用户名: 密码: 验证码:
基于液压变压器的液驱混合动力车辆系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界汽车化进程的快速发展,汽车保有量的不断增加,全球能源短缺和环境污染等问题日益恶化,导致世界各国迫切需求研发节能环保型汽车。液压驱动混合动力技术作为混合动力技术的重要分支之一,由于其优越的节能潜力,已经引起了国内外学者的重视。尤其液压变压器(Hydraulic Transformer HT)作为一种新兴二次调节元件的出现,大大提高了液压系统的柔性和效率。同时,由于该元件在理论上可以高效无节流损失的实现压力转换,也可使各个负载间互不相关的从恒压网络系统中获取能量,有效的避免了在整车系统中压力、流量耦联现象的产生,所以通过液压变压器构建液驱混合动力车辆系统,不仅可以实现车辆制动能的回收和二次利用,而且避免了传型统液驱混合动力系统中液压阀调节控制过程时导致的节流损失,大大提高了液压系统效率。因此,本文结合国家“863”计划项目“-混合动力系统与节能型工程机械技术的应用研究”,开展对基于液压变压器的液驱混合动力车辆系统的研究工作。
     论文主要研究内容如下:
     1.在广泛阅读国内外研究文献的基础上,综述了国内外液驱混合动力车辆系统的构成形式、研究现状以及液压变压器的发展历程、节能原理和工程应用概况,并提出了本文的主要研究内容;
     2.提出了基于极限环理论对液驱混合动力车辆调控系统动态特性进行定性分析的方法,通过系统奇点、无穷远奇点的性态以及其闭轨线的固有属性,绘制了调控系统的全局拓扑结构相图。同时,证明了该系统平衡点的分布情况以及该系统有且仅有唯一的平衡点、无论液压油粘度系数B如何变化该系统均不存在极限环和当B≥0时,系统关于平衡点渐进稳定,当B=0时,平衡点是系统中心点等固有属性;
     3.通过对液混车辆系统的节能效果进行分析,得出了液压变压器配流盘控制角与蓄能器间的节能特性参数、液压变压器瞬时压力比分别与HT柱塞角位移、配流盘控制角和T腰形槽口压力等影响参数的关系曲线以及液压变压器瞬时压力比分别与串、并联式蓄能器的节能特性参数等,为选取优化参数提高蓄能器的各项节能指标提供理论依据。经与传统型液混车辆系统的节能效果对比,当车辆处于在不同制动转矩情况下,本文提出的液混车辆节能效果明显。
     4.根据蓄能器的优化节能条件,提出了液混车辆在不同制动工况中的节能优化控制算法(即初始负载调节阶段和液压变压器调节阶段控制算法),并采用PID,FLC(Fuzzy Logic Controller)和Fuzzy-PID控制策略分别对该系统调控装置的基本控制性能、鲁棒性能以及优化节能控制算法的响应特性进行了仿真分析,结果表明PID和Fuzzy-PID控制器能够满足优化节能控制算法中对液压变压器的控制要求。
     5.提出了一种管路基本元素的近似算法,并引入算例与著名的Hullender和Zhao T.管路分布参数近似计算模型进行对比,结果表明该算法在中低频时十分接近精确解。对液驱混合动力车辆系统的脉动特性,以及在考虑管路效应情况下的脉动特性进行分析,得出了分别采用Hullender、Zhao T.以及本文管路近似模型时,串、并联式蓄能器与液压变压器柱塞角位移的脉动关系曲线,结果表明,串联式蓄能器在吸收脉动性能方面优于并联式蓄能器。
     6.搭建了基于液压变压器的液驱混合动力系统试验平台,对液压变压器的基本特性、液混车辆系统的脉动特性以及分别采用PID、Fuzzy-PID控制策略对液混车辆系统调控装置的控制性能进行了实验测试,实验结果表明与理论分析结果一致。
     7.总结了本文的研究工作和成果,归纳了本文的创新点,并对尚未研究的工作进行展望。
     论文创新性成果如下:
     1.根据液压混合动力车辆系统的工作原理及其构成,采用极限环理论对车辆系统调整装置的动态特性进行分析。通过奇点、无穷远奇点性态以及闭轨迹的固有属性,得出了液混车辆系统调控装置的全局拓扑结构相图。
     2.通过蓄能器和液压变压器的数学模型,得出了液压变压器配流盘控制角与蓄能器的节能特性参数,以及液压变压器瞬时压力比与蓄能器瞬态节能参数的关系。经对比表明论文提出的液压混合动力车辆系统在不同制动工况下节能效果明显。
     3.当液混车辆处于不同制动工况时,根据蓄能器优化节能条件,提出了液压混合动力车辆的优化节能控制算法,并得出三种控制器对液压变压器调控装置的基本控制性能和鲁棒性能,以及优化节能控制算法在三种控制器响应下的各种性能参数。
     4.提出了一种管路近似算法并结合液压混合动力车辆系统数学模型,得出液混车辆系统的脉动特性,以及在考虑管路效应情况下的脉动特性。经对比结果表明,本文提出的管路近似算法在中低频时合理有效;串联式蓄能器在脉动衰减方面优于并联式蓄能器。
With the rapid development of auto industrialization process all over the world,the rising vehicle population led to the increasingly serious problem of energyshortage and environmental pollution and then the automobile manufacturers at homeand abroad urgently needs to research and development of energy-efficient andenvironment-friendly automobile. Hydraulic transformer (HT) is a new kind ofsecondary regulation component, when it used to be in the common pressure rail(CPR) system, it is not only no throttling loss to adjust the pressure ratio by adjustingthe control angular displacement of valve plate of HT in higher efficiency but also tomutually independent between the two loads. It is no doubt that the pressure and flowcoupling phenomenon can be avoided and flexibility and efficiency of the hydraulicsystem can be improved by using of HT in the hydraulic hybrid vehicle (HHV).Obviously, the hydraulic hybrid vehicle system based on hydraulic transformer isbuild to realize the braking energy recovery and secondary utilization at braking anddeceleration of vehicle. Using this hydraulic hybrid vehicle composition not onlythrottling losses caused by the throttle valve have be decreased compared with theconventional hybrid system but also the control performance, reliability and cost haveimproved. Therefore, the study of hydraulic hybrid vehicle based on the hydraulictransformer has been carried out by combining the national key projects of “863”:“Application study of hybrid drive system and energy-efficient constructionmachinery technology”.
