xing, W., Lan, X., Zhilei, et al. Design of LCL filter for wind power inverter. in:2010World Non-Grid-Connected Wind Power and Energy Conference:2010.106-111.
    [60]伍家驹,张朝燕,任吉林等.一种用于PWM逆变器的非对称T型滤波器的设计方法.中国电机工程学报,2005,25(14):35-40.
    [61] Karshenas, H. R., Saghafi, H. Basic Criteria in Designing LCL Filters for GridConnected Converters. in: IEEE International Symposium on Industrial Electronics:2006.1996-2000.
    [62] Yongqiang, L., Dianguo, X., Hadianamrei, S. R., et al.. A Novel Design Method ofLCL Type Utility Interface for Three-Phase Voltage Source Rectifier. in:36th IEEEPower Electronics Specialists Conference:2005.313-317.
    [63] Wang, T. C. Y., Zhihong, Y., Gautam, S., et al. Output filter design for agrid-interconnected three-phase inverter. in:34th IEEE Power Electronics SpecialistsConference:2003.779-784.
    [64] Liserre, M., Blaabjerg, F., Hansen, S. Design and control of an LCL-filter-basedthree-phase active rectifier. IEEE Transactions on Industry Applications,2005,41(5):1281-1291.
    [65] Chao, L., Zhengming, Z., Ting, L., et al. Design and implement of an active dampingLCL-filter for three-level voltage source PWM rectifier. in: International Conferenceon Electrical Machines and Systems:2011.1-5.
    [66]张宪平,李亚西,潘磊等.三相电压型整流器的LCL型滤波器分析与设计.电气应用,2007,26(5):65-67.
    [67]刘飞,查晓明,段善旭.三相并网逆变器LCL滤波器的参数设计与研究.电工技术学报,2010,25(3):110-116.
    [68]王要强,吴凤江,孙力等.阻尼损耗最小化的LCL滤波器参数优化设计.中国电机工程学报,2010,30(27):90-95.
    [69]陈瑶,金新民,童亦斌.三相电压型PWM整流器网侧LCL滤波器.电工技术学报,2007,22(9):124-129.
    [70] Dong-Keun, Y., Hea-Gwang, J., Kyo-Beum, L. The design of an LCL-filter for thethree-parallel operation of a power converter in a wind turbine. in: IEEE EnergyConversion Congress and Exposition:2010.1537-1544.
    [71] Channegowda, P. J., V. Filter Optimization for Grid Interactive Voltage SourceInverters. IEEE Transactions on Industrial Electronics,2010,57(12):4106-4114.
    [72]武健,马骁,侯睿等.基于遗传算法的有源滤波器LCL输出滤波器优化设计.电工技术学报,2011,26(5):159-164.
    [73] Wei, S., Zhe, C., Xiaojie, W. Intelligent optimize design of LCL filter for three-phasevoltage-source PWM rectifier. in: IEEE6th International Power Electronics andMotion Control Conference:2009.970-974.
    [74] J. Godbersen and J. Claerbout. Development of a1.2MVA active front end usingparallel industrial units. in: IEEE European Conference on Power Electronics andApplications:2007.10pp.
    [75] Liserre M, Dell Aquila A, Blaabjerg F. Stability improvements of an LCL-filter basedthree-phase active rectifier. in: IEEE33rd Annual Power Electronics SpecialistsConference:2002.195-1201.
    [76] M. Routimo and H. Tuusa. LCL type supply filter for active powerfilter—Comparison of an active and a passive method for resonance damping. in:IEEE38th Annual Power Electronics Specialists Conference:2007.2939–2945.
    [77] P. C. Loh, and D. G. Holmes. Analysis of multi-loop control strategies forLC/CL/LCL-filtered voltage-source and current-source inverters. IEEE Transactionson Industry Applications,2005,41(2):644-654.
