用户名: 密码: 验证码:
汽车永磁缓速器设计理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车缓速器是一种非摩擦性的辅助制动装置,它在车辆制动之前消耗大部分行驶动能,可以有效提高车辆行驶的安全性和连续制动性能,降低车辆使用成本。上世纪中期许多欧洲国家已颁布交通法规,将缓速器列为汽车的标准配置。近年来,国内随着相关法规的颁布,汽车缓速器也逐步获得应用推广。目前,电涡流缓速器和液力缓速器是国内外应用最广泛的两种产品,但电涡流缓速器制动力矩热衰退严重,体积重量大且耗能高,而液力缓速器价格高,在性价比方面难以满足国内重型货车的要求,致使国内重型货车的缓速器安装率不足1%。因此,研究开发具有自主知识产权的高性价比缓速器,对于打破国外缓速器技术垄断,保障行车安全,提高国产汽车的自主创新能力具有重要意义。
     上世纪90年代,日本首次研制成功了一种革命性的永磁缓速器,具有不耗电、重量轻、结构紧凑等优点,但没有得到大规模推广。本文针对永磁缓速器制动力矩小和持续工作能力差等问题,系统研究了永磁缓速器设计的理论和关键技术,提出了一种采用永磁涡流制动原理和水冷散热技术相结合的新型汽车缓速器——水冷式永磁缓速器,并进行了大量的台架和实车试验,形成了水冷式永磁缓速器性能评价体系,取得了许多重要成果。本论文主要章节和内容安排如下:
     第一章绪论部分概述了汽车辅助制动装置作用,安装必要性,国内外法规和应用情况,以及研究意义。介绍了各种汽车缓速器的种类、工作原理、性能比较以及永磁缓速器设计理论和结构的研究进展。通过总结缓速器存在的共性技术问题,提出永磁缓速器的发展方向。综述涡流制动理论和多物理场理论的研究进展,从而提出永磁缓速器设计理论的研究方法。
     第二章提出水冷式永磁缓速器结构及原理。先详细介绍了日本传统永磁缓速器的结构、工作原理、控制方法、安装方法、特点以及使用效果。为克服传统永磁缓速器热衰退严重的问题,提出了一种采用水冷散热的新型永磁缓速器,并介绍了其基本结构和工作原理。该缓速器能够保持较低的工作温度,持续工作时基本不发生制动力矩热衰退,大大提高永磁缓速器的制动性能和持续工作能力。根据整车安装要求,提出了三种适配于重型货车和大型客车的水冷式永磁缓速器结构。研究了水冷式永磁缓速器与整车的电气、散热和制动性能等方面的匹配特性,设计了缓速器电子控制单元和整车冷却系统水管布置方案,并提出了水冷式永磁缓速器制动力矩与车重的匹配关系。
     第三章建立了水冷式永磁缓速器的数学模型。从制动减速度和制动距离两方面评价了缓速器对汽车制动性能的影响,详细分析了新型缓速器单独制动和联合制动时的制动过程。基于电枢反应理论和迭代法求解了缓速器瞬态涡流场,得到了制动力矩和制动功率的解析公式,揭示永磁缓速器制动过程中瞬态电磁场变化规律,建立永磁缓速器的电磁场数学模型。通过分析水冷式缓速器热量传递过程的换热方式、传递路径和边界条件,建立了永磁缓速器温度场的数学模型。分析涡流去磁场和比磁导分布,得到永磁体动态工作点,从而建立永磁体高温失磁的数学模型,提出了分析永磁缓速器中永磁体失磁分析方法。
     第四章建立了永磁缓速器多场耦合模型。建立和数值求解电-磁-热场耦合模型,应用电磁场分析软件得到了磁场和涡流分布图,可视化揭示了永磁缓速器涡流制动的机理。建立和数值求解热-流场耦合模型,应用计算流体力学(CFD)分析软件获得了缓速器定子和永磁体温度场分布图,可视化揭示了定子水道内液体冷却规律。采用半拉格朗日运动坐标系方法建立永磁缓速器的电-磁-热-流场耦合模型,通过试验表明,多场耦合计算结果比单场分析结果更接近试验值。
     第五章研究了永磁缓速器设计的关键技术。通过搭建涡流制动实验平台,发现缓速器低速区制动力矩与吸力近似呈线性的规律,提出一种静态吸力设计方法。利用数值模拟方法求解了缓速器定子材料的电导率、磁导率、铜或铝材料以及镀覆层对制动力矩的影响,并得到了制动力矩与气隙长度、定子厚度、永磁体形状、屏蔽转子厚度之间的关系曲线。通过试验设计法和Rosenbrock法优化了缓速器结构,开发了汽车永磁缓速器集成设计平台。
     第六章研究了永磁缓速器试验方法。设计了水冷式永磁缓速器的台架试验和底盘测功机试验方案,提出了车载道路试验系统和方法,将所研制的水冷式永磁缓速器进行了台架、底盘测功机和车载道路试验,形成了水冷式永磁缓速器制动性能评价体系。
     最后为本文的结论部分以及未来研究展望。
Auto retarder, which is a non-contact auxiliary braking device for vehicle, canreduce the driving costs. It consumes most of the vehicle kinetic energy before itbrakes, so it can effectively improve driving safety and continuous brakingperformance. Many European countries have enacted the retarder laws at themid-nineteenth century, which required the retarder as standard auto parts. Recently,retarders are applied and popularized gradually in China as the promulgation ofrelevant laws and regulations. At present, eddy current retarder (ECR) and hydraulicretarder (HR) have been used widely at home and abroad. ECR has manydisadvantages, such as the severe hot recession of braking torque, bulk density andhigh energy consumption. HR’s price is so high that few heavy vehicles install it. It isdifficult to meet the requirements of the domestic heavy vehicle, so the retarderinstallation rate of heavy vehicles is less than1%. Therefore, it is great significance toresearch highly cost-effective retarder that has independent intellectual property. Itcan break the monopoly of foreign retarder, ensure the safety of heavy vehicle, andimprove the independent innovation capability of domestic cars.
     In the1990s, Japan developed a novel air-cooled permanent magnet retarder(PMR) for the first time, which has no power-consumption, light weight and compactstructure. However, it doesn’t get large-scale promotion. In order to overcome thebraking performance thermal recession problem of PMR, a new type PMR is designusing water-cooled method in this dissertation. The systemic theory and keytechnology of water-cooled PMR are researched, and lots of bench and real vehicletests are made. Performance evaluation system of water-cooled PMR is formed, andmany important results are obtained. Main chapters of the dissertation are as follows:
