用户名: 密码: 验证码:
绝缘片约束TIG电弧的静电探针分析及其在超窄间隙中的加热特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超窄间隙TIG焊接方法兼具TIG焊和窄间隙焊接技术的优势,焊接效率高,接头力学性能优良。然而,由于超窄间隙宽度较小,坡口侧壁的存在使电弧电场分布发生变化,坡口底角处电流密度较低,容易产生底角熔合不良的缺陷,需要通过改变TIG电弧载流区形态及电流密度分布,来调控超窄间隙中电弧加热特性以使坡口底角获得可靠熔合。
     本文提出了一种绝缘片约束TIG电弧的方法改变电弧载流区形态及电流密度分布,并将该方法用于调控超窄间隙中电弧加热特性;同时,通过静电探针分析绝缘片约束作用下载流区形态及电流密度分布的变化,对绝缘片对电弧的调控机制进行了研究。
     设计并研制了一种低扰动静电探针试验装置对TIG电弧载流区形态进行研究。通过分析探针饱和离子电流和悬浮探针电位波形可以发现,饱和离子电流波形分布宽度能够看作电弧载流区宽度;悬浮探针电位波形宽度则与包括电弧外围负离子区在内的电弧宽度相当;电弧载流区内的正离子作用于探针,使悬浮探针电位幅值减小,并在电位波形上形成一个宽度与载流区相近的凹陷区;通过饱和离子电流的分布趋势可对载流区电流密度分布进行定性分析。
     开发了超窄间隙TIG焊接专用焊枪和片状钨极,使用片状钨极可在更大的焊接电流下进行超窄间隙焊接。进一步通过低扰动静电探针研究片状钨极,焊接电流和弧长对TIG电弧载流区形态及电流密度分布的影响,结果表明,电弧弧根在片状钨极前端扩展,导致片状钨极氩弧载流区截面呈近似椭圆形,电流密度和电弧压力均为非轴对称分布;相同焊接参数下,与圆柱钨极氩弧相比,片状钨极氩弧载流区截面积更大,电流密度更低,从而造成片状钨极氩弧具有更小的电弧压力。随着焊接电流的增加,片状钨极氩弧载流区向外扩张,但弧柱内部电磁力产生的收缩效应限制了载流区的扩展,使载流区宽度增幅小于焊接电流的增幅,造成电流密度增大。弧长越小时,片状钨极氩弧载流区截面积越小,电流密度越大;采用较小的弧长,电弧在片状钨极前端扩展能力较弱,载流区电流密度接近于轴对称分布。
     开发了用于调控电弧加热特性的绝缘片,通过绝缘片对电弧的约束作用使载流区形态及电流密度分布发生变化,从而达到改变电弧加热特性的目的。使用低扰动静电探针分析绝缘片约束TIG电弧载流区形态及电流密度的变化,研究绝缘片对电弧的约束机制。结果表明,绝缘片能够对片状钨极氩弧弧根起到有效的固壁约束作用,使载流区在绝缘片约束方向上发生收缩,并提高电流密度;同时,绝缘片对弧根产生的附加冷却效果,造成载流区电位梯度增大;随着绝缘片对弧根约束程度的增加,载流区电流密度将进一步增大,且在靠近电弧载流区截面中心的区域内,电流密度增幅较大,意味着绝缘片约束电弧的能量更加集中。
     超窄间隙中采用绝缘片约束TIG电弧的方式调控电弧对母材的加热特性,并通过分析坡口截面熔化形貌及熔化面积的变化,研究约束程度、弧长、焊接电流以及焊接速度对电弧加热特性的影响。结果发现,紧贴坡口侧壁放置的绝缘片,能够对超窄间隙中TIG电弧弧根产生固壁约束作用,使电弧载流区发生收缩,电流密度提高,并将电弧加热区域限制在坡口底部,从而加强电弧对坡口底角的加热效果,并使底角处获得足够的电流密度以保证可靠熔合;焊接过程中,绝缘片对弧根的约束程度、弧长、焊接电流和焊接速度均会影响超窄间隙中电弧的加热特性,且以上焊接工艺参数必须相互匹配,才能使坡口底角熔合良好;同时,与已有的超窄间隙TIG焊接方法相比,绝缘片约束TIG电弧超窄间隙焊接方法能够获得更大的熔深。
The Ultra-narrow gap TIG welding combines advantages of TIG welding and narrow gap welding technique to get high efficiency and welded joint with excellent mechanic properties. However, the side of square groove in ultra-narrow gap would change the electric field distribution of TIG arc to cause the lack of fusion on the corner of square groove with low current density. The arc current-carrying region shape and current density can be changed to control the arc heating characteristic in ultra-narrow gap for solving this problem.