    [78] Dannehl, J., Fuchs, F. W., Hansen, S., Th, et al. Investigation of Active DampingApproaches for PI-Based Current Control of Grid-Connected Pulse WidthModulation Converters With LCL Filters. IEEE Transactions on IndustryApplications,2010,46(4):1509-1517.
    [79] Wiseman, J. C., Bin, W. Active damping control of a high-power PWMcurrent-source rectifier for line-current THD reduction. IEEE Transactions onIndustrial Electronics,2005,52(3):758-764.
    [80] Wessels, C., Dannehl, J., Fuchs, F. W. Active damping of LCL-filter resonance basedon virtual resistor for PWM rectifiers-Stability analysis with different filterparameters. in: IEEE39th Annual Power Electronics Specialists Conference:2008.3532-3538.
    [81] Ricchiuto, D., Liserre, M., Kerekes, T., Teodorescu, R., et al. Robustness analysis ofactive damping methods for an inverter connected to the grid with an LCL-filter. in:3rd Annual IEEE Energy Conversion Congress and Exposition:2011.2028-2035.
    [82]伍小杰,孙蔚,戴鹏等.基于LCL滤波器的电压源型PWM整流器控制策略综述.电工技术学报,2008,23(1):90-96.
    [83] Twining, E., Holmes, D. G. Grid current regulation of a three-phase voltage sourceinverter with an LCL input filter. IEEE Transactions on Power Electronics,2003,18(3):888-895.
    [84] Fei Liu, Yan Zhou, Shanxu Duan, et, al. Parameter design of a two-current-loopcontroller used in a grid-connected inverter system with LCL filter. IEEE TransactionIndustrial Electronics,2009,56(11):4483-4491.
    [85] W. Xuehua, R. Xinbo, L. Shangwei, et, al. Full Feedforward of Grid Voltage forGrid-Connected Inverter With LCL Filter to Suppress Current Distortion Due to GridVoltage Harmonics. IEEE Transactions on Power Electronics,2010,25(12):3119-3127.
    [86] L. Mihalache. A high performance DSP controller for three-phase PWM rectifierswith ultra low input current THD under unbalanced and distorted input voltage. in:IEEE Industry Applications Conference,40th IAS Annual Meeting:2005.138–144.
    [87]彭双剑,罗安,荣飞等. LCL滤波器的单相光伏并网控制策略.中国电机工程学报,2011,31(21):17-24.
    [88] V. Blasko and V. Kaura. A novel control to actively damp resonance in input LC filterof a three-phase voltage source converter. IEEE Transactions on IndustryApplications,1997,33(2):542–550.
    [89] M. Prodanovic and T. C. Green. Control and filter design of three-phase inverters forhigh power quality grid connection. IEEE Transactions on Power Electronics,2003,18(1):373–380.
    [90] Gullvik, W., Norum, L., Nilsen, R. Active damping of resonance oscillations inLCL-filters based on virtual flux and virtual resistor. in: European Conference onPower Electronics and Applications:2007.1-10.
    [91]伍小杰,孙蔚,戴鹏等.一种虚拟电阻并联电容有源阻尼法.电工技术学报,2010,25(10):122-128.
    [92]谢震,张兴,杨淑英等.基于电容电压反馈的直驱风力发电变流器控制.电力电子技术,2009,43(8):14-16.
    [93] M. Malinowski and S. Bernet. A simple voltage Sensorless Active Damping Schemefor Three-Phase PWM Converters with an LCL Filter. IEEE Transaction onIndustrial Electronics,2008,55(4):1876-1880.
    [94] Hyosung, K., Taesik, Y., Sewan, C. Indirect Current Control Algorithm for UtilityInteractive Inverters in Distributed Generation Systems. IEEE Transactions on PowerElectronics,2008,23(3):1342-1347.
    [95] Junbum Kwon, Sunjae Yoon, and Sewan Choi. Indirect Current Control for SeamlessTransfer of Three-Phase Utility Interactive Inverters. IEEE Transactions on PowerElectronics,2012,27(2):773-781.