     The main works of the thesis are as follows:
     1. The composition form and current research status of HHV are introducedbased on a lot of publications and conference papers. Moreover, the history andcurrent research status of HT are presented and the key technologies, energy-savingprinciple and engineering applications are described. Finally, the main research aimand content are proposed.
     2. The conception of hydraulic hybrid vehicle system based on the HT waspresented and the the theory of limit cycles was applied to the HHV, which analysesdynamic characteristics of the HHV system. The phase diagrams of global topologicalstructure of HHV system were entirely described according to qualitative analysis ofthe singular points, the singular points at infinity and the inherent properties of closedtrajectory. At the same time, the analysis of equilibrium points showed that if theYoung's modulus of fluid is neglected, the equilibrium points of the system will bedistributed on both sides of the initial function Alx+Vt=0, and there is a uniqueequilibrium point according to the practical signification of the system parameters.The nonexistence analysis showed that there is no limit cycle for the system, nomatter how the viscosity coefficient B changes. The stability analysis of equilibriumpoints showed that the system is asymptotically stable about the equilibrium point atB≥0and the equilibrium point is the center point of the system at B=0.
     3. The relations curves between the control angle of HT port plate and thecharacteristic parameters of accumulator (i.e. valid volume, specific energy andefficiency) was done to selected the optimization parameters to improve theenergy-saving indicators of bladder accumulator. Moreover, the instantaneouspressure ratio function of HT was built to obtain the rational curve of HTinstantaneous pressure ratio and characteristic parameters to study the pulsationcharacteristic of HHV, which includes angular displacement of HT piston, controlangle of HT port valve and pressure of T kidney. Then, the mathematical model ofseries and parallel bladder accumulator was established by the lumped parametermethod, respectively. The analysis of dynamic characteristics of accumulator (i.e.instantaneous valid volume, instantaneous specific energy and instantaneousefficiency) was done after simulation was carried out. Finally, the braking energyregenerative efficiency of this HHV compared to traditional hybrid vehicle system inthe case of invariable braking torque was get, and the results show that theenergy-saving effect is obvious with pressure ratio effective regulation of HT.
     4. When the vehicle is braking and decelerating, the optimization energy-savingcontrol algorithm of HT based on the HHV working principle was presented, which istime to meet the energy-saving optimization conditions of accumulator in differentworking conditions of vehicle, which is control algorithm at the state of load as a major influencing factor and HT as major regulator factor. The relational curves ofoptimization energy-saving control algorithm and the various influencing parameterswere got after simulation was carried out. Moreover, simulation analysis to controlperformance of optimization energy-saving algorithm was carried out using PID,Fuzzy logic controller (FLC) and Fuzzy-PID control strategy based on mathematicalmodel of valve controlling cylinder driving the valve plate of HT. The results showthat Fuzzy-PID controller is more suitable to the HHV in terms of basic controlperformance and robust performance. Finally, the PID, FLC and Fuzzy-PID controllerwas applied to the above mentioned energy-saving algorithm under two differentstates at vehicle braking and decelerating, respectively. The control performanceparameters of3rd kind of controller were got through comparative analysis.
     5. The general form of the friction item of the basic elements of hydraulictransmission line distribution parameters was obtained by the roots of hyperbolicfunction approximate equation, which is to substitute the distributed parameter basedelements by the finite sum approximations of partial fraction functions about the zeropoles. By this method, the approximate computation of distributed parameter basiselements for hydraulic transmission line was presents by the method of undeterminedcoefficients. The numerical examples results show that the effectiveness andaccurateness of this method in the low frequency region by comparing with modalapproximation of Zhao T. and Hullender, respectively. Moreover, the relevantmathematical models of instantaneous flow of HT were built and the theoreticanalysis of series and parallel accumulator were made with frequency method. Theflow pulsation characteristic simulation curve of HT and accumulator was done, andthe result shows that the effect of the damping of pulsation of HT by seriesaccumulator was much superior to that by the parallel accumulator, whether controlangle of HT port plate is zero. Finally, the pulsation characteristics of HHV system isanalyzed in considering the hydraulic transmission pipeline effect which was adoptedthe hydraulic transmission pipeline approximate model of Hullender, Zhao T. and thismethod in this paper, respectively.
