用户名: 密码: 验证码:
基于团簇的钒基合金和钙钛矿氢氧吸放行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于能源材料中涉及氢与氧的吸放、固溶和相变的材料,由于氢与氧含量多变及位置存在一些无序分布,材料结构复杂多变,导致基于晶体学的结构处理方式不易有效分析材料结构与相关物理化学性能。V基储氢合金和钙钛矿均属于能源材料,在使用过程中都涉及气固反应,且晶体结构上具有相似性,它们的结构中金属元素呈简单的体心立方排布,而掺杂会带来化学无序,氢原子或氧原子位于金属的间隙位置,在固体结构中都存在化学含量变化大和一些位置无序分布的特点,形成了结构复杂的化合物。本文引入源自准晶非晶的团簇加连接原子模型来分析这些结构复杂的氢、氧化合物。首先优化了具有低V含量的Ti-Cr-V和Ti-Fe-V固溶体储氢合金成分,采用团簇加连接原子模型分析了相应的吸放氢性能与成分和团簇结构的关系;进而研究了固体氧化物燃料电池中氧空位复杂多变的双钙钛矿和钙钛矿结构与氧的吸放行为,使用团簇模型分析了在钙钛矿氧化还原反应过程中氧空位含量的变化对应的物态变化和局域团簇构型之间的关系。
     钒基固溶体储氢合金具有储氢含量高的优势。为进一步优化合金成分,减少昂贵的V用量以降低合金成本,本文首先系统研究了铜模吸铸制备工艺对于Ti-Cr-V和Ti-Fe-V体系储氢合金晶体结构与储氢性能的影响。在晶体结构表征与性能测试结果的基础上,使用固溶体结构的团簇模型分析了合金成分的微结构与储氢性能。具有相同成分的低V含量合金(Ti0.46Cr0.54)100-xVx (x=2.5,5.0,7.1),电弧熔炼随炉冷却得到的是以Laves相为主的结构,而铜模吸铸能够获得单相BCC结构。PCT吸放氢测试发现,随炉冷却方法制备的以Laves相为主Ti-Cr-V合金吸氢量最大只能达到2.0wt.%,而铜模吸铸得到的具有BCC结构的合金随V含量增加,吸氢量分别达到2.7wt.%,3.14wt.%和3.15wt.%。对(Ti0.46Cr0.54)95V5合金进行DTA热分析测试表明,其采用铜模吸铸得到的BCC结构在650℃以下结构稳定,750℃才有第二相析出。Ti/Cr比对铜模吸铸工艺制备的低V含量合金(TiyCr1-y)95V5(y=0.38-0.54)性能影响显著,Cr含量较高而使Ti/Cr比接近TiCr2时,合金(y=0.38和y=0.42)通过铜模吸铸也不能获得单一的BCC结构,储氢性能降低,Ti含量较高时,合金(y=0.50,0.54)首次吸氢量大而放氢量低,只有Ti/Cr比在7/8附近(y=0.44,0.46,0.48)时,铜模吸铸的低V合金不仅具有BCC结构,而且可逆的有效储氢量趋于理论值(2.0wt.%)。通过采用团簇加连接原子模型为低V含量的Ti-Cr-V合金构建了三元固溶体模型,发现Ti/Cr比的改变造成局域结构中的间隙类型发生重大变化,从而导致合金吸放氢性能随之改变。Ti/Cr比接近团簇[Ti7Cr8]的合金成分较高的可逆吸氢量可能与相应合金中大量存在Ti2Cr2四面体间隙和一部分富Cr型间隙有关。
     在Ti-Fe-V三元合金体系中,吸铸工艺不能有效抑制(Tio.46Feo.54)100·xVx (x=5-60)中低V含量的合金中Ti(Fe1-xVx)三元Laves相以及AB型TiFe相的形成,而(Ti0.46Fe0.54)100-xVx (x=5-60)中高V含量的合金能够获得BCC结构,但吸氢量低,没有第二平台区,可能与较小的间隙位有关。富钛合金(Ti0.69Fe0.31)100-xVx (x=10-50)中V含量为50at.%的(Ti0.69Fe0.31)50V50合金在80℃C的最大吸氢量达到3.5wt.%,有效储氢量达到1.7wt.%。通过Fe/VFe比例对储氢性能的影响发现,只有Fe含量在15~25at.%范围的VFe合金用作Ti-Fe-V储氢合金原材料,才可能获得较优异的储氢性能。所制备的合金中具有较高吸放氢性能的Ti-Fe-V合金成分,可表示为[Fe-Ti8-Fe2V4]和[Ti-Fe4V4-Ti6]两种团簇的组合加上连接原子V,团簇个数与V的比例约为1:7-1:8,从两种团簇结构可发现结构中以Ti2FeV四面体间隙占主导地位,说明在Ti-Fe-V体系中Ti2FeV四面体间隙可能最有利于提高合金的可逆吸放氢量。
     考虑到吸放氧循环会破坏钙钛矿块材晶界导致块体碎裂甚至结构分解,且氧平衡压低,因此,对钙钛矿吸放氧的研究没有使用块材和PCT方法,而采用薄膜样品和原位电阻法检测其相变进行的实验方案。另一方面,固体氧化物燃料电池将氢气等气体燃料的化学能直接转化为电能,能量转化效率高,但过高的工作温度使其应用不便,需要开发用于中低温薄膜型固体氧化物燃料电池的电极材料。因此本文进一步对钙钛矿薄膜样品采用气固反应过程中原位电阻测量方法进行了中低温(260-700℃)钙钛矿吸放氧的基础实验研究。采用脉冲激光沉积设备在LaAlO3基片上生长了具有双钙钛矿结构的LaBaCo2O5+δ和多晶立方钙钛矿结构的(CaBa)Co2O5+δ薄膜。通过电阻检测薄膜电阻变化研究薄膜在还原性气氛和氧化性气氛中的相变规律。研究发现,H-N混合气体可以在中温(400℃以上)使得LaBaCo2O5+δ和(CaBa)Co2O5+δ薄膜中的Co离子价态从+4还原为+3价,薄膜发生从半导体向绝缘体的转变,而02使薄膜状态发生逆向转变。氧化还原反应的平衡关系随温度发生变化,在更低的温度范围还原反应进行的更加彻底,薄膜发生半导体-绝缘体-半导体的三态转变,对应于在氧化还原过程中钴离子价态在Co4+-Co3+-Co2+之间变化。两种材料获得+2价钴离子的温度范围分别是260~350℃和350-500℃。将两种钙钛矿表示为钴氧团簇加连接原子(La、 Ba、 Ca)的形式,分析发现氧化还原过程中局域结构的变化具有一定的规律性,即钴氧团簇结构在C006八面体、C005四棱锥、C004平面四边形以及C004四面体等不同构型的团簇之间演变,吸放氧过程中钙钛矿具有较高的结构稳定性和化学稳定性。含有Co2+价离子的LaBaCo2O5+δ和(CaBa)Co2O5+δ薄膜对02具有很高的化学活性和超快氧化速率,电阻变化率在106Ω/s以上,有望用于开发高灵敏度气体传感器、化工催化剂,而LaBaCo2O5+δ较高的电子电导率更利于开发SOFC电极材料。
For energy materials involving hydrogen or oxygen absorption and desorption actions, solid solution and multiple solid-state phase transformations, owing to variational hydrogen or oxygen content and some disorded space distribution, it is very hard to study the relation between the material structures and the related physical or chemical properties. Both V-based hydrogen-storage alloys and perovskites were studied as energy materials related with gas-solid reactions in the process of using. They also have some structural similarity such as body-centered cubic arrangements of metallic elements while interstitial site of hydrogen or oxygen atoms to form some complex structures with some disorded space distributions and variations in hydrogen or oxygen contents. So this thesis introduced a cluster-plus-glue-atom model from the structure studies of qusicrystal and amorphous