     In this paper, the constricted TIG arc with insulating plate was applied to change arc current-carrying region shape and current density distribution for controlling the arc heating characteristic in ultra-narrow gap. Meanwhile, the electrostatic probe can be used to analyze the variation of arc current-carrying region shape and current density distribution for searching the controlling mechanism of constricted TIG arc with insulating plate.
     The low disturbance electrostatic probe is developed for studying the TIG arc current-carrying region shape and current density distribution. This low disturbance electrostatic probe is applied to measure the floating potential and ion saturation current in various sections along the axial direction of TIG arc. The ion saturation current width is equal to current-carrying region width of TIG arc; the width of floating potential can be representative of the arc width; the ions act on probe to cause reduction of floating potential amplitude, and there is a depression on the potential waveform in the same width as arc current-carrying region; the qualitative analysis of current density distribution can be obtained by ion saturation current distribution.
     The torch and sheet tungsten electrode is developed for ultra-narrow gap TIG welding. With the application of the sheet tungsten electrode, the welding current of ultra-narrow gap TIG welding can be enhanced. In different welding current and arc length, the shape and current density distribution of arc current-carrying region of sheet tungsten electrode would be also analyzed by the low disturbance electrostatic probe. The arc root expands on sheet tungsten electrode to make the arc current-carrying region section approximate oval, and the distribution of current density and pressure are not ax symmetric; in contrast with the arc current-carrying region area of cylinder tungsten electrode, the arc current-carrying region area of sheet tungsten electrode is larger to get lower current density and pressure; the electromagnetic force of arc limits the enlargement of arc current-carrying region with enhancement of welding current, so the increment of arc current-carrying region area is smaller than that of welding current to make the current density rising; when the arc length reduced, the arc current-carrying region area of sheet tungsten electrode decreased to take higher current density, and the current density distribution close to ax symmetric distribution in short length arc.
     The insulating plate is developed for changing arc current-carrying region shape and current density to control the arc heating characteristic. The insulating plate can be placed on the both side of sheet tungsten electrode to constrict arc. And then the low disturbance electrostatic probe is applied to analyze variation of constricted arc current-carrying region shape and current density distribution for searching controlling mechanism of constricted arc with insulating plate. The results show the constricting action of insulating plate on arc root causes the arc current-carrying region pinch in the direction of constriction to make the arc current density increased; meanwhile, the insulating plate produce cooling effect on arc to enhance the potential gradient of current-carrying region; when the constricting action was intensified, the current density would rise further, and in the area near the center of current-carrying region section, the increment of current density is larger to make the heat of constricted arc concentrated.
     The constricted TIG arc with insulating plate is used for ultra-narrow gap welding. With different welding parameters, the heating characteristic of constricted TIG arc with insulating plate in ultra-narrow gap can be analyzed by variation of melted regions morphology and area of groove section. The results show the constricting action of insulating plate on arc root can restrict the arc in the bottom of square groove to intensify the heating effect on corner; the rising of constricted arc current density is beneficial to get good fusion on corner; when the welding parameters, including constricting level, arc length, welding current and welding speed, match with each other, the corner of square groove can get good fusion; in comparison with other ultra-narrow gap TIG welding, the constricted TIG arc with insulating plate would take larger penetration in ultra-narrow gap.