     6. The test-rig of hydraulic hybrid vehicle system based on HT was built atHarbin Institute of Technology University. The test experiments were carried outunder the different conditions, which are mainly composed of the basic characteristic of the HT, the pulsation characteristics of HHV and control performances of HT servovalves applied to PID and Fuzzy-PID controller. The experiment results show that theexpatiated theoretical study is correct and the HHV system is successful via benchtest.
     7. The some conclusions are given and some opinions for research works are tutforward in the future, then the some innovations of this paper were summarized.
     The innovative achievements of the thesis are as follows:
     1. According to the working principle of the HHV system and its components,the theory of limit cycles was applied to the HHV, which analyses dynamiccharacteristics of the HHV system. And the phase diagrams of global topologicalstructure of the HHV system were entirely described via qualitative analysis of thesingular points, the singular points at infinity and the inherent properties of closedtrajectory.
     2. The relations curves between the control angle of HT port plate and thecharacteristic parameters of accumulator, and the HT instantaneous pressure ratio anddynamic characteristics parameters of the series and parallel bladder accumulatorwere done to selected the optimization parameters to improve the energy-savingindicators of bladder accumulator, respectively. The braking energy regenerativeefficiency of this HHV compared to traditional hybrid vehicle system in the case ofinvariable braking torque was get, and the results show that the energy-saving effectis obvious.
     3. When the vehicle is braking and decelerating, the optimization energy-savingcontrol algorithm of HHV system based on the optimized energy-saving condition ofaccumulator was presented. The basic control performance and robust performanceparameters of HT control device and various performance parameters of optimizationenergy-saving algorithm were got under the control response of the PID, Fuzzy logiccontroller (FLC) and Fuzzy-PID control strategy, respectively.
     4. A kind of the pipeline approximation algorithm by the roots of hyperbolicfunction approximate equation was presented. The pulsation characteristics of HHVsystem and the pulse characteristic of system in considering the hydraulictransmission pipeline effect were analyzed according to the mathematical model ofthe HHV system. The results show that the proposed pipeline approximation algorithm is reasonable and effective at the middle and low frequency, and the seriesaccumulator was much superior to that by the parallel accumulator in terms of theeffect of pulsation damping.
引文
[1] Institute for the analysis of global security. EPA Displays the First Advan Hydraluic hybridVehicle [EB/OL][2006-06-24]. http://www.iags.org/n033104t3.htm
    [2]清华大学核能与新能源技术研究院《中国能源展望》编写组.中国能源展望[M].北京:清华大学出版社2004.9.
    [3]许文靖.现代汽车节能技术探析[J].科技创新报道,2009,24:78-79.
    [4]赵金祥.液压节能汽车制动能回收及动态调节控制策略的研究[D].长春:吉林大学博士学位论文,2009,12.
    [5]沈中元.中国汽车领域的节能潜力[J].国际石油经济,2006,8:28-35.
    [6]中国人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,2005.
    [7]国家统计局能源统计司.中国能源统计年鉴[M].北京:中国统计出版社,2005.
    [8]清华大学核能与新能源技术研究院《中国能源展望》编写组.中国能源展望[M].北京:清华大学出版社,2004.9
    [9]周大地.2003年中国能源问题研究[M].北京:中国环境出版社.2004.10.
    [10] WANG Zhiwen, ZHANG Ning.The promotion of Chinese automobile lightweight technicalprogress by mechanism innovation [J]. Journal of Iron and Steel Research, International,2011.18(Supplement1-2)
    [11]张庆永.液驱混合动力车辆液压系统研究[D].南京:南京理工大学博士学位论文,2009.
    [12]成森.车用混合动力系统技术发展分析[J].车用发动机,1999,2(1):8-11.
    [13] Green Car Congress. Eaton and peter to produce hydraulic hybrids [EB/OL]. Oct.20.2004.http://www.epa.gov/otaq/technology.
    [14] US EPA. Clean Automotive technology full hydraulic drive [EB/OL].[2005-02-28].http://www.epa.gov/otaq/technology.
    [15]混合动力汽车[EB/OL]. http://baike.baidu.com/view/22366.htm
    [16] Freitag D R. History of wheels for off-road transport [J]. Journal of Terramechanics,1979,16(2):49-68.
    [17] Lynn A, Smid E, Eshraghi M, Caldwell N.Modeling hydraulic regenerative hybrid vehiclesusing AMESin and MATLAB/simulink[C]. Proceedings of SPIE-The International Society forOptical Engineering.2005:24-40.
    [18]姚怀新.工程车辆液压动力学与控制原理[M].北京:人们交通出版社,2006.