     Chapter I introduces the role of auxiliary braking device for vehicle, thenecessary of installation, the domestic and foreign laws, the application, and researchsignificance. Retarder types, working principles, performance comparisons, andprogress in PMR design theory and structure are introduced. The developmentdirection of PMR is proposed by summing up common technical problems of theretarder. The progress of eddy current braking and multi-physics coupling theory arereviewed, and the research methods of PMR design theory are proposed.
     Chapter II proposes a structure and principle of water-cooled PMR. At first, thestructure of Japanese traditional PMR, the working principle, the control method, theinstallation method, the characteristics and the used effects are described in detail. Thebasic structure and working principle of water-cooled PMR are introduced. The water-cooled PMR maintains low working temperature, braking performance does notoccur thermal recession and the continuing work capacity is improved greatly.According to the vehicle installation requirements, three kinds of water-cooled PMRstructure which meet the requirement of heavy vehicles and buses are proposed. Thematching characteristics of water-cooled PMR with the electrical, cooling and brakingperformance of the vehicle are studied. The electronic control unit and vehicle coolingsystem pipes layout of PMR are designed, and the matching relationship between thebraking torque and vehicle weight are proposed.
     Chapter III builds a mathematical model of water-cooled PMR. The PMRbraking performance for vehicles is evaluated by the brake deceleration and brakingdistance. The PMR braking process of the separate braking and combined braking isanalyzed. The transient eddy current field of PMR is solved by armature reactiontheory and iterative methods, and the analytic formulas of the braking torque andbraking power are obtained. The change law of the transient electromagnetic field isrevealed in braking process of PMR, and the mathematical model of PMRelectromagnetic fields is established. A temperature mathematical model of PMR isestablished by the analysis of the heat transfer process, heat transmission path andboundary conditions. In order to analyze permanent magnet (PM) demagnetization onhigh-temperature in PMR, PMR mathematical model is established firstly, and theboundary conditions of finite element analysis are determined. Then eddy currentfield distribution is gained by solving eddy current demagnetization field, and PMdynamic permeance coefficient is obtained. Combined with the PM demagnetizationcurve analysis, the demagnetization properties are analyzed.
     Chapter IV builds a multi-physics coupling model of water-cooled PMR. Theelectric-magnetic-thermal field coupling model is established and solved numerically.The eddy current braking mechanism of PMR is visualized by electromagneticsoftware and the magnetic field and eddy current distribution are obtained. Theheat-fluid field coupling model is established and solved numerically. Thewater-cooling law in the stator is visualized by computational fluid dynamics (CFD)software. The temperature distribution of PMR is obtained. Theelectric-magnetic-thermal-fluid coupling model is established by semi-Lagrangemoving coordinate system. The tests show that the multi-field coupling calculationresults are closer to experimental values.