metals to study some energy materials involving hydrogen and oxygen absorption and desorption. First, the compositions of Ti-Cr-V and Ti-Fe-V solid solution hydrogen storage alloys with low V content were optimized, then the relations between these compositions and related cluster structures and their hydrogen storage properties were analyzed using the cluster-plus-glue-atom model. Second, the oxygen absorption and desorption actions of perovskites usually used in SOFCs were studied, and based on the same cluster model, the relations between the changing states related with oxygen vacancies and the local cluster configurations in the processes of oxidation/redox reactions of perovskites were analyzed.
     V-based BCC solid solution alloys possess large H-storage capacities. For optimizing their compositions and reducing the use of expensive pure V, this paper investigates the Ti-Cr-V and Ti-Fe-V systems. Copper mould suction-casting method was used to prepare alloy samples. The local structure as well as the hydrogen storage properties of the alloys were analyzed by our cluster-plus-glue-atom model. XRD measurements found that the structures of as-cast (Tio.46Cro.54)100-xVx (x=2.5,5.0,7.1) alloy ingots evolve with V contents from pure Laves phase (x=2.5), to dual-phase TiCr2-BCC structures (5.0,7.1) while the suction-cast (Ti0.46Cr0.54)100-xVx (x=2.5,5.0,7.1) alloys only contain single BCC phase. PCT measurements found that, for the alloy ingots and rods with the same composition, the hydrogen-absorption contents of the rapidly solidified alloy rods, are much larger than those of the slowly cooled alloy ingots. The maximum hydrogen contents of the suction-cast alloy rods (Tio.46Cro.54)100-xVx (x=2.5,5.0,7.1) are respectively2.7wt.%,3.14wt.%and3.15wt.%. Furthermore, the hydrogen-storage properties of the suction-cast low-V alloys (TiyCr1-y)95V5(y=0.38-0.54) are sensitive to Ti/Cr ratios and only those alloys with Ti/Cr ratios close to the CN14cluster [Ti7Cr8] have good hydrogen-storage properties, probably due to the existence of abundant Ti2Cr2and Cr-rich tetrahedral such as Cr2TiV and Cr3Ti as indicated by the cluster-plus-glue-atom model.
     In Ti-Fe-V system, neither the ternary Laves phase Ti(Fe1-xVx) nor the AB-type TiFe intermetallic compound can be prohibited effectively by suction-casting method for the alloys with low V content of the (Ti0.46Fe0.54)100-xVx (x=5-60) alloys. While high V content alloys of the (Tio.46Feo.54)100-xVx (x=5-60) alloys have BCC structure but low hydrogen storage capacities, probably due to their small average size of their interstitial sites. For high Ti content alloys (Ti0.69Fe0.31)100-xVx (x=10-50), only those alloys with V contents larger than40. at.%possess excellent hydrogen storage properties. The hydrogen absorption and desorption measurements indicate that the suction-cast alloy (Ti9/13Fe4/13)50V50has high hydrogen absorption capacity with the maximum hydrogen content of3.48wt.%and effective hydrogen content of1.7wt.%at353K. The effect of Fe content in VFe alloys on Ti-Fe-V hydrogen storage properties was studied. It is found that only those VFe alloys with Fe content between15. at.%and25. at.%are possible to be used to produce Ti-Fe-V alloys with excellent hydrogen storage properties. The compositions of Ti-Fe-V alloys with high hydrogen storage properties can be expressed as [Fe3V4Ti8]x[Ti7Fe4V4]1-xVy, y=7~8. The cluster model shows that Ti2FeV tetrahedral interstices are dominant in these alloys, which may be the reason to increase the hydrogen storage capacities of Ti-Fe-V system.