    [19]陈延礼.基于液压变压器的车辆节能系统研究[D].长春:吉林大学硕士学位论文,2009.6.
    [20]沈中元.利用收入分布曲线预测中国汽车保有量[J].中国能源,2006,28(8):11-17.
    [21] EPA. Hydraulic hydraulic hybrid technology–A proven approach [EB/OL]. EPA420-04-024,March,2004.
    [22]司康.汽车节能及我国近期发展重点[J].上海汽车,2009,6:32-35.
    [23] Eaton powering business world. Series hybrid hydraulic[EB/OL][2009-10-16].Http://eaton.com/Eatoncom/ProductsSerives/Hybrid/SystemsOverview/SeriesHydraulic/indes.htm
    [24] Masami Ogura. Development of electric vehicles [J]. JSAE Revies,1997,18:51-56.
    [25]曹雪莲,许明恒.带有制动能量回收系统的城市公共汽车[J].中国测试技术.2003(1):16-18.
    [26]赵春涛.车辆串联混合系统中二次调节静液驱动技术的研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2001.
    [27] Satoshi Aoyagi, Yusuke Hasegawa, Takahiro Yonekura, Hiroyuki Abe. Energy efficiencyinporvement of series hybrid vehicle [J]. JSAE Review,1999,84:275-279.
    [28]姜继海,赵春涛,孟兆生.二次调节静液传动在城市公共汽车驱动中的节能技术研究[J].中国机械工程.2001,12(3):270-273.
    [29]战兴群.静液压动二次调节技术控制特性的研究[D].哈尔滨:哈尔滨工业大学博士论文1999.6
    [30] Vael Georges EM, Achten P A J, Fu Zhao. The Innas hydraulic transformer: The key to thehydrostatic common pressure rail[J].SAE2000-01-2561
    [31]姜继海.二次调节静液传动系统及其控制技术的研究[D].哈尔滨:哈尔滨工业大学博士学位论文.1999.3
    [32]陈汉明,梁志锋.混合动力汽车的研究与发展[J].机电工程技术,2001年第30卷5期.
    [33]舒红,秦大同,胡建军.混合动力汽车控制策略研究现状及发展趋势[J].重庆大学学报,2001,Vol.24(6):28-31.
    [34] Koichi Fukuo,Akira Fujimura,Masaaki Saito,et al. Development of the ultra-low-fuel-consumption hybridar-insight [J].JSAE Review,2001,.22:95-103.
    [35]沈继军,俞明,黄榕清.一种混联式混合动力驱动系统的性能分析[J].华南理工大学学报(白然科学版),2002(6):94-97
    [36]吴光强.车辆静液驱动与智能控制[M].上海:上海科学技术文献出版社,1998..
    [37] Buchwald P, Christensen G, Larsen H and Pedersen P. Sunn. Improvement of citybus fueleconomy using a hydraulic hybrid propulsion system-A Theoretical and ExpcrimentalStudy[R].SAE Paper790305:1316-1328.
    [38] William S. Chao. Brake hydraulic system resonance analysis[J]. SAE Paper975504:1329-1332.
    [39] Lubomyr O Hewko, Trudy R Weber, Hydrualic energy storage based hybrid propulsionsystem for a terrestrial vehicle[C].Proceeding of intersociety energy conversion engineerginconference,1990,4:90-105.
    [40] Pawelski Z, Parisi R E.为市内公共汽车配备力士乐驱动装置[J].Rexroth informationQuarterly,19972:25-27.
    [41] Norio Nakazawa, Yoichiro Kono, Eijiro Takao, Nobuaki Takeda. Development of a BrakingEnergy Regeneration System for City Buses[J]. SAE Paper872265.
    [42] John Henry Lumkes J R. Design, simulation and testing of an energy storge hydraulic vehiclereansmission and controller[D]. Universitiy of Wisconsin-Madison, PHD Dissertation,1997.
    [43] Mike Hanlon. New hydraulic hybrid technology develop by EPA and Ford[EB/OL].http://www.gizmag.com/go/3129/
    [44] John J Kargul. Hydraulic hybrid cost-effective clean urban vehicles[EB/OL].[2006-03-22].www.epa.gov/otaq/technology
    [45] Energy securty. EPA displays the first advanced hydraulinc hybrid vehicle
    [EB/OL].[2004-03-31] http;//www.iags.org/n033104t3.htm
    [46]张伟春.液压能量装置起步不加油[N].科技日报.[2009-07-03].http://http://www.stdaily.com/kjrb/content/2009-07/03/content_79185_2.htm
    [47] Close W H. Report on noise testing: Permo-drive Regenerative Drive Shaft,2002.[EB/OL]http://www.permo-drive.com
    [48] Permo-Drive.The hybrid solution for urban commercial vehicles [EB/OL].http://www.permo-drive.com/benefit/index.htm
    [49] Robert H, John J K.Hydraulic hybrid promises big savings for UPS [EB/OL].http://www.hydraulicspneumatics.com/200/Issue/Artice/False/38545/Issue.