     Chapter V studies the key technology of PMR design. The approximate linearrelationship between low-speed braking torque and suction is found by eddy current brake experiment platform. The design method of static suction is proposed. Thebraking torque influence of stator material conductivity, permeability and the platinglayer is discussed by finite element method, and the relationships between brakingtorque and air gap length, stator thickness, PM shape, shielded rotor thickness areobtained. PMR structure is optimized by experimental design method and theRosenbrock method, and the integrated design platform of PMR is developed.
     Chapter VI studies the test methods of water-cooled PMR. The test bench andchassis dynamometer test program for water-cooled PMR are designed. The systemand method of vehicle road tests for PMR are proposed. The water-cooled PMR istested by bench, chassis dynamometer and car road. The braking performanceevaluation system of water-cooled is formed.
     Finally, the dissertation conclusion and future research outlook are proposed.
引文
[1]胡昌斌.道路与桥梁检测技术[M].北京:人民交通出版社,2007.
    [2]赵小波.永磁式涡流缓速器电磁特性与制动性能研究[D].南京:南京农业大学,2009.
    [3]孙平,宋瑞,王海霞.我国道路交通事故成因分析及预防对策[J].安全与环境工程,2007,14(2):97-100.
    [4]余强.客车下坡持续制动性能研究[D].西安:西安公路交通大学,2000.
    [5]吴迎峰.汽车电磁缓速制动器的基础理论研究[D].武汉:武汉理工大学,2005.
    [6]何建清,何仁,衣丰艳.汽车用电涡流缓速器的工作原理及其使用效果[J].轻型汽车技术,2002(11):17-24.
    [7] Henrich G.The present status of electro-magnetic retarders in commercial vehicles[J]. SAEPaper,922450,1992:1-5.
    [8] Sehreck H,Kueher H,Reisch B.ZF retarder in commercial vehicles[J].SAE Paper,922452,1992:1-11.
    [9]王伟.跑35万公里就能省出缓速器钱[J].商用汽车新闻,2006(20):9.
    [10]路智军.解决重卡刹车失灵的问题[J].驾驶园,2009(12):40.
    [11]张炳荣.国内汽车缓速器行业标准现状及发展[J].时代汽车,2007(11):101-103.
    [12] Japanese Antomobile Standard. JASO C455-83Exhaust retarder road testProeedure[S].Japan:The Soeiety of Automotive Engineers of Japan,1983.
    [13]余景宏.福伊特驱动在IAA上展示新型前瞻性解决方案[J].商用汽车,2010(10):118.
    [14]云清.液力缓速器有力提升卡车安全性[J].商用汽车,2010(01):118-119.
    [15]李宏虎,李理光.发动机缓速器技术[J].柴油机设计与制造,2010(01):1-3.
    [16]董颖,董雪梅.发动机缓速器制动的汽车下坡能力研究[J].拖拉机与农用运输车,2009(01):56-57.
    [17]余强,陈荫三,马建,et al.发动机制动和排气制动对客车制动稳定性的影响[J].交通运输工程学报,2003(03):64-67.
    [18]赵小波,姬长英,周纬,et al.基于永磁式涡流缓速器的车辆联合制动能力[J].农业工程学报,2009(12):119-123.
    [19]孙为民.电涡流缓速器的理论研究[D].北京:北京工业大学,2005.
    [20]衣丰艳,何仁,刘成晔,et al.车用电涡流缓速器三维有限元分析[J].交通运输工程学报,2004(02):53-56.
    [20]严军,何仁,鲁明.液力缓速器变叶片数的三维数值模拟[J].江苏大学学报(自然科学版),2009(01):27-31.
    [21]高博麟.重型车与液力缓速器匹配特性的仿真研究[D].吉林:吉林大学,2009.
    [22]沈海军,何仁,杨效军.自励式缓速器的设计与试验研究[J].汽车工程,2010(03):258-262.
    [23]杨效军,何仁.自励式缓速器制动力矩控制方法[J].江苏大学学报(自然科学版),2009(03):256-260.
    [24]赵小波,姬长英,周俊.永磁涡流制动技术及其应用研究[J].起重运输机械,2008(02):1-6.
    [25] Kuwahara T,Araki K.Development of permanent magnet type eddy current retarder[J].SAEReview (Japan),1992,13(1):92-96.
    [26] Kuwahara T,Shintan K,Sakamoto T.Development of permanent magnet type compact ECBretarder[J].Sumitomo Metals,1991,43(5):24-30.