    [96]黄宇淇姜新建,邱阿瑞. LCL滤波的电压型有源整流器新型主动阻尼控制.电工技术学报,2008,23(9):86-91.
    [97] F. A. Magueed, and J. Svensson. Control of VSC connected to the grid throughLCL-filter to achieve balanced currents. in: IEEE Industry Applications Conference,40th IAS Annual Meeting:2005.572-578.
    [98] E. Wu and P. W. Lehn. Digital current control of a voltage source converter withactive damping of LCL resonance. IEEE Transactions on Power Electronics,2006,21(5):1364–1373.
    [99]刘飞,徐鹏威,陈国强等.基于LCL滤波器的三相光伏并网控制系统研究.太阳能学报,2008,29(8):965-970.
    [100] B. Bolsens, K. D. Brabandere, J. V. den Keybus, et al. Model-based generation oflow distortion currents in grid-coupled PWM-inverters using an LCL output flter.IEEE Transactions on Power Electronics,2006,21(4):1032-1040.
    [101] M. Malinowski, M. P. Kazmierkowski, W. Szczygiel, et al. Simple sensorless activedamping solution for three-phase PWM rectifier with LCL filter. in:31st AnnualConference of IEEE Industrial Electronics Society:2005.987-991.
    [102] Petrella, R., Revelant, A., Stocco, P. A novel proposal to increase the power factor ofphotovoltaic grid-connected converters at light loads. in: IEEE44th InternationalUniversities Power Engineering Conference:2009.
    [103] Qiang, Z., Lewei, Q., Chongwei, Z., et al. Study on grid connected inverter used inhigh power wind generation system. in: IEEE Industry Applications Conference41stIAS Annual Meeting:2006.1053-1058
    [104]沈国桥,徐德鸿. LCL滤波并网逆变器的分裂电容法电流控制.中国电机工程学报,2008,28(18):36-41.
    [105] Shen, G. Q., Xu, D. H., Cao, L. P., et al. An improved control strategy forgrid-connected voltage source inverters with an LCL filter. IEEE Transactions onPower Electronics.2008,23(4):1899-1906.
    [106] Shen, G. Q., Zhu, X. C., Zhang, J., et al. A New Feedback Method for PR CurrentControl of LCL-Filter-Based Grid-Connected Inverter. IEEE Transactions onIndustrial Electronics,2010,57(6):2033-2041.
    [107]曹陆萍,沈国桥,朱选才等.单相并网逆变器功率控制的实现.电力电子技术,2007,41(9):19-20,49.
    [108] Hea-Gwang, J., Kyo-Beum, L., Sewan, C., et al. Performance Improvement ofLCL-Filter-Based Grid-Connected Inverters Using PQR Power Transformation.IEEE Transactions on Power Electronics,2010,25(5):1320-1330.
    [109] Milan Prodanovic, Timothy C. Green. Control and Filter Design of Three-PhaseInverters for High Power Quality Grid Connection. IEEE Transactions on PowerElectronics,2003,18(1):373-380.
    [110] Tang, Y., Loh, P., Wang, P., Choo, F., et al. Exploring Inherent DampingCharacteristic of LCL-Filters for Three-Phase Grid-Connected Voltage SourceInverters. IEEE Transactions on Power Electronics,2011,27(3):1433-1443.
    [111] Aslain Ovono Zué,Ambrish Chandra. Simulation and stability analysis of a100kWgrid connected LCL photovoltaic inverter for industry. in: IEEE Power EngineeringSociety General Meeting:2006.
    [112]徐志英,许爱国,谢少军.采用LCL滤波器的并网逆变器双闭环入网电流控制技术.中国电机工程学报,2009,29(27):36-41.
    [113]王要强,吴凤江,孙力.带LCL输出滤波器的并网逆变器控制策略研究.中国电机工程学报,2011,31(12):34-39.