    [50] Keith Barry. UPS to roll out hydraulic hybrids[EB/OL].[2008-10-28].http://http://www.wired.com/autopia/2008/10/ups-hydraulic-h/
    [51] Hiroki S, Shigeru I, Eitaro K. Study on hybrid vehicle using constant pressure hydraulicsystem with flywheel for energy storage[J]. SAE Paper2004-01-3064.
    [52] Nakazawa H,Yokota S and Kita Y. A hydraulic constant pressure drive system forengine-flywheel hybrid vehicles[C]. Proceedings of the third JHPS international symposiumon fluid power.Yokohama,Nov,1996:513-518.
    [53] Ma W D,Sento Yayoi,Ikeo Shigeru,et al. A hydraulic cylinder drive using constant pressuresystem[C]. Proceedings of the Fifth International Conference on Fluid Power Transmissionand Control (ICFP'200I), Hangzhou, China, March,2001:1-4.
    [54] Hydraulic Regenerative Braking.[EB/OL].http://auto.howstuffworks.com/auto-parts/brakes/brake-types/regenerative-braking4.htm[]
    [55] Hydraulic Regenerative Braking for Heavy Duty Trucks[EB/OL].http://www.shorepower.com/hydraulicregen.html
    [56]姜继海,孙辉,王昕.新型节能环保汽车-液驱混合动力汽车[J].流体传动与控制,2007,20(1):7-11.
    [57] Trevor Blohm,Scott Anderson. Hybrid refuse truck study[C].2004MSC Software virtualproduct develop conference, Hunting Beach, Califormia,2004.
    [58]常思勤.关于一种液驱混合动力车辆的探讨[C].2002年江苏机电一体化技术学术会议,南京2002,11:26-27.
    [59]李翔昴,常思勤.静液压储能传动汽车动力源系统的匹配效率[J].中国公路学报,2007.20(1):118-122.
    [60]李翔昴,常思勤,韩文.静液压储能传动汽车动力源系统匹配及性能分析[J].农业机械学报,2006,37(3):12-16.
    [61]李翔昴,常思勤.新型电控液驱车辆能量再生系统建模与实验[J].农业机械学报,2006,37(10):31-34.
    [62]李翔昴,常思勤.二次调节静液车辆传动系统的智能PID控制[J].农业机械学报,2004,35(5):9-11.
    [63]韩文.新型电控液驱车关键技术的研究-驱动、制动系统[D].南京:南京理工大学博士学位论文,2005.
    [64]易纲,常思勤.液驱混合动力车辆纵向运动控制策略[J].南京理工大学学报,2007,31(3):312-316.
    [65]易纲,常思勤.定压网络车辆的制动能分配策略[J].农业机械学报,2006,37(12):13-16.
    [66]韩文,常思勤.液压技术在车辆制动能量回收的研究[J].机床与液压,2003,6:247-248.
    [67]陈华志,苑士华.城市用车辆制动能量回收的液压系统设计[J].液压与气动,2003,4:1-3.
    [68]张银彩,苑士华,胡纪滨.城市公交车辆液压节能装置的研究[J].农业机械学报,2007,38(6):34-40.
    [69]杜玖玉,苑士华,魏超,郭占正.车辆液压混合动力传动技术发展及应用前景[J].机床与液压,2009,37(2):181-185.
    [70]王会义.静液储能传动系统节能机理及实验研究[D].哈尔滨:哈尔滨工业大学博士学位论文,1996.
    [71]姜继海,王碧泉.二次调节静液压动转速PID控制及其试验研究[J].工程机械,1997,28(11):31-33
    [72]田联房.次级调节扭矩伺服系统加载技术及其控制方法的研究[J].哈尔滨:哈尔滨工业大学博士论文.1997.6
    [73]姜继海,韩永刚.二次调节静液压动系统的智能PID控制[J].哈尔滨工业大学学报.1998,30(1):36-38
    [74]姜继海,许志进,刘宇辉.二次调节静液传动位置系统的模糊控制和实验研究[J].哈尔滨工业大学学报.1998,30(6):84-88
    [75]战兴群,张炎华,赵克定.二次调节扭矩加载系统动态特性的研究[J].中国工程科学.2000.2(7):47-53
    [76] Sun Hui,Jiang Jihai,Wang Xin. Tourque control strategy for a parallel hydrualic hybridvehicle [J].Journal of Terramechanics,2009,46:259-265.
    [77] Sun Hui, Jiang Jihai,Wang Xin. Parameters matching and control method of hydraulic hybridvehicles with secondary regulation technology[J]. Chinese Journal of machanicalengineering,2009,22(1):57-59.
    [78]肖华.上海交大神州液压混合动力系统-城市公交的新选择[J].城市车辆,2007,5:23-25.
    [79]闫业翠,刘国庆,陈杰.液压混合动力公交车动力性能仿真与实验研究[J].汽车工程,2010,32(2):93-99.
    [80] Liu Xinhui, Zhao Jinxiang,Sun Hui.Ratio optimizaton of hydraulic energy-saving vehiclecoupler based on gendtic algorithm[C]. Proceedings-2009International Conference onComputer and Automation Engineering,2009:165-168.