    [27] Kubomiya T,Kuwahara T,Araki K.Permanent magnet type retarder in commercialvehicles[J].SAE Paper,922455,1992:1-6.
    [28] Kuwahara T,Kasama C.Sakae K.Eddy current type brake system[P].US50234991.
    [29] Sakamoto H,Araki K, Ishida A.Design of permanent magnet type compact ECBretarder[J].SAE Paper,1997(1307):19-25.
    [30] Kuwahara T,Kawasaki.Eddy current braking system[P].US5143183.
    [31] Kuwahara T,Kawasaki.Eddy current type brake system[P].US5145038.
    [32] Kuwahara T,Fuji sawashi.Eddy current reduction gear[P]. EP1638194.
    [33] http://www.sumitomometals.eo.jp/e/osakasteelworks/ritada/index.htm.
    [34]朱宁,王永华.轻型永久磁铁式汽车缓速器.客车技术与研究[J].2002,24(4):19-20.
    [35]何建清,何仁,衣丰艳.汽车用电涡流缓速器的工作原理及其使用效果[J].轻型汽车技术,2002(11):17-24.
    [36] http://www.voithturbo.de/vt_en_paa_road_retarder_products_permanentmagnetretarder.htm.
    [37]内田清五.永磁涡流盘形制动装置的基本特性[J].变流技术与电力牵引,2001(4):27-30.
    [38]小原孝则.旋转型永磁涡流制动装置[J].国外铁道车辆,2003,40(1):30-33.
    [39] S. Anwar.A parametric model of an eddy current electric machine for automotive brakingapplications[J].Control Systems Technology[J].IEEE Transactions on Magnetics,2004,12(3):422-427.
    [40] Muramatsu K,Takahashi N,Member S.3d eddy current analysis in moving conductor ofpermanent magnet type of retarder using moving coordinate system[J].IEEE Transactions onEnergy Conversion,1999,14(4):1312-1317.
    [41] Takahashi N,Natsumeda M,Muramatsu K.Optimization of permanent magnet type ofretarder using3d finite element method and direct search method[J].IEEE Transactions onMagnetics.1998,34(5):2996-2999.
    [42] Noguchi Y,Miyahara M,Imanishi K.Creep-fatigue life prediction for permanent magnettype eddy current retarder[J].Journal of the Society of Materials Science,2004,53(7):795-800.
    [43] Gay S E,Ehsani M.Parametric analysis of eddy-current brake performance with by3d finiteelement analysis[J].IEEE Transactions on Magnetics,2006,42(2):319-328.
    [44] Gay S E,Ehsani M.Integration of eddy current and friction brakes in conventional andhybrid vehicles[J].SAE Paper,2005.
    [45]唐永春,叶云岳.永磁涡流制动的有限元分析与设计[J].微电机,2006(3):34-36.
    [46]张圣楠.永磁涡流制动的电磁分析与设计[J].内蒙古科技与经济,2005(13):118-120.
    [47]何仁,赵万忠,牛润新.车用永磁式缓速器制动力矩的计算方法[J].交通运输工程学报,2006,6(4):62-65.
    [48]赵万忠,何仁,刘成晔.基于虚拟边界法的永磁式缓速器转子鼓温度场计算方法[J].拖拉机与农用运输车,2006,33(4):46-48.
    [49] LIU Chenye,HE Ren.Numerical analysis and experiment of unsteady thermal field of rotorplate for eddy current retarder[J].Chinese journal of mechanical engineering,2008,21(4):71-75.
    [50]何仁,牛润新.永磁式缓速器热-磁耦合建模与试验[J].农业机械学报,2007,38(11):12-16.
    [51]胡青训.车用永磁式缓速器设计方法及其试验研究[D].镇江:江苏大学博士论文,2005.
    [52] Zhao X,Ji C.Analysis of flux leakage in novel permanent magnet type eddy current retarderfor vehicle applications[C].IEEE Vehicle Power and Propulsion Conference2008:1-4.
    [53]赵小波,姬长英,黄亦其,et al.基于Rogowski永磁式涡流缓速器电磁场与制动力矩研究[J].农业机械学报,2009(01):35-39.
    [54]何仁,牛润新,胡青训.一种分级控制永磁式缓速器[P].CN1665108.
    [55]于明进,杨秀红,徐刚,et al.一种永磁式发动机电涡流缓速器[P].CN201006683.
    [56]黄亦其,姬长英,周俊.制动力矩无级调节永磁式缓速器[P].CN201038984.
    [57]孙祥,王江淮.新型气动离合器控制式永磁缓速器[P]. CN201051711.
    [58]竺韵德,王刚,王卫.涡电流永磁缓速器[P].CN101119060.