     In consideration of that the oxidation reduction cycles may destroy the grain boundary of perovskites sintered body or even disintegrate them, and the ultra-low equilibrium pressure, sintered samples PCT method were not used to study the oxygen absorption and desorption of perovskites but by thin film samples and in situ electric resistance measurements. On the other side, Solid Oxide Fuel Cells (SOFCs) have high energy transformation efficiency to convert the chemical energy of fuel gas like H2into electric energy, but their high temperature working environment causes a lot of inconveniences to the customers. So we need to develop low-medium temperature SOFC electrode with thin film structures. Therefore, we studied the oxygen absorption and desorption actions of perovskites thin films by in situ electric resistance measurements. Pulsed laser depositon system (PLD) was used to prepare the LaBaCo2O5+δ (LBCO) and (CaBa)Co2O5+δ (CBCO) thin films. Oxidation/redox chemical dynamics on highly epitaxial LaBaCo2O5+δ (LBCO) thin films and polycrystalline (CaBa)Co2O5+δ (CBCO) have been systematically studied by precise ac bridge measurement systems. Microstructural studies from x-ray diffraction and electron microscopy reveal that the LBCO thin films have excellent epitaxial nature with c-axis oriented and highly single crystallinity structures. Electrical conductivity measurements indicate that the as-grown LBCO films have ultrahigh electrical conductivity. Especially, the chemical dynamic studies discovered that the LBCO and CBCO thin films are extremely sensitive to reducing/oxidizing environments in O2and H2at various temperatures (260~700℃) with superfast oxygen surface exchange dynamics. H-N mixture gas is capable to reduce the LBCO and CBCO thin films from semiconductor to insulator above400℃, which are identified with variation between Co-valence states of Co4+and Co3+, while the reversible reactions occur in O2.Owing to the varation of the equilibrium relation of the oxidation/redox reactions, the reduction reactions are more thoroughly at lower temperatures and include conductor-insulator-semimetal transition corresponding to the variation of valence state Co4+-Co3+-Co2+. The oxidation reactions of Co2+to Co3+at low temperatures have faster reaction rates than that of Co3+to Co4+at temperature of260-350℃for LBCO and350-500℃for CBCO. The structures of these two perovskites were expressed as [Co-0cluster] plus glue atoms (La, Ba, Ca). In the processes of oxidation/redox reactions, the local structures of different states of perovskites changed from CoO6octahedron to CoO5rectangular pyramid, CoO4quadrilateral and CoO4tetrahedron. Both LBCO and CBCO showed stable perovskite structures and chemical activity. The extremely short response time, giant resistance change above106Ω/s, and excellent chemical stability in a broad temperature range varying from260℃to700℃suggests that the LBCO and CBCO thin films are excellent candidates for, catalyst, and high temperature ultra-sensitive chemical sensor applications, while the LBCO thin film is better to be used as the SOFC electrode materials owing to its high electoral conductivity.
引文
[1]BLARIGAN P V, KELLER J 0. A hydrogen fuelled internal combustion engine designed for single speed/power operation [J]. International Journal of Hydrogen Energy, 2002,23:603-609.
    [2]SIERENS R, ROSSEEL E. Variable composition hydrogen/nature gas mixtures for increased engine efficiency and decreased emissions [J]. Transactions of the ASME, Journal of Engineering for Gas Turbines and Power,2000,122:135-140.
    [3]AL-BAGHDADI M A S, AL-JANABI H A S. Improvement of performance and reduction of pollutant emission of a four stroke ignition engine fueled with hydrogen-gasoline fuel mixture [J]. Energy Conversion and Management,2000,41:77-91.
    [4]NABER J D, SIEBERS D L. Hydrogen combustion under diesel engine conditions [J]. International Journal of Hydrogen Energy,1998,23:363-371.
    [5]AMANKWAH K A G, NOH J S, SCHWARZ J A. Hydrogen storage on superactivated carbon at refrigeration temperatures [J]. International Journal of Hydrogen Energy,1989, 14:437-447.
    [6]IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature,1991,354:56-58.
    [7]DILLON A C, JONES K M, BEKEDAHL T A. Storage of hydrogen in Single-walled Carbon nanotbes [J]. Nature,1997,386:377.
    [8]Ye Y, AHN C C, WITHAM C, et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes [J]. Appied Physics Letter,1999,74:2307-2309.
    [9]Chen P, Wu X., Lin J, et al. High H2 Uptake by Alkali-Doped Carbon Nanotubes Under Ambient Pressure and Moderate Temperatures [J]. Science,1999,285:91-93.
    [10]TOUZANI A, KLVANA D, BELANGER G. A mathematical model for the dehydrogenation of methylcyclohexane in a packed bed reactor [J]. The Canadian Journal of Chemical Engineering,1987,65:56-63.
    [11]KLVANA D, TOUZANI A, CHAOUKI J, et al. Dehydrogenation of methylcyclohexane in a reactor coupled to a hydrogen engine [J]. International Journal of Hydrogen Energy, 1991,16:55-60.