    [81] Zhao Jinxiang, Liu Xinhui. Xin Zhengyang, et al.Research on the enregy-saving technologyof concrete mixer truck[C].The4th IEEE Conference on Industrial Electronics andApplications.Xian,2009:3551-3555.
    [82]赵岩.并联液压混合动力汽车制动系统建模和仿真分析[D].长春:吉林大学硕士学位论文2009.6.
    [83]彭婕.嘉捷博大首推液压混合动力公交车[N].2008中国(苏州)国际客车展览会专题.
    [84]北京能源投资(集团)有限公司.嘉捷博大公司研发成功国内首台获国家公告的液压混合动力客车[EB/OL].[2007-05-15]. http://www.powerbeijing.com/contents/12/1366.html.
    [85]中国客车网.交大神舟液压混合动力公交车节油体验[N].http://www.chinabuses.com/supply/zhuanti/2007bibendum/news7.htm
    [86] Tyler Henry P. Fluid Intensifier[P]. US Patent3188963,1965.
    [87]杨华勇,欧阳小平,徐兵.液压变压器的发展现状[J].机械工程学报,2003,39(5):1-5.
    [88] Peter A J Achten.Hydraulic transformer[P].WO97/31185,1997
    [89] Peter A J Achten,Zhao F, Vael Georges E M,etal.Transforming future hydraulics: a newdesign of a hydraulic transformer[C]. link ping,sweden: The fifth Scandinavian InternationalConference on Fluid Power,1997
    [90]姜继海,卢红影,周瑞艳等.液压恒压网络系统中液压变压器的发展历程[J].东南大学学报:自然科学版,2006,36(5):869-874.
    [91] Achten P A J, Palmberg J O. What a difference a hole makes the commercial value of theInnas hydraulic transformer[C].The6thScandinavian International Confoerence on FluidPower, SICFP’99,Tampere,Finland.
    [92] Xiaoping Ouyang,Xu Bing, Yang huayong. Key technology of the hydraulic trasnformer’design[J].Proceeding of the11thworld congress in mechanism and machine Science,April1-4, Tianjin China.
    [93]卢红影,姜继海,于庆涛等.液压变压器的特性分析[J].液压与气动.2005.8
    [94] Vael Georges E M,Achten P A J,Fu Zhao. The Innas hydraulic transformer: the Key to thehydrostatic common pressure rail [J]. SAE,2000-01-2561.
    [95] Achten P AJ. Fu Zhao. Valving land phenomena of the Innas hydraulic transformer [J].International Journal of Fluid Powe,2000(1):33-42.
    [96] Heber H K, Camarillo C. Hydraulic transformer[P]. US Patent3627451,1971.
    [97] Dipl._Ing. K.Dluzik, Aachen. Dr._Ing M C Shih. Taiwan. Geschwindigkeitssteuerrung einesZylinders am Konstant Drucknetz durch einen HydroTransformator[J]. lhydraulik undPneumatik.1985(4):281-286.
    [98] Dipl._Ing. K. Dluzik, Aachen. Zylinderansteuerungern am Drucknetz durch Hydro-Transformatoren. lhydraulik und Pneumatik[J].1987(3):248-255.
    [99] K.Dluzik. Energiesparende Schaltungskonzepte f ü rHydro-Zylinder am Srucknetz.lhydraulik und Pneumatik[J].1989(5):444-450.
    [100] R. Kordak. Verlustarme Zylindersteuerung mit Sekund rregelung[J]. lhydraulik undPneumatik.1996(10):696-703.
    [101] Herberh H Kouns. Hydraulic Transformer[P]. Canadian Patent CA918003,1973.
    [102]董宏林.基于二次调节原理的液压提升装置节能及控制技术[D].哈尔滨:哈尔滨工业大学博士学位论文,2002,12
    [103]欧阳小平,徐兵,杨华勇.液压变压器在液压电梯系统中的应用[J].中国机械工程,2003,34(19):1660-1662
    [104]欧阳小平,徐兵,杨华勇.液压变压器及其在液压系统中的节能应用[J].农业机械学报,2003,34(4):100-104.
    [105]刘贺,徐兵,欧阳小平,杨华勇.采用液压变压器原理的液压电梯节能系统设计[J].液压与气动,2003(10):19-21.
    [106]周瑞艳.液压变压器变压原理的理论分析与实验研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2004,6.
    [107]张维官.液压恒压网络中液压变压器的性能测试与节能效果研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2007,6.
    [108] Dantlgraber, J rg. Hydraulischer transformator mit zwei axialkolbenmaschinen mit einergemernsamen schwenkscheibe [P]. EP0851121A1.1997,12.
    [109] Dantlgraber, J rg, Robohm, Michael. Hydraulischer transformator mit zweiaxialkolbenmaschinen mit eirnergemeinsamen schwenkscheibe[P]. EP0851121B1.1997,12.
    [110] Achten Peter Augustinus, etc. Hydraulic system with a hydruomotor fed by a hydraulictransformer [P]. WO98/54468.1997,5.
    [111] Achten P AJ, Fu Zhao, and Georges EM,et al. Transforming future hydraulics: a new designof a hydraulic transformer[C]. The5thScandinavian Intermational Confenence on FluidPower, SICFP’97, Link ping, Sweden,1997.