    [59]马元京,李德胜,叶乐志,et al.变速箱前置式液冷永磁缓速器[P].CN101635501.
    [60]李德胜,叶乐志,马元京,et al.一种可分级式液冷永磁缓速器[P].CN101359865.
    [61]李德胜,马元京,叶乐志,et al.车用永磁液冷缓速器[P].CN101783575A.
    [62] D. Schieber. Unipolar induction braking of thin metal sheets. Electricalengineers[J].Proceedings of the Institution of Electrical Engineers,1972,119(10):1499-1503.
    [63] Y. Marechal,G. Meunier.Computation of2d and3d eddy currents in moving conductors ofelectromagnetic retarders[J].IEEE Transactions on Magnetics,1990,26(5):2382-2384.
    [64] D. Albertz,S. Dappen,G. Henneberger.Calculation of the3d nonlinear eddy current field inmoving conductors and its application to braking systems[J]. IEEE Transactions onMagnetics,1996,32(3):768-771.
    [65] M. Fujita,T. Tokumasu,T. Yamada,et al.3-dimensional electromagnetic analysis and designof an eddy-current rail brake system[J].IEEE Transactions on Magnetics,1998,34(5):3548-3551.
    [66] M. Hecquet,P. Brochet,S. J. Lee,et al.A linear eddy current braking system defined by finiteelement method[J].IEEE Transactions on Magnetics,1999,35(3):1841-1844.
    [67] W. R. Smythe.On Eddy Currents in a Rotating Disk[J].Transactions of the AmericanInstitute of Electrical Engineers,1942,61(9):681-684.
    [68] J. H. Wouterse.Critical torque and speed of eddy current brake with widely separated softiron poles[J].IEE Proceedings B Electric Power Applications,1991,138(4):153-158.
    [69] K. Lee,K. Park.Analysis of an eddy-current brake considering finite radius and inducedmagnetic flux[J].Journal of Applied Physics,2002,92(9):5532-5538.
    [70] S. Sharif,K. Sharif.Influence of skin effect on torque of cylindrical eddy currentbrake[J].International Conference on Power Engineering,Energy and Electrical Drives,2009:535-539.
    [71] R. K. Srivastava,S. Kumar.An alternative approach for calculation of braking force of aneddy-current brake[J].IEEE Transactions on Magnetics,2009,45(1):150-154.
    [72]周益春,方岱宁,郑学军.多场耦合理论与智能材料的研究进展[J].中国科学基金,2009(02):78-81.
    [73] J. Voeller.25technologies to watch[J].Civil Engineering,2001,71(8):64-69.
    [74] I. A. Tsukerman,A. Konrad,G. Meunier,et al.Coupled field-circuit problems: trends andaccomplishments[J].IEEE Transactions on Magnetics,1993,29(2):1701-1704.
    [75] J. Toth,M. D. Bird.Convergence studies of D-shaped coil/bobbin interactions in a sweepermagnet system[J].IEEE Transactions on Applied Superconductivity,2003,13(2):1400-1403.
    [76] G. H. Jang,S. J. Park,S. H. Lee.Electromechanical analysis of a hdb spindle motorconsidering electromagnetics thermal analysis, hydrodynamic bearing, and rotordynamics[J].IEEE Transactions on Magnetics,2005,41(5):1608-1611.
    [77] M. Moallem,R. Jafari.Transformation method in the coupled fe magneto-thermal fieldanalysis[J].IEEE Transactions on Magnetics,1998,34(5):3126-3129.
    [78] H. H. Saliah,D. A. Lowther,B. Forghani.Generalized material models for coupled magneticanalysis[J].IEEE Transactions on Magnetics,2000,36(4):1250-1253.
    [79] J. Nerg,J. Partanen.Numerical solution of2d and3d induction heating problems withnonlinear material properties taken into account[J].IEEE Transactions on Magnetics,2000,36(5):3119-3121.
    [80] A. Rieger, P. Wriggers. Adaptive methods for thermomechanical coupled contactproblems[J].International Journal for Numerical Methods in Engineering,2004,59(6):871-894.
    [81] J. R. Gilbert,G. K. Ananthasuresh,S. D. Senturia.3D modeling of contact problems andhysteresis in coupled electro-mechanics[C].IEEE Proceedings of Micro Electro MechanicalSystems,1996:127-132.
    [82] W. Ye,S. Mukherjee.Optimal three-dimensional analysis and design of electrostatic combdrives using boundary element method[J].International Journal for Numerical Methods inEngineering,1999,45(2):175-194.