    [12]胡子龙.储氢材料[M].北京:化学工业出版社,2002.
    [13]VUNCHT J H N, KUIJPERS F A. The properties of hydrogenate LaNi5 alloy [J]. Philips Res Pept,1970,25:133-135.
    [14]KLYAMKIN S N, VERBETSKY V N, DEMIDOV V A. Thermodynamics of hydride formation and decomposition for TiMn2-H2 system at pressure up to 2000 atm [J]. Journal of Alloys and Compounds,1994,205:L1-L2.
    [15]REILLY J J, WISWALL R H. Formation and properties of iron titanium hydride [J]. Inorganic Chemistry,1974,13(1):218-222.
    [16]REILLY J J, WISWALL R H. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4 [J]. Inorganic Chemistry,1968,7(11):2254-2256.
    [17]ONO S, NOMURA K, IKEDA Y. The reaction of hydrogen with alloys of vanadium and titanium [J]. Journal of the Less Common Metals,1980,72:159-165.
    [18]周作祥,何春红,王正平,等.吸氢电极[J].电池,1991,21(3):26-30.
    [19]张芸什.负极储氢合金材料[J].电源技术,1996,20(1):36-40.
    [20]WESTLAKE D G, MUELLER M H, KNOTT H W. Structureal Transitions at Low Temperatures in Vanadium Deuterides [J]. Journal of Applied Crystallography,1973,6:206-216.
    [21]ASANO H, HIRABAYASHI M. Interstitial Superatures of Vanadium Deuterides [J].Physica Status Solidi, Sectio A:Applied Research,1973,15A:267-279.
    [22]KAJITANI T, HIRABAYASHI M. Neutron Diffraction Study of V2H and V2D [J]. Zeitschrift Fuer Physikalische Chemie, Neue Folge, Wiesbaden/Munich,1985,145:27-42.
    [23]MULLER H, WEYMANN K. Investigation of the ternary systems Nb-V-H and Ta-V-H [J]. Journal of the Less-common Metals,1986,119:115-126.
    [24]YUKAWA H, TESHIMA A, YAMASHITA D, et al. Alloying effects on the hydriding properties of vanadium at low hydrogen pressures [J]. Journal of Alloys and Compounds,2002,337:264-268.
    [25]YUKAWA H, YAMASHITA D, ITO S, et al. Compositional dependence of hydriding properties of vanadium alloys at low hydrogen pressures [J]. Journal of Alloys and Compounds,2003,356-357:45-49.
    [26]TSUKAHARA M, TAKAHASHI K, MISHIMA T, et al. The TiV3Ni0.56 hydride electrode:its electrochemical and cycle life characterization [J]. Journal of Alloys and Compounds,1995,231:616-620.
    [27]TSUKAHARA M, TAKAHASHI K, MISHIMA T, et al. Influence of various additives in vanadium-based alloys V3TiNi0.56 on secondary phase formation, hydrogen storage properties and electrode properties [J]. Journal of Alloys and Compounds,1996, 245:59-65.
    [28]TSUKAHARA M, TAKAHASHI K, ISOMURA A, et al. Improvement of the cycle stability of vanadium-based alloy for nickel-metal hydride (Ni-MH) battery [J]. Journal of Alloys and Compounds,1999,287:215-220.
    [29]KURIIWA T, TAMURA T, AMEMIYA T, et al. New V-based alloy with high protium absorption and desorption capacity [J]. Journal of Alloys and Compounds, 1999,293-295:433-436.
    [30]CHOI W K, TANAKA T, MIYAUCHI R, et al. Electrochemical and structural characteristics of TiV2.1Ni0.3 surface-modified by ball-milling with MgNi [J]. Journal of Alloys and Compounds,2000,299:141-147.
    [31]Iba H, Akiba E. Hydrogen absorption and modulated structure in Ti-V-Mn alloys [J]. Journal of Alloys and Compounds,1997,253-254:21-24.
    [32]LEE H H, LEE K Y, LEE J Y. The Ti-based metal hydride electrode for Ni MH rechargeable batteries [J]. Journal of Alloys and Compounds,1996,239:63-70.
    [33]YU J S, LEE K Y, LEE J Y. Effect of Ni containing surface phases on the electrode characteristics of Til. OMn1.OVO.5 [J]. Journal of Alloys and Compounds,1997,259: 270-275.
    [34]DOS SANTOS D S, BOUOUDINA M, FRUCHART D. Structural and thermodynamic properties of the pseudo-binary TiCr2-x,V, compounds with 0.0≤x≤1.2 [J]. Journal of Alloys and Compounds,2002,340(1-2):101-107.
    [35]CHO S W, HAN C S, PARK C N, et al. The hydrogen storage characteristics of Ti-Cr-V alloys [J]. Journal of Alloys and Compounds,1999,288(1-2):294-298.
    [36]OKADA M, KURIIWA T, TAMURA T, et al. Ti-V-Cr b. c. c. alloys with high protium content [J]. Journal of Alloys and Compounds,2002,330-332:511-516.
    [37]OKADA M, KURIIWA T, KAMEGAWA A, et al. Role of intermetallics in hydrogen storage materials [J]. Materials Science and Engineering A,2002,329:305-312.
    [38]AKIBA E, IBA H. Hydrogen absorption by Laves phase related BCC solid solution [J]. Intermetallics,1998,6:461.
    [39]郑坊平,陈立新,王亚茹,等(Ti0.1V0.9)1-x,Fex (x=0-0.06)合金的相结构及储氢性能[J].功能材料,2006,9:1438-1441.