引文
[1]刘凤尧.不锈钢和钛合金活性剂焊接和熔深增加机理的研究.哈尔滨:哈尔滨工业大学博士学位论文,2003.
    [2]Zhang.R.H,Fan.D.Numerical simulation of effects of activation flux on flow patterns and weld penetration in A-TIG welding.Science and Technology of Welding and Joining.2007,12(1):15-23
    [3]M Tanaka,S Tashior,M Ushio. CO2-shielded arc as a high-intensity heat source Vacuum,2006,80(11—12):1195-1198.
    [4]吕世雄,孙清洁,范阳阳,杨世勤.电弧热丝TIG焊工艺特点分析.焊接,2007,10:40-43
    [5]史岩.电弧焊的高效节能研究.天津:天津大学硕士学位论文
    [6]尹士科等译.窄间隙焊接.北京:机械工业出版社,1988:1-22.
    [7]张富巨,罗传红.窄间隙焊及其新进展.焊接技术,2000,29(6):33-36.
    [8]Howard B Cary,Scott C Helzer著.现代焊接技术.北京:化学工业出版社,2010
    [9]郑韶先.焊剂带约束电弧超窄间隙焊接方法研究.兰州:兰州理工大学博士学位论文
    [10]周炼刚,张富巨,肖晓辉.超窄间隙焊接温度场的数值模拟及其特性.焊接技术,2002,31(12):40-42.
    [11]Terumi NAKAMURA, Kazuo HIRAOKA, Chiaki SHIGA. Development of Ultra-Narrow Gap GMA Welding Process. In:Recent Technology of Welding in Vessel and Pipe,2000:111-116.
    [12]那雪冬,朱亮.细晶粒钢的涂覆焊剂片超窄间隙焊.电焊机,2004,34(8):20-23.
    [13]张富巨,罗传红,等.超窄间隙超低线能量熔化极气保护自动弧焊方法与设备.中国专利,01138322.4,2001-12-20.
    [14]陆善平,李冬杰,李殿中,等.双层气流保护TIG焊接方法.焊接学报,2010,31(2):21-24
    [15]Leng Xuesong, Zhang Guangjun, Wu Lin.The characteristic of twin-electrode TIG coupling arc pressure. JOURNAL OF PHYSICS D,2006,39:1120-1126
    [16]C.V.Goncalves,L.O.Velarinho,A.Scotti,G.Guimaraes.Estimation of heat source and thermal efficiency in GTAW process by using inverse techniques.Journal of Materials Processing Technology,2006,172:42-51
    [17]韩勤.TIG,MIG/MAG及等离子弧焊精密自动焊接系统.焊接技术,2006,35(4):50-54
    [18]J.H.Devletian,D.Singh,W.E.Wood.Welding of HSLA-100 steel using ultra low carbon bainitic weld metal to eliminate preheating,ASM Trends in Welding Research,Proceedings of the 4th international conference, Gatlinburg,TN,ASM,1995,341-346
    [19]G.Spanos, D. W. Moon, R. W. Fonda, etal. Composition, Microstructure, Property relationships in an HSLA-100 weldment made with a new ultra low carbon consumable, Trends in Welding Research, Proceedings of the 5th international conference, Pine Mountain, Georgia, USA,1998, June 1-5,191-196.
    [20]陈剑虹译.不锈钢焊接冶金学及焊接性.北京:机械工业出版社,2008,120-121.
    [21]Janos Dobranszky,Andrea Bernath,Hilda Marton.Characterisation of the plasma shape of the TIG welding arc.Int.J.Microstructure and Materials Properties,2008,3(1):126-140
    [22]Kuang-hung Tseng,Chuh YuHsu. Performance of activated TIG process in austenitic stainless steel. Journal of Materials processing Technology,2011,211,503-512
    [23]G Ruckert,B Huneau,S Marya. Optimizing the design of silica coating for productivity gains during the TIG welding of 304L stainless steel. Materials and design,2007,28:2387-2393
    [24]高旗,赵明霞.浅谈钨极氩弧焊在长输管道打底焊中的应用.现代焊接,2006(2):43-44,46
    [25]刘古文,于辉,庞贵瑞等.管线预置自动焊设备及焊接工艺.焊接,2000,9:23-24
    [26]王朋,张富巨.窄间隙焊接技术及其新进展.电力建设,1999,8:12-14.