    [83] Kagimoto H,Miyagi D,Takahashi N,et al.Effect of temperature dependence of magneticproperties on heating characteristics of induction heater[J].IEEE Transactions on Magnetics,2010,46(8):3018-3021.
    [84] Garg V K,Raymond J.Magneto-thermal coupled analysis of canned induction motor[J].,IEEE Transactions on Energy Conversion,1990,5(1):110-114.
    [85] Mohammed O A,Ganu S.Fe-circuit coupled model of electric machines for simulation andevaluation of emi issues in motor drives[J].IEEE Transactions on Magnetics,2010,46(8):3389-3392.
    [86] Hwang-Bin L,Jung-Ho L.The evaluation of online observer system of synchronousreluctance motor using a coupled transient fem and preisach model[J].IEEE Transactions onMagnetics,2008,44(11):4139-4142.
    [87] Yunkai H,Jianguo Z,Youguang G.Thermal analysis of high-speed smc motor based onthermal network and3-d fea with rotational core loss included[J].IEEE Transactions onMagnetics,2009,45(10):4680-4683.
    [88] Miyagi D,Takata N,Takahashi N.Thermal analysis of co-axial multi-layered bscco htspower cable[J].IEEE Transactions on Applied Superconductivity,2011,21(3):991-995.
    [89] Charnock D.Electromagnetic interference coupling between power cables and sensitivecircuits[J].IEEE Transactions on Power Delivery,2005,20(2):668-673.
    [90] Alsaleem F M,Younis M I,Ibrahim M I.A study for the effect of the pcb motion on thedynamics of MEMS devices under mechanical shock[J].Journal of MicroelectromechanicalSystems,2009,18(3):597-609.
    [91] Sekkak A,Pichon L,Razek A.3-D FEM magneto-thermal analysis in microwaveovens[J].IEEE Transactions on Magnetics,1994,30(5):3347-3350.
    [92]王艾伦,钟掘.复杂机电系统的全局耦合建模方法及仿真研究[J].机械工程学报,2003(04):1-5.
    [93] Alwan A,Aluru N R.Analysis of hybrid electrothermomechanical microactuators withintegrated electrothermal and electrostatic actuation[J].Journal of MicroelectromechanicalSystems,2009,18(5):1126-1136.
    [94]孙道恒.MEMS耦合场分析与系统级仿真[J].中国机械工程,2002,13(09):735-768.
    [95]王勇.场路结合并考虑耦合的磁力机械分析与设计方法研究[D].合肥:合肥工业大学,2006.
    [96]何仁.汽车辅助制动装置[M].化学工业出版社,2005.
    [97]王佩玲.永久磁铁电涡流式轻型减速器[J].北京汽车,1994,(l):34-38.
    [98] http://www.sumitomometals.co.jp/e/osakasteelworks/ritada/index.html.
    [99]程凯.DCI11车用柴油机冷却系统匹配优化数值模拟研究[D].武汉:华中科技大学,2009.
    [100]何仁,衣丰艳.电涡流缓速器性能特性评价方法[J].中国公路学报,2006(5):114-118.
    [101]吴迎峰,李刚炎,赖三霞.电磁缓速器对客车制动性能影响的仿真分析[J].武汉理工大学学报,2010(12):121-125.
    [102]余志生.汽车理论(第5版)[M].北京:机械工业出版社,2009.
    [103]赵国柱,魏民祥.缓速器与行车制动系复合制动稳定性的定量评价[J].兵工学报,2009(2):185-189.
    [104]盖洪超.液力缓速器参数设计及整车缓速制动性能仿真研究[D].吉林:吉林大学,2011.
    [105] Singh A. Theory of eddy-current brakes with thick rotating disc[J]. Proceedings of theInstitution of Electrical Engineers,1977,124(4):373-376.
    [106]汤蕴璆.电机电磁场的分析与算[M].北京:机械工业出版社,2009.
    [107] Z. Q. Zhu,Y. Pang,D. Howe.Deodhar and A. Pride. Analysis of electromagneticperformance of flux-switching permanent-magnet machines by nonlinear adaptive lumpedparameter magnetic circuit model[J].IEEE Transactions on Magnetics,2005,41(11):4277-4287.
    [108]金平,林鹤云,房淑华,et al.一种新型直线旋转永磁作动器的分析与实验[J].中国电机工程学报,2011(12):65-70.
    [109]许泽刚,谢少军,毛鹏.混合励磁磁通切换电机等效磁路模型[J].中国电机工程学报,2011(30):124-131.
    [110]汤蕴璆.电机学(第4版)[M].北京:机械工业出版社,2011.