    [40]NOMURA K, AKIBA E. H2 Absorbing-desorbing characterization of the Ti V Fe alloy system [J]. Journal of Alloys and Compounds,1995,231:513.
    [41]PERCHERON-GUEGAN A, LARTIGUE C, ACHARD J C. Niutron and X-ray diffraction profile analyses and structure of LaNi5, LaNi5-x,Alx and LaNi5-xMnx intermetallics and their hydrides (deuterides) [J]. Journal of the Less Common Metals,1980,74:1-12.
    [42]SOUBEYROUX J L, PERCHERON-GUEGAN A, ACHARD J C. Localization of hydrogen (deuterium) in α-LaNi5Hx (x=0.1 and 0.4) [J]. Jouranl of the Less Common Metals,1987,129: 181-186.
    [43]LI F, ZHAO J J, TIAN D X, et al. Hydrogen storage behavior in C15 Laves phase compound TiCr2 by first principles [J]. Journal of Applied Physics,2009,105:043707.
    [44]BARRETT C S. Structure of Metals [M]. New York:McGRAW-HILL,1943.
    [45]CAHN R W, HAASEN P. Physical Metallurgy [M]. American:North-Holland,1996.
    [46]DABROWSKI L. Cluster distribution and long-range ordering in multicomponent interstitial alloys [J]. Journal of Materials Science,1996,31:4843-4846.
    [47]BRAGG W L, WILLIAMS E J. The effect of thermal agitation on atomic arrangement in alloys [J]. Proceedings of the Royal Society of London,1934,145:699-730.
    [48]Cowley J M. An approximate theory of order in alloys [J]. Physical Review,1950, 77:669-675.
    [49]HERBSTEIN F H, BORIE B S, AVERBACH B L. Local atomic displacements in solid solutions [J]. Acta Crystallographica,1956,9:466-471.
    [50]ICE G E, SPARKS C J. Modern resonant X-ray studies of alloys:Local order and displacements [J]. Annual Review of Materials Science,1999,29:25-52.
    [51]PATU S, ARSENAULT R J. Strengthening due to non-random solid solutions [J]. Materials Science and Engineering A,1995,194:121-128.
    [52]MOHRI T, FONTAINE D, SANCHEZ J M. Short Range Order Hardening with Second Neighbor Interactions in fcc Solid Solutions [J]. Metallurgical and Materials Transactions A,1986,17:189-194.
    [53]COHEN M H, TURNBULL D. Metastability of Amorphous Structures [J]. Nature,1964: 203:964-965.
    [54]HAUSSLER P, BARZOLA-QUIQULA J. Spherical periodicity, an intermediate step to long-range order [J]. Journal of Non-Crystalline Solids,2002,312:498-501.
    [55]MIRACLE D B. The efficient cluster packing model-An atomic structural model for metallic glasses [J]. Acta Materialia,2006,54:4317-4336.
    [56]王清.团簇线判据及Cu-Zr(Hf)基三元块体非晶合金形成[D].大连:大连理工大学,2006.
    [57]XIA J H, QIANG J B, WANG Y M, et al. Ternary bulk metallic glasses formed by minor alloying of Cu8Zr5 icosahedron [J]. Applied Physics Letters,2006,88:101907.
    [58]YANG L, XIA J H, WANG Q, et al. Design of Cu8Zr5-based bulk metallic glasses [J]. Applied Physics Letters,2006,88:241913.
    [59]DONG C, WANG Q, QIANG J B, et al. From clusters to phase diagrams:composition rules of quasicrystals and bulk metallic glasses [J]. Journal of Physics D-Applied Physics,2007,40:R273.
    [60]ZHANG J, WANG Q, WANG Y M, et al. Revelation of solid solubility limit Fe/Ni=1/12 in corrosion resistant Cu-Ni alloys and relevant cluster model [J]. Journal of Materials Research,2010,25:328.
    [61]LI B Z, WANG Q, WANG Y M, et al. Cu-containing Fe-Ni corrosion-resistant alloys designed by a cluster-based stable solid solution model [J]. Metallurgical and Materials Transactions A,2012,43:544-554.
    [62]MINH N Q. Ceramic Fuel Cells [J]. Journal of the American Ceramic Society,1993, 76:563-588.
    [63]管从胜,杜爱玲,杨玉国.高能化学电源[M].北京:化学工业出版社,2005.
    [64]HYUN R, HAILE S M. Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions [J]. Solid State Ionics,199,125:355-367.
    [65]RAMAMOORTHY R, SUNDARARAMAN, RAMASSAMY S. Ionic conductivity studies of ultrafine-grained yttria stabilized zirconia polymorphs [J]. Solid State Ionics, 1999,123:271-278.
    [66]SAMMES N M, CAI Z H. Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials [J]. Solid State Ionics,1997,100:39-44.
    [67]STEELE B C H. Appraisal of Ce1-xGdyO2-y/2 electrolytes for IT-SOFC operation at 500℃ [J]. Solid State Ionics,2000,129:95-110.
    [68]HUANG K Q, GOODENOUGH J B. A solid oxide fuel cell based on Sr-and Mg-doped LaGaO3 electrolyte:the role of a rare-earth oxide buffer [J]. Journal of Alloys and Compounds,2000,303-304:454-464.
    [69]BI Z H, CHENG M J, DONG Y L, et al. Electrochemical evaluation of La0.6Sr0.4CoO3-La0.45Ce0.55O2 composite cathodes for anode-supported La0.45Ce0.55O2-La0.9Sr0.1Ga0.8Mg0.2O2.85 bilayer electrolyte solid oxide fuel cells [J]. Solid State Ionics,2005,176:655-661.