    [114]侯朝勇,胡学浩,惠东.基于离散状态空间模型的LCL滤波并网变换器控制策略.中国电机工程学报,2011,31(36):8-15.
    [115]单鸿涛,彭力,孔雪娟等.数字化过程对脉宽调制逆变电源性能的影响机理.中国电机工程学报,2009,29(6):29-35.
    [116] R. Teodorescu, F. Blaabjerg, M. Liserre, and A. Dell'Aquila. A stable three-phaseLCL-filter based active rectifier without damping. in: IEEE Industry ApplicationsConference;38th Annual Meeting:2003.1552-1557.
    [117]仇志凌,杨恩星,孔洁等.基于LCL滤波器的并联有源电力滤波器电流闭环控制方法.中国电机工程学报,2009,29(18):15-20.
    [118] J. Dannehl, C. Wessels, and F. W. Fuchs. Limitations of Voltage-Oriented PI CurrentControl of Grid-Connected PWM Rectifiers With LCL Filters. IEEE Transactions onIndustrial Electronics,2009,56(2):380-388.
    [119] Enslin, J. H. R., Heskes, P. J. M. Harmonic interaction between a large number ofdistributed power inverters and the distribution network. IEEE Transactions onPower Electronics,2004,19(6):1586-1593.
    [120] Cobreces, S. Influence Analysis of the Effects of an Inductive-Resistive Weak Gridover Land LCL Filter Current Hysteresis Controllers. in: European Conference onPower Electronics and Applications:2007.1-10.
    [121] Liserre, M., Teodorescu, R., Blaabjerg, F. Stability of grid-connected PV inverterswith large grid impedance variation. in: IEEE35th Annual Power ElectronicsSpecialists Conference:2004.4773-4779.
    [122] Liserre, M., Teodorescu, R., Blaabjerg, F. Stability of photovoltaic and wind turbinegrid-connected inverters for a large set of grid impedance values. IEEE Transactionson Power Electronics,2006,21(1):263-271.
    [123] Gabe, I. J., Montagner, V. F., Pinheiro, H. Design and Implementation of a RobustCurrent Controller for VSI Connected to the Grid Through an LCL Filter. IEEETransactions on Power Electronics,2009,24(5-6):1444-1452.
    [124] Mohamed, Y.A.-R.I. Mitigation of Grid-Converter Resonance, Grid-InducedDistortion and Parametric Instabilities in Converter-Based Distributed Generation.IEEE Transactions on Power Electronics,2011,26(3):983–996.
    [125]胡寿松.自动控制原理(第三版).国防工业出版社,1998.
    [126] A. G. Yepes, F. D. Freijedo, O. Lopez, et al. Analysis and Design of Resonant CurrentControllers for Voltage-Source Converters by Means of Nyquist Diagrams andSensitivity Function. IEEE Transactions on Industrial Electronics,2011,58(11):5231-5250.
    [127] R. Bojoi, L. R. Limongi, D. Roiu, et al. Frequency-domain analysis of resonantcurrent controllers for active power conditioners. in:34th Annual Conference of theIEEE Industrial Electronics Society:2008.3141-3148.
    [128]唐诗颖.基于LCL滤波器的单相并联有源滤波器控制技术研究:[博士学位论文].华中科技大学,2011.
    [129] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of DynamicSystems(第四版).电子工业出版社,2004.
    [130] D. G. Holmes, T. A. Lipo. Pulse Width Modulation for Power Converters: Principlesand Practice.人民邮电出版社,2010.
    [131] Yepes, A. G., Freijedo, F. D., Doval-Gandoy, J., Lo, et al. Effects of DiscretizationMethods on the Performance of Resonant Controllers. IEEE Transactions on PowerElectronics,2010,25(7):1692-1712.
    [132] Yepes, A. G., Freijedo, F. D., Lopez, O., et al. High-Performance Digital ResonantControllers Implemented With Two Integrators. IEEE Transactions on PowerElectronics,2011,26(2):563-576.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700