    [111] L. J. Wu,Z. Q. Zhu,D. Staton,et al.Subdomain model for predicting armature reaction fieldof surface-mounted permanent-magnet machines accounting for tooth-tips[J]. IEEETransactions on Magnetics,2011,47(4):812-822.
    [112] Y. Amara,G. Barakat,P. Reghem.Armature reaction magnetic field of tubular linearsurface-inset permanent-magnet machines[J].IEEE Transactions on Magnetics,2011,47(4):805-811.
    [113] Ibala A,Masmoudi A.Accounting for the armature magnetic reaction and saturation effectsin the reluctance model of a new concept of claw-pole alternator[J].IEEE Transactions onMagnetics,2010,46(11):3955-3961.
    [114] P. Zheng,R. Liu,P. Thelin,et al.Research on the cooling system of a4QT prototypemachine used for HEV[J].IEEE Transactions on Energy Conversion,2008,23(1):61-67.
    [115]杨世铭,陶文铨.传热学(第4版)[M].北京:高等教育出版社,2006.
    [116]刘亚王,董明海.电机用钕铁硼永磁高温下退磁特性的研究[C].全国永磁电机学术交流会,1994:152-156.
    [117]洪士伟.动力辅助型复合动力系统马达发电机开发技术[J].机械工业,2005,272(1):97-101.
    [118]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,2000.
    [119]何山,王维庆,吴小艳,等.永磁同步发电机电枢反应去磁效应的分析[J].防爆电机,2005,40(2):8-10.
    [120] Parker R J. Advances in permanent magnetism[M].New York:John Wiley and Sons,1990.
    [121]龚光彩,梅炽,周萍.关于多场耦合问题的几个概念探讨[J].湖南大学学报(自然科学版),1999,12,26(6):72-77.
    [122]程志光,高生,李琳.电气工程涡流问题的分析与验证[M].北京:高等教育出版社,2001.
    [123] J. Bigeon.Finite element analysis of an electromagnetic brake[J].IEEE Transactions onMagnetics,1983,19(6):2632-2634.
    [124] H. K. Collan,J. Vinnurva.Rapid optimization of a magnetic induction brake[J].IEEETransactions on Magnetics,1996,32(1):3040-3044.
    [125] M. Hofmann,T. Werle,R. Pfeiffer,et al.2D and3D numerical field computation ofeddy-current brakes for traction[J].IEEE Transactions on Magnetics,2000,36(4):1758-1763.
    [126] A. B. Dietrich,I. E. Chabu,J. R. Cardoso.Eddy-current brake analysis using analytical andFEM calculations—Part I: Theory[C].Proc. in IEEE Int. Electric Motor Drive Conf.,Cambridge,2001:454-457.
    [127] Dave Farnia,Tetsuya Hattori.Electro-mechanical and thermal simulation of a permanentmagnet brushless DC motor[C].JMAG Users Conference Conference Proceedings,2006:7-30.
    [128]孙纪宁.ANSYS CFX对流传热数值模拟基础应用教程[M].北京:国防工业出版社,2010.
    [129] Johnson R W.Numerical simulation of local Nusselt number for turbulent flow in a squareduct with a180°bend[J].Numerical Heat Transfer,1988,13(2):205-228.
    [130] Iacovides H,Launder B E.Computational fluid dynamics applied to internal gas-turbineblade cooling: a review[J].International Journal of Heat and Fluid Flow,1995,16(6):454-470.
    [131] Fletcher D F,Geyer P E,Haynes B S.Assessment of the SST and omega-based Reynoldsstress models for the prediction of flow and heat transfer in a square-sectionu-bend[J].Computational Thermal Science,2009,1(4):385-403.
    [132] Ball K S,Farouk B,Dixit V C.An experimental study of heat transfer in a vertical annuluswith a rotating inner cylinder[J].International Journal of Heat and Mass Transfer,1989,32(8):1517-1527.
    [133] Hatziathanassiou V,Xypteras J,Archontoulakis G.Electrical-thermal coupled calculationof an asynchronous machine[J].Archiv fur Elektrotechnik,1994,77(2):117-122.
    [134]程志光.电气工程电磁热场模拟与应用[M].北京:科学出版社,2009.
    [135] Muramatsu K. Takahashi N. Mimura T. Magneto-thermal-fluid analysis taking account ofnatural convection using semi-Lagrange coordinate system[J].IEEE Transactions Magnetics,1999,35(3):1670-1673.
    [136]王以真.实用磁路设计[M].北京:国防工业出版社,2008.
    [137]泰乐玛汽车制动系统(上海)有限公司.电涡流缓速器产品
    [EB/OL].(2009-6-13)[2007-2008]http://www.chinabuses.com/telma/index.htm.
