用户名: 密码: 验证码:
蜗杆状珩齿刀的电镀CBN实验研究及其基体设计与减薄量的控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代化工业技术的不断发展,对机械传动中的基本元件——齿轮的要求越来越高。要求其具有高承载力、高齿面硬度、良好抗点蚀性、高精度、低齿面粗糙度、长寿命等的特性,以满足机械传动中高速、高效及低噪声的性能要求。因此,目前国内外对如何加工高精度的硬齿面齿轮的技术不断进行研究,其中珩齿加工技术是硬齿面齿轮加工技术中的一种。本文通过电镀实验,对电镀CBN蜗杆状珩齿刀的基体设计、制造及其电镀工艺进行分析研究。
     目前电镀CBN蜗杆状珩齿刀存在的主要问题是刀具精度和使用寿命。本文从可能造成珩齿刀精度误差的电镀环节入手,通过小样电镀实验,得出试件在电镀过程中由于试件表面电流强度分布引起被镀金属镍分布不均的结论。并且通过应用一元线性回归的手段对实验数据进行处理,得到计算电镀金属镀层厚度的经验计算公式,为控制电镀CBN蜗杆状珩齿刀的基体的减薄量提供了理论基础。进而通过分析电镀工艺过程对珩齿刀精度的影响,提出从刀具基体上补偿消除电镀过程产生的误差的设计思路,并根据被加工工件进行了刀具基体的设计计算。
     另外,本文针对制作电镀CBN蜗杆状珩齿刀的电镀工艺进行了分析并制定出一套较为合理的电镀工艺规程。实验中,通过清水上砂实验和模拟蜗杆电镀实验验证了落砂法上砂的可行性,保证了刀具刀齿面上电镀磨粒的等高性。同时也基本确定了在钢制刀具基体上电镀CBN的主要电镀工艺参数,即阴极电流密度、镀液温度、镀液PH值等。并且根据所确定的工艺参数,制作了电镀CBN蜗杆状珩齿刀。
     本论文主要创新点是:通过实验设计及实验数据的处理,将电镀过程难以控制的不确定的因素,总结得出经验公式,便于对电镀工艺过程的控制;结合经验公式和蜗杆状珩齿刀的电镀工艺过程,改进了以往蜗杆状珩齿刀的设计方法,这可直接提高成品刀具的精度;根据电镀原理及超硬材料电镀制品电镀工艺过程的特点,制定并通过实验验证了一套较为合理的蜗杆状珩齿刀的电镀工艺,为以后的改进实验研究奠定了基础。
With the development of modern industrial technology, the basic element-gear is required to satisfy the requirements of high speed, high efficiency and now noise with high load bearing, high hardness of tooth surface, good resistance to pit corrosion, high precision, low roughness of tooth surface and high durability. Therefore, engineers never stop researching the technologies which can lead to get gears with high precision and high hardness surface. This paper analyzes the design of the matrix of the electroplating CBN worm honing tool, its manufacture method and its electroplating process through experiments.
     The main problems of the electroplating CBN honing tool are its precision and durability. This paper analyzes the process of electroplating which can cause the worm honing tool precision problem and draw the conclusion that the different current density on the cathode can cause different thickness of deposited metal through sample electroplating experiment. Then through the analysis of the experimental data by using the method of linear regression of one variable, the experimental formulas for the calculation of the thickness of deposited metal are gotten. And this provides a theoretical basis for the decrease control in the matrix design of electroplating CBN worm honing tool. Furthermore, through analyzing the influence of the precision of worm horning tool produced by the electroplating process, this paper promotes the design thought, which is correcting the errors caused in the electroplating process through the tool matrix design. And it processes the calculation process according to the machined work piece.
     Furthermore, this paper sets down a suitable electroplating process for the worm honing tool. The sand cast depositing method is adopted in the most important step of the electroplating process. Through experiment in water, the sand cast depositing method is the best method for sand electroplating. And the values of some factors of electroplating process are gotten through experiments in water and the experiment of simulating tools. Those factors include the density of cathode current, the temperature of plating solution, the value of PH, and so on. Finally, according to the defined value of process parameters, an electroplating CBN worm honing tool is successfully electroplated through experiment.
     The main improvements in this paper are those. First, the experimental formula are concluded through experiment design and its data analysis. And this will be convenient in controlling the electroplating process of worm honing tool; second, the design method of worm honing tool matrix is improved through combining the experimental formula with its electroplating process. This will directly improve the precision of worm honing tool; third, according to the principle of electroplating and the characteristics of electroplating process of super-hard materials electroplating products, a suitable electroplating process is set and verified through experiments. This is the preparation for its later improvement research.