    [70]IWAHARA H, ESAKA T, UCHIDA H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production [J]. Solid State Ionics, 1981,3-4:359-363.
    [71]TANIGUCHI N, HATOH K, NIIKURA J, et al. Proton conductive properties of gadolinium-doped barium cerates at high temperatures [J]. Solid State Ionics,1992, 53-56:998-1003.
    [72]HIRABAYASHI D, TOMITA A, TERANISHI S, et al. Improvement of a reduction-resistant Ce0.8Sm0.201.9 electrolyte by optimizing a thin BaCe1-xSmxO3-α layer for intermediate-temperature SOFCs [J]. Solid State Ionics,2005,176:881-887.
    [73]KATAHIRA K, KOHCHI Y, SHIMURA T. Protonic conduction in Zr-substituted BaCeO3 [J]. Solid State Ionics,2000,138:91-98.
    [74]OSTERGARD M J L, CLAUSEN C, BAGGER C, et al. Manganite-zirconia composite cathodes for SOFC:Influence of structure and composition [J]. Electrochimica Acta,1995, 40:1971-1981.
    [75]ZHAO F, PENG R R, XIA C R. A La0.6Sr0.4CoO3-δ based electrode with high durability for intermediate temperature solid oxide fuel cells [J]. Materials Research Bulletin,2008,43:370-376.
    [76]DUSASTRE V, KILNER J A. Optimisation of composite cathodes for intermediate temperature SOFC applications [J]. Solid State Ionics,1999,126:163-174.
    [77]FUKUNAGA H, KOYAMA M, TAKAHASHI N, et al. Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode [J]. Solid State Ionics,2000,132:279-285.
    [78]XIA C R, RAUCH W, CHEN F L, et al. Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs [J]. Solid State Ionics,2002,149:11-19.
    [79]SHAO Z P, HAILE S M. A high-performance cathode for the next generation of solid-oxide fuel cells [J]. Nature,2004,431:170-173.
    [80]ATKINSON A, BARNETT S, GORTE R J, et al. Advanced anodes for high-temperature fuel cells [J]. Nature Materials,2004,3:17-27.
    [81]MOBIUS H H. On the history of solid electrolyte fuel cells [J]. Journal of Solid State Electrochemistry,1997,1:2-16.
    [82]MAJUMDAR S, CLAAR T, FLANDERMEYER B. Stress and Fracture behavior of Monolithic Fuel Cell Tapes [J]. Journal of the American Ceramic Society,1986,69:628-633.
    [83]PARATIHAR S K, BASU R N, MAZUMDER S, et al. Proceedings of the Sixth International Symposium On Solid Oxide Fuel Cells (SOFC-VI), Honolulu, Hawaii,1999[C].1999: 513.
    [84]HUEBNER W, ANDERSON H U, REED D M, et al. Proceedings of the Fourth International Symposium on Solid Oxide Fuel Cells (SOFC-IV), Yokohama, Japan,1995[C].1995:159.
    [85]TINTINELLI A, RIZZO C, GIUNTA G, et al. Proceedings of the First European Solid Oxide Fuel Cells Forum, Lucerne, Switzerland,1994[C].1994,1:455.
    [86]STEELE B C H. Proceedings of the First European Solid Oxide Fuel Cells Forum, Lucerne, Switzerland,1994[C].1994,1:375.
    [87]ZHU W, DING D, XIA C R. Enhancement in Three-Phase Boundary of SOFC Electrodes by an Ion Impergnation Method:A Modeling Comparison [J]. Electrochemical and Solid-State Letters,2008,11:B83-B86.
    [88]ITOH H, YAMAMOTO T, MORI M, et al. Proceedings of the Second European Solid Oxide Fuel Cells Forum, Oslo, Norway,1996[C].1996,1:453.
    [89]LEE J H, MOON H, LEE H W, et al. Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet [J]. Solid State Ionics, 2002,148:15-26.
    [90]HASLAM J J, PHAM A Q, CHUNG B W, et al. Effects of. the Use of Pore Formers on Performance of an Anode Supported Solid Oxide Fuel Cell [J]. Journal of the American Ceramic Society,2005,88:513-518.
    [91]GORTE R J, VOHS J M. Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons [J]. Journal of Catalysis,2003,216:477-486.
    [92]MOGENSEN M, SAMMES N M, TOMPSETT G A. Physical, chemical and electrochemical properties of pure and doped ceria [J]. Solid State Ionics,2000,129:63-94.
    [93]SKORODUMOVA N V, SIMAK S I, LUNDQVIST B I, et al. Quantum Origin of the Oxygen Storage Capability of Ceria [J]. Physical Review Letters,2002,89:166601.
    [94]STEELE B C H, MIDDLETON P H, RUDKIN R A. Material science aspects of SOFC technology with special reference to anode development [J]. Solid State Ionics,1990,40: 388-392.
    [95]MOGENSEN M, LINDEGAARD T, HANSEN U R, et al. Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2 [J]. Journal of The Electrochemical Society,1994,141:2122-2128.
    [96]MURRAY E P, TSAI T, BARNETT S A. A direct-methane fuel cell with a ceria-based anode [J]. Nature,1999,400:649-651.
    [97]TSAI T, BARNETT S A. Effect of Mixed-Conducting Interfacial Layers on Solid Oxide Fuel Cell Anode Performance [J]. Journal of The Electrochemical Society,1998,145: 1696-1701.