    [112] Achten P A J.Hydraulic System with a Hydromotor Fed by a Hydraulic Transformer,INNAS FREE PISTON.B.V.Germany[P].WO98/54468.1998,5
    [113] Achten P A J. Ein neuer alter Bekannter-der Hydraotransformator [J]. lhydraulik undPneumatik.1998(6):374-377.
    [114] Dantlgraber, Robohm Michael. Hydrualicscher trasnformotor mit zweiaxialkoblvenmaschinen mit einer gemeinsamen Schwenkscheibe[P].EP0851121A1.1998,7,1.
    [115] Robohm,Michael,Dantlgraber, etc.Hydraulischer transfromator[P]. DE19654567A1,1998,7
    [116] Werndin R,P.A.J.Achten and Sannelius Mikael,etc.EfficiencyPerformance and ControlAspects of a Hydraulic Transformer.In:The Sixth Scandinavian International Conference onFluid Power[C]. SICFP’99, Tampere, Finland,1999,1:395-407.
    [117] P.A.J.Achten,Zhao Fu.Valving Land Phenomena of the Innas Hydraulic TransformerInternational Journal of Fluid Power[J].2000(1):33-47
    [118] Dantlgraber J rg. Hydrotrans formator[P]. DE19844648,2000,2.
    [119] P.A.J.Achten,G.E.M.Vael and Johan van den Oever,etc.‘Shuttle’Technology for NoiseReduction and Efficiency Improvement ofHydrostatic Machines.TheSeventh ScandinavianInternational Conferenceon Fluid Power[C].SICFP’01,Link ping,Sweden,2001.
    [120] Dantlgraber J rg. Hydrotransformator[P]. DE10037114A1,2001,7.
    [121] Dantlgraber J rg. Hydrotransformator[P]. DE10016954A1,2001,10.
    [122] Dantlgraber J rg. Hydrotransformator[P]. DE10016955A1,2001,10.
    [123] Dantlgraber J rg. Hydrotransformator[P]. DE10016954A2,2001,10.
    [124] Dantlgraber J rg. Hydrotransformator[P]. EP1178209A2,2001,4.
    [125] Werndin Ronnie, Palmberg J O. Control design for a hydraulic transformer[C]. Proceedingsof the5th International Conference on Fluid Power Transmission and Control ICFP’2001,Hangzhou, China,2001:56-61
    [126] Sch ffer Rudolf. Hydrotransformator[P]. EP1172553A3,2001,6.
    [127] Sch ffer Rudolf. Hydrotransformator[P]. DE10025248A1,2001,11.
    [128] Sch ffer Rudolf, Mark Alexander, Büdel Udo. Hydrotransformator[P]. DE10025248A1,2001,11.
    [129] Achten P.A.J.,Titus van den Brink and Johan van den Oever.Dedicated Design of theHydraulic Transformer.In3rd International Fluid Power Conference [C].Aachen, Germany,2002,2:233-24.
    [130] Achten P A J, Van den Brink Potma T L,etc. Desing and testing of an axial piston pumbasedon the floating cup principle[C]. The7th Scandinavin Internaional Confenerce on FluidPower, SICFP’2003, Tampere University of technology,2003:805-820.
    [131] Vael G.E.M.,P.A.J.Achten and Jeroen Potma.Cylinder control with the floating cuphydraulic transformer[C].Proc.of the8th Scandinavian International Conference on FluidPower SICFP’03.Tampere,2003
    [132] Achten P A J. Power Density of the Floating Cup Axial Pistion Principle[C]. In Proceedingsof2004ASME International Mechanical Engineering Congress and Expo, IMECE2004Anaheim,USA,2004:1-12
    [133] Achten P A J, Schellekens M P A.Efficiency and Low Speed Behavior of the Floating CupPump[J].SAE2004-01-2653
    [134] Achten P A J.Volumetric Losses of a Multi Piston Floating Cup Pump.In Proceedings of the50th National Conference on Fluid Power[C].NCFP-Paper I05-10.2,2005:1-7.
    [135]董宏林,姜继海,吴盛林.液压变压器的原理及其在二次调节系统中的应用[J].液压与气动,2001(11):30-32.
    [136]欧阳小平,徐兵,杨华勇.拓宽液压变压器调压范围的新方法[J].机械工程学报.2004,40(9):28-32
    [137]欧阳小平.液压变压器研究[D].杭州:浙江大学,2005
    [138]徐兵,欧阳小平,杨华勇等.液压变压器排量特性研究[J].机械工程学报,2006,42(增刊):89-92.
    [139]欧阳小平,徐兵,杨华勇等.液压变压器输出压力特性研究[J].中国机械工程,2006,17(23):2492-2495.
    [140] Ouyang Xiaoping, Yang Huangyong,Xu bing et al. Research on the hydraulic transformerwith new distribution pairs[J] Science in china Series E: Technological Sciences2008,51(4):435-442.
    [141]徐兵,马吉恩,杨华勇.液压变压器瞬时流量特性分析[J].机械工程学报.2007,43(11):44-50.