引文
[1] 乐美豪,21世纪初的中国齿轮制造业,现代零部件,2003创刊号,64—66
    [2] 任敬心,刘洪忠,张应昌,齿轮工程学,北京,国防工业出版社,1985年
    [3] 《齿轮制造手册》编辑委员会,《齿轮制造手册》 ,机械工业出版社,1997.12
    [4] 马秀腾,径向剃齿刀在机修形及径向剃齿的机理研究,[学位论文],山东科技大学,2003年
    [5] 江甫炎,近代齿轮制造工艺学,北京,航空工业出版社,1994年
    [6] 阮光珊,内啮合珩齿原理及生产应用,制造技术及机床,1995年,第7期,p11~15
    [7] 朱辉平,硬齿面蜗杆珩磨轮珩齿工艺及装备,机械制造,1995年,第11期,p23~25
    [8] 珩轮制造及珩齿工艺,一机部机床研究所,1970年
    [9] 刘毅,电镀CBN斜齿外珩轮整形珩齿机理研究,[学位论文],北京,国家图书馆,1994年
    [10] Gear Honing Technology, Hermes technical information, No. 54
    [11] 李菊南,金刚石修整滚轮与硬齿面加工,机械工艺师,1990年,第12期,p7~8
    [12] 阮光珊,沈立勤,内啮合珩齿工艺的研究和应用,机床,1990年,第12期,P29~32
    [13] 郭振光,新型珩齿工艺及其蜗杆状珩轮,汽车技术,1985年,第2期,p23~25
    [14] 胡永生等,用电镀金刚石蜗杆状珩轮加工硬齿面齿轮,机械工艺师,1984年,第7期,p19~21
    [15] 张焕,直廓环面蜗杆齿面磨削方法的研究,机械设计与研究,2000年,第2期,P71
    [16] 郭秀琴译,高速同步轴齿轮精加工机床的开发,机床,1993年,第7期,p16~19
    [17] Ned W. Wright&HerBert Schifer. Basic Honing&Advanced Free-Form Honing. Gear Technology. July/August 1997
    [18] 梁志杰,现代表面镀覆技术,国防工业出版社,2005.1
    [19] 吕明、马红民等,硬齿面齿轮珩齿刀制造新工艺的研究,金刚石与磨料磨具工程, 2003.10
    [20] 闫萍萍、马德军,单层电镀超硬磨料蜗杆砂轮的工艺研究,现代表面技术研究与应用, 2005.1
    [21] 侯晓晶、牛卫晶等,电镀CBN珩齿刀的工艺研究,现代制造工程,2004.2
    [22] 孙鹏、梁国星等,电镀CBN珩齿刀工艺的分析与改进,机械工程与自动化,2005.8
    [23] 闫萍萍、马德军,单层电镀超硬磨料蜗杆砂轮的工艺研究,现代表面技术研究与应用, 2005.1
    [24] 王秦生编著,超硬材料电镀工艺学,郑州,机械电子部机床工具工业局,中国磨料磨具工业公司,1989年
    [25] 王秦生主编,超硬材料电镀制品,北京,中国标准出版社,2001.2
    [26] 牛长山、徐通模,试验设计与数据处理,西安,西安交通大学出版社,1988.6
    [27] 王光祖、李刚、张相法,立方氮化硼合成与应用,郑州,河南科学技术出版社,1995.10
    [28] 李伯民、赵波主编,现代磨削技术,北京,机械工业出版社,2003.6
    [29] 徐璞,穆临平,丁艳红,组装式CBN蜗杆形珩轮及其切削性能
    [30] 齿轮手册编委会,齿轮手册,北京,机械工业出版社,2001年
    [31] 李特文,卢贤占,高业田译,齿轮啮合原理,上海,上海科学技术出版社,1984年
    [32] 陈祝平,特种电镀技术,化学工业出版社,2004.4
    [33] 贾建军、刘世军,双圆弧齿轮珩齿试验研究,机械传动,2004.2
    [34] 陈锦江、鹿玲等,蜗杆振动珩硬齿的研究,机械工程师,1996.5
    [35] 鹿玲、陈锦江等,蜗杆式振动珩齿珩磨啮合纹路研究,燕山大学学报,1998.10
    [36] 四川省机械工业局编,齿轮刀具设计理论基础,北京,机械工业出版社,1982.2
    [37] M. Lv, H. M. Ma, Z. L. Xu, Study on New Manufacturing Process of Gear-Honing-Tool Used for Hardened Gear, KEY ENGINEERING MATERIALS, Vols. 259~260(2004)pp10-13, SCI收录
    [38] M. Lv, X. Yang, Design and manufacture of a shaving cutter with unequal depth gashes, Journal of Materials Processing Technology, Vol. 129 (2002): 193-195, SCI、EI、ISTP
    [39] Loyal M. Peterman, Diamond gear honing-a new approach to harden gear correction, Industrial Diamond Association of American, Inc, 1980
    [40] Yong Huang, Ty G. Dawson, Tool crater wear depth modeling in CBN hard turning, WEAR, 2005. 258
    [41] Masahiro Okumiya, Yoshiki Tsunekawa, Creation of high strength bonded abrasive wheel with ultrasonic aided composite plating, Surface&Coatings Technology, 2003; 169-170
    [42] Faydor L. Litvin, Alfonso Fuentes, Modified involute helical gears: computerized design, simulation of meshing and stress analysis, Computer methods in applied mechanics and engineering, 2003.192
    [43] F. Touyeras, J.Y. Hihn, Effects of ultrasonic irradiation on the properties of coatings obtained by electroless plating and electro plating, Ultrasonics, 2005.12
    [44] T.Frica、 H.S. Cho Characterization of electroplated nickel, Microsystem Technnologies, 2002.9
    [45] J.K. Luo, A.J. Flewitt Young's modulus of electroplated Ni thin film for MEMS applications, Materials letters, 2004.58
    [46] N.Ortega, Optimization of grit protrusion in the electro-discharge dressing process of large grit size CBN grinding wheels, Materials Processing Technology, 2004.149
    [47] K. Lian Thermal stability and resulting surface mechanical properties of electroplated nanocrystalline Ni-based MEMS material, Imperial College Press, 2003.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700