    [98]SFEIR J, BUFFAT P A, MOCKLI P, et al. Lanthanum Chromite Based Catalysts for Oxidation of Methane Directly on SOFC [J]. Journal of Catalysis,2001,202:229-244.
    [99]SAUVET A L, IRVINE J T S.5th European SOFC Forum, Switzerland,2002[C].2002, 490.
    [100]TAO S W, IRVINE J T S. A redox-stable efficient anode for solid-oxide fuel cells [J]. Nature Materials,2003,2:320-323.
    [101]HUI S Q, PETRIC A. Electrical Properties of Yttrium-Doped Strontium Titanate under Reducing Conditions [J]. Journal of The Electrochemical Society,2002,149:J1-J10.
    [102]MARINA 0 A, CANFIELD N L, STEVENSON J W. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium [J]. Solid State Ionics, 2002,149:21-28.
    [103]HUI S Q, PETRIC A. Electrical conductivity of yttrium-doped SrTiO3:influence of transition metal additives [J]. Materials Research Bulletin,2002,37: 1215-1231.
    [104]HUI S Q, PETRIC A. Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells [J]. Journal of the European Ceramic Society,2002,22:1673-1681.
    [105]MUKUNDAN R, BROSHA E L, GARZON F H. Sulfur Tolerant Anodes for SOFCs [J]. Electrochemical and Sol id-State Letters,2004,7:A5-A7.
    [106]AGUILAR L, ZHA S W, CHENG Z, et al. A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels [J]. Journal of Power Sources,2004,135: 17-24.
    [107]HUANG Y H, DASS R I, XING Z L, et al. Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells [J]. Science,2006,312:254-257.
    [108]PARK S D, VOHS J M, GORTE R J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell [J]. Nature,2000,404:265-267.
    [109]MCLNTOSH S, VOHS J M, GORTE R J. Role of Hydrocarbon Deposits in the Enhanced Performance of Direct-Oxidation SOFCs [J]. Journal of The Electrochemical Society, 2003,150:A470-A476.
    [110]KIM H, LU C, WORRELL W L, et al. Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-Oxide Fuel Cells [J]. Journal of The Electrochemical Society,2002,149: A247-A250.
    [111]XIE Z, ZHU W, ZHU B C, et al. FexCo0.5-xNi0.5-SDC anodes for low-temperature solid oxide fuel cells [J]. Electrochimica Acta,2006,51:3052-3057.
    [112]ROY S, DUBENKO I S, KHAN M, et al. Magnetic properties of perovkite-derived air-synthesized RBaCo2O5+0 (R=La, Ho) compounds [J]. Physical Review B,2005,71: 024419.
    [113]MAIGNAN A, CAIGNAERT V, RAVEAU B, et al. Thermoelectric Power of HoBaCo205.5: Possible Evidence of the Spin Blockade in Cobaltites [J]. Physical Review Letters, 2004,93:026401.
    [114]HIBINO T, HASHIMOTO A, INOUE T, et al. A Low-Operating-Temperature Solid Oxide Fuel Cell in Hydrocarbon-Air Mixtures [J]. Science,2000,288:2031.
    [115]KHARTON V V, SHUANGBAO L, KOVALEVSKY A V, et al. Oxygen permeability and thermal expansion of SrCo(Ti)03-δ perovskites [J]. Materials Chemistry and Physics,1998, 53:6.
    [116]ZHANG K, GE L, RAN R, et al. Synthesis, characterization and evaluation of cation-ordered LnBaCo2O5·δ as materials of oxygen permeation membranes and cathodes of SOFCs [J]. Acta Materialia,2008,56:4876-4889.
    [117]BRANDON N P, SKINNER S, STEELE B C H. Recent advances in materials for fuel cells [J]. Annual Review of Materials Research,2003,33:183.
    [118]TASKIN A A, LAVROV A N, ANDO Y. Achieving fast oxygen diffusion in perovskites by cation ordering [J]. Applied Physics Letters,2005,86:091910.
    [119]TARANCON A, MORATA A, DEZANNEAU G, et al. GdBaCo205., layered perovskite as an intermediate temperature solid oxide fuel cell cathode [J]. Journal of Power Sources,2007,174:255.
    [120]TARANCON A, SKINNER S J, CHATER R J, et al. Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells [J]. Journal of Materials Chemistry,2007,17:3175.
    [121]CHANG A, SKINNER S J, KILNER J A. Electrical properties of GdBaCo2O5+x for ITSOFC applications [J]. Solid State Ionics,2006,177:2009.
    [122]KIM G, WANG S, JACOBSON A J, et al. Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x, with a perovskite related structure and ordered A cations [J]. Journal of Materials Chemistry,2007,17:2500.
    [123]LI N, LU Z, WEI B, et al. Characterization of GdBaCo2O5+δ cathode for IT-SOFCs [J]. Journal of Alloys and Compounds,2008,454:274.
    [124]FRONTERA C, CANEIRO A, CARRILLO A E, et al. Tailoring Oxygen Content on PrBaCo2O5+ δ Layered Cobaltites [J]. Chemistry of Materials,2005,17:5439.
    [125]LIU J, COLLINS G, LIU M, et al. Ultrafast oxygen exchange kinetics on highly epitaxial PrBaCo2O5+δ [J]. Applied Physics Letters,2012,100:193903.
    [126]RAUTAMA E L, BOULLAY P, KUNDU A K, et al. Cationic Ordering and Microstructural Effects in the Ferromagnetic Perovskite La0.5Ba0.5CoO3:Impact upon Magnetotransport Properties [J]. Chemistry of Materials,2008,20:2742.