    [142]荆崇波,魏超,李雪源等.斜轴式液压变压器的效率特性分析[J].农业机械学报,2009,40(12):237-241.
    [143] Vael G E M, Achten P AJ. The Innas fork lift Truck-working under xonstant pressure[C].Proc.1IFK, IFAS/RWTH Aachen,1998.
    [144] Vael G E M, Orlando E, Stukenbrock R.Toward maximum flexibility in working machinery,IHT control in a mecalac excavator[J]. INNAS Technology CD.ftp://air.zz.com/pub/_neat-shit/hydraulics/Innas/Hydraulic%20Transformer/Technical%20Papers%20IHT/IHT04%20IHT's%20built%20in%20excavator%202004.pdf
    [145] Achten P A J. Changing the paradigm[C]. The10thScandinavian International Conferenceon Fluid Power, SICFP’07, May21-23,2007,Tampers,Finland.
    [146] Achten P A J. The hydrid transmission [C]. SAE Paper07CV-64.
    [147] Chen Yanli,Liu Shunan,Shang Tao et al. Characteristic analysis of hydraulic hybrid vehiclebasedon limit cycle[J]. SCIENCE CHINA Technological Sciences,2012,55(4):1031-1036.
    [148]张芷芬,丁同仁,黄文灶等.微分方程定性理论[M].北京:科学出版社.1985.
    [149]陆启超.常微分方程的定性方法和分叉[M].北京:北京航空航天大学出版社,1989.
    [150]极限环[EB/OL]. http://baike.baidu.com/view/2593516.htm.
    [151]叶彦谦.极限环论[M].上海:上海科学技术出版社,1982.
    [152]徐绳武.柱塞式液压泵[M].北京:机械工业出版社,1985.
    [153] Achten P A J. Siegfried Rotth user. Ein neuer alter bekannter der hydrotransformator [D].Innas BV,Breda NL, April1998:5-7.
    [154]李翔昴,常思勤.新型电控液驱车辆储能元件特性分析[J].中国机械工程,2007,18(10):1244-1247.
    [155]雷天觉.新编液压工程手册(上)[M].北京:北京理工大学出版社.1998
    [156]赵克定,李尚义,罗晓鸣,刘庆和.并联和串联囊式蓄能器的理论分析和数字仿真[J].哈尔滨工业大学学报,1991(2):66-74.
    [157]陈延礼,刘顺安,尚涛,苗淼,姚永明,周旭辉.液驱混合动力车辆制动能回收效果研究[J].吉林大学学报(工学版),2011,43(1):110-116.
    [158]董宏林,姜继海,吴盛林.液压变压器与液压蓄能器串联使用的优化条件及能量回收研究[J].中国机械工程.2003.14(3):192-195.
    [159]刘顺安,陈延礼,苗淼,姚永明.液驱混合动力车辆的优化节能控制算法研究[J].湖南大学学报(自然科学版),2010,37(12):36-40.
    [160]陈延礼,刘顺安,苗淼,周旭辉,姚永明.液压变压器配流盘控制性能研究[J].机床与液压2010,38(21):1-4.
    [161]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2003.
    [162] CHEN Yanli,LIU Shunan,SHANG Tao,LIU Jialin, ZHANG Yuankun,XIE Dantong.Research on control Strategy for energy-saving optimization algorithm of the hydraulichybrid vehicle [J]. Advanced Materials Research2011,(201-203):2229-2237.
    [163]苏尔皇.管道动态分析及液流数值计算方法[M].哈尔滨:哈尔滨工业大学出版社,1985.
    [164]蔡亦钢.流体传输管道动力学[M].杭州:浙江大学出版社,1990.
    [165] GOODSON R E, LEONARD R G. A survey of modeling techniques for fluid linetransients[J]. J Basic Eng1972,94:474-482.
    [166] BESHAHWIRED A, BOHDAN T K. Modal approximation of distributed dynamics for ahydraulic transmission line with pressure input-flow rate output causality [J]. ASME J DynSys Measurement and Control,2005,127:503-507.
    [167] KREYSIZIG E. Advanced engineering mathematics (8th Ed.)[M]. John Wiley, New Yorkpress,1999.
    [168] HULLENDER D A. Modal representation for fluid transmission line dynamic[C]//SICE,Int Sym on fluid control and measurement, Tokyo, Japan,1985
    [169] ZHAO T, PENG G Z, XU Y M. Accurate approximation for distributed parameter pipemodels (the1st report)[J]. Machine Tool&Hydraulics,1988,1:43-50.(in Chinese)
    [170] ZHAO T, PENG G Z, XU Y M.Accurate approximation for distributed parameter pipemodels (the2nd report)[J].Machine Tool&Hydraulics,1989,1:31-40.(in Chinese)
    [171]谢锋.并联式液压混合动力车辆的动力匹配性研究[J].长春:吉林大学硕士学位论文.2010.5.
    [172]卢红影.电控斜轴柱塞式液压变压器的理论分析与实验研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2008.9
    [173]孙辉.二次调节静夜传动车辆的关键技术及其优化研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2009.3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700