    [138] DAVIES E J.An experimental and theoretical study of eddy-current couplings andbrakes[J].IEEE Trans Power App Syst,1963,82(67):402–419.
    [139] YAO Yeong-der,CHIOU Gwo-ji,HUANG Der-ray.Theoretical computations for the torqueof magnetic coupling[J].IEEE Transactions on Magnetics,1995,31(3):1881–1884.
    [140] Tohru Kuwahara. Composite magnet of electromagnet and permanent magnet, and eddycurrent retarder[P].US6756870B2.
    [141] LI Zheng-sheng. Eddy-current wheelend retarder featuring modified rotor skin effect[P].US,20040262105A1.
    [142]兵器工业无损检测人员技术资格鉴定考核委员会.常用钢材磁特性曲线速查手册[M].北京:机械工业出版社,2003:70-71.
    [143]宣天鹏.材料表面功能镀覆层及其应用[M].北京:机械工业出版社,2007:1-3.
    [144]王宝龄.电磁电器设计基础[M].北京:国防工业出版社.1989:168~186.
    [145] Bora T C, Lebensztajn L, Coelho L D S. Non-dominated sorting genetic algorithm based onreinforcement learning to optimization of broad-band reflector antennas satellite[J]. IEEETransactions Magnetics,2012,48(2):767-770.
    [146] Yurong W, Fangxing L, Qiulan W, et al. Reactive power planning based on fuzzy clustering,gray code, and simulated annealing[J]. IEEE Transactions on Power Systems,2011,26(4):2246-2255.
    [147] Gomes A, Antunes C H, Martins A G. A multiple objective evolutionary approach for thedesign and selection of load control strategies[J]. IEEE Transactions on Power Systems,2004,19(2):1173-1180.
    [148] Takahashi N, Yamada T, Shimose S, et al. Optimization of rotor of actual ipm motor usingON/OFF method[J]. IEEE Transactions Magnetics,2011,47(5):1262-1265.
    [149]李云雁,胡传荣.试验设计与数据处理(第2版)[M].北京:化学工业出版社,2008.
    [150] Ki-Chan K, Dae-Hyun K, Ju L. The study on the overhang coefficient for permanent magnetmachine by experimental design method[J]. IEEE Transactions Magnetics,2007,43(6):2483-2485.
    [151] Awada A, Wegmann B, Viering I, et al. Optimizing the radio network parameters of the longterm evolution system using Taguchi's method[J]. IEEE Transactions on VehicularTechnology,2011,60(8):3825-3839.
    [152] Jae-Hyeong K, Jin-Kyu B, Jun-Seok P, et al. Robust design of dual band/polarization patchantenna using sensitivity analysis and Taguchi’s Method[J]. IEEE Transactions on Magnetics,2011,47(5):1258-1261.
    [153] Wei-Chung W, Choi C. Optimal design of cpw slot antennas using Taguchi's method[J].IEEE Transactions on Magnetics,2009,45(3):1542-1545.
    [154] Zahlay F D, Rao K S R, Ibrahim T B. A new intelligent autoreclosing scheme using artificialneural network and Taguchi's methodology[J]. IEEE Transactions on Industry Applications,2011,47(1):306-313.
    [155] Takyar M S, Georgiou T T. Analytic interpolation with a degree constraint for matrix-valuedfunctions[J]. IEEE Transactions on Automatic Control,2010,55(5):1075-1088.
    [156] Gotoh Y, Fujioka H, Takahashi N. Proposal of electromagnetic inspection method of outerside defect on steel tube with steel support plate using optimal differential search coils[J].IEEE Transactions on Magnetics,2011,47(5):1006-1009.
    [157] Jens L, Teleaga D. Towards a fully space-time adaptive FEM for magnetoquasistatics[J].IEEE Transactions on Magnetics,2008,44(6):1238-1241.
    [158] Himmelblau D M. Applied nonlinear programming[M]. McGraw-Hill,1972.
    [159] Sharifian H, Askarian Abyaneh H, Salman S K, et al. Determination of the minimum breakpoint set using expert system and genetic algorithm[J]. IEEE Transactions on Power Delivery,2010,25(3):1284-1295.
    [160] Chang-Shing L, Mei-Hui W. A fuzzy expert system for diabetes decision supportapplication[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2011,41(1):139-153.
    [161]侯永涛.汽车电磁制动器设计关键技术研究及集成平台构建[D].镇江:江苏大学,2008.
    [162] Jinxin F, Chengning Z, Zhifu W, et al. Thermal analysis of permanent magnet motor for theelectric vehicle application considering driving duty cycle[J]. IEEE Transactions onMagnetics,2010,46(6):2493-2496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700