    [127]RAUTAMA E L, CAIGNAERT V, BOULLAY P, et al. New Member of the "112" Family, LaBaCo2O5.5:Synthesis, Structure, and Magnetism [J]. Chemistry of Materials,2009, 21:102.
    [128]TROYANCHUK I 0, KARPINSKY D V, BUSHINSKY M V,et al. The low-temperature macroscopic phase separation in La0.5Ba0.5CoO3-δ cobaltite [J]. JETP Letters,2011, 93:139-143.
    [129]MAIGNAN A, MARTIN C, PELLOQUIN D, et al. Structural and Magnetic Studies of Ordered Oxygen-Deficient Perovskites LnBaCo2O5·δ., Closely Related to the "112" Structure [J]. Journal of Solid State Chemistry,1999,142:247-260.
    [130]SEDDON J, SUARD E, HAYWARD M A. Topotactic Reduction of YBaCo2O5 and LaBaCo2O5: Square-Planar Co(I) in an Extended Oxide [J]. Journal of the American Chemical Society,2010,132:2802-2810.
    [131]LIU J, LIU M, COLLINS G, et al. Epitaxial Nature and Transport Properties in (LaBa)Co2O5·δ Thin Films [J]. Chemistry of Materials,2010,22:799-802.
    [132]LIU J, COLLINS G, LIU M, et al. PO2 dependant resistance switch effect in highly epitaxial (LaBa)Co2O5·δ thin films [J]. Applied Physics Letters,2010,97:094101.
    [133]LIU M, LIU J, COLLINS G, et al. Magnetic and Transport Properties of Epitaxial (LaBa)Co2O5.5·δ Thin Films on (001) SrTiO:, [J]. Applied Physics Letters,2010,96: 132106.
    [134]LIU M, MA C R, LIU J, et al. Giant Magnetoresistance and Anomalous Magnetic Properties of Highly Epitaxial Ferromagnetic LaBaCo2O5.5·δ Thin Films on (001) MgO [J]. Applied Materials & Interfaces,2012,4:5524-5528.
    [135]HE J, JIANG J C, LIU J, et al. Self-patterned Nano Structures in Structurally Gradient Epitaxial La0.5Ba0.5CoO3 Films [J]. Thin Solid Films,2011,519:4371-4376.
    [136]MA C R, LIU M, COLLINS G, et al. Thickness effects on the magnetic and electrical transport properties of highly epitaxial LaBaCo2O5.5+6thin films on MgO substrates [J]. Applied Physics Letters,2012,101:021602.
    [137]MA C R, LIU M, COLLINS G, et al. Magnetic and Electrical Transport Properties of LaBaCo2O5.5+6 Thin Films on Vicinal (001) SrTiO3 surfaces [J]. Applied Materials & Interfaces,2013,5:451-455.
    [138]AVRAMI M. Kinetics of Phase Change. I General Theory [J]. Journal of Chemical Physics,1939,7:1103.
    [139]西泽泰二.微观组织热力学[M].北京:化学工业出版社,2006.
    [140]BOSER 0. Hydrogen sorption in LaNi5 [J]. Journal of the Less Common Metals,1976, 46:91-99.
    [141]MIYAMOTO M, YAMAJI K, NAKATA Y. Reaction kinetics of LaNi5 [J]. Journal of the Less Common Metals,1983,89:111-116.
    [142]GOODELL P D, RUDMAN P S. Hydriding and dehydriding rates of the LaNi5-H system [J]. Journal of the Less Common Metals,1983,89:117-125.
    [143]BOER F R. Cohesion in Metals:Transition Metal Alloys [M]. Amsterdam: North-Holland,1988.
    [144]PENG S M, ZHAO P J, YANG M N, et al. Simulation on Crystal Structures of Metallic V and Its Hydrides [J]. Atomic Energy Science and Technology,2000,34:73.
    [145]MOLLAH S, HUANG H L, YANG H D, et al. Non-adiabatic small-polaron hopping conduction in Pr0.65Ca0.35-x.SrxMnO3 perovskites above the metal-insulator transition temperature [J]. Journal of Magnetism and Magnetic Materials,2004,284:383.
    [146]CHEN X J, ZHANG C L, ALMASAN C C, et al. Small-polaron hopping conductivity in bilayer manganite La1.2Sr1.8Mn2O7 [J]. Physical Review B:Condensed Matter,2003,67: 094426.
    [147]KOSLOWSKI T. Unusual defects and the electronic structure of the nonstoichiometric perovskite SrFeO3-8:a numerical approach [J]. Physical Chemistry Chemical Physics,1999,1:3017.
    [148]EMIN D. Studies of small-polaron motion IV. Adiabatic theory of the Hall effect [J]. Annals of Physics,1969,53:439-520.
    [149]RAFFAELLE R, ANDERSON H U, SPARLIN D M, et al. Transport anomalies in the high-temperature hopping conductivity and thermopower of Sr-doped La(Cr,Mn)03 [J]. Physical Review B,1991,43:7991-7999.
    [150]OLETTE M, ANCEY-MORET M I. Rev Metall (Paris) 1963:60:569.
    [151]MEGAW H D. Crystal structure of double oxides of the perovskite type [J]. Proceedings of the Physical Society,1946,58:133.
    [152]RANDALL C A, BHALLA A S, SHROUT T R, et al. Classification and consequences of complex lead perovskite ferroelectrics with regard to B-site cation order [J]. Journal of Materials Research,1990,5:829-834.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700