    [27]V.Malin, Momograph on Narrow-gap welding technology. Weld.Res. Counc. Bull.1987,323,53
    [28]T.Ito, S.Kawaguchi, O.Matsumoto, et al. Narrow groove gas shield tungsten arc welding process with hot wire filler addition in vertical and horizontal position for stainless steel pressure vessel. Proc.Int.Conf.,Vertical Welding,Dusseldorf,DVS,1981:35-39
    [29]T.Manzoli, E.Caccia. Narrow gap welding of heavy gauge steel nuclear components Welding Int,1989,5:417-423
    [30]M.Satoh,N.Sakamoto,H.Morihana,et al.Characteristic of narrow-gap TIG-arc welded joints of 10Ni-8Co steel for the pressure hull of deep submersible.Mitsubishi Heavy Industries Tech.Rev,1974,11(2):146-156.
    [31]G.E.Cook,P.C.Levick.Narrow gap welding with the hot wire GTA process.Welding J,1985,64(8):24-31
    [32]R.Hill,M. R.Graham, Narrow gap orbital welding, Advances in Welding process Int.Conf. Yorks,TWI,Paper2,1978,351-362.
    [33]Engelhard QHabip L M,Pellkofer D,et al. Optimization of residual welding stresses in austenitic steel piping:proof testing and numerical simulation of welding and post welding processes. Nuclear Engineering and Design,2000,198:141-151.
    [34]Howse D S, Lucas W. Investigation into arc constriction by active fluxes for tungsten inert gas welding. Science and technology of welding and joint,2000,5(3):189-193.
    [35]Egelhard G, Pellkofer D. Erfahrungen beim Orbitalschweiben in Kraftwerks-anlagen. Conference on Orbital GTAW Methods,erding,may 16-17,1995,88-100
    [36]A.Matsunawa,Beng,Meng.Arc behaviour、plate melting、and pressure balance of the molten pool in narrow grooves.In:International Conference Proceeding. London, 1979:301-310.
    [37]吴启东.窄间隙钨极焊接电弧的磁场控制.焊接学报,1983,4(12):171-176
    [38]Cicero M D,Starling, Paulo V, Marques, Paulo J, etal. Statististical modelling of narrow gap GTA welding with megnatic arc oscillation. Journal of materials processing technology,1995,51:37-49
    [39]D G Allen,D G Foster. Statistical process development of narrow gap TIG welding. Automated welding systems in manufacturing, IV int conf,Gateshead,TWI,1991,42.
    [40]何德孚.焊接与连接工程学导论.上海:上海交通大学出版社,1998.
    [41]赵博,范成磊,杨春利,孙清洁.窄间隙GMAW的研究进展.焊接,2008,2:11-15
    [42]Ono Hidehiko. Study on one side narrow gap MAG welding. Quarterly Journal of the Japan welding Society,1985,3(2):25-35
    [43]D H Mortvedt. Evaluation of the unstability and benefits of twist wire GMAW and FCAW narrow gap welding. Journal of ship production,1986,2(1):23-33
    [44]Kang Y H,Na S J. Characteristic of welding and arc signal in narrow groove gas metal arc welding using electromagnetic arc oscillation. Welding Journal,2003,82(5):93-99
    [45]Sugiani Y,Kobayshi Y,Murayama M. Development and application of automatic high speed rotation arc welding. Welding international,1991,5(7):577-583
    [46]王加友,国宏宾,杨峰.新型高速旋转电弧窄间隙MAG焊接.焊接学报,2005,26(10):65-67
    [47]周昀.高效单丝窄间隙活性气体保护焊接方法.中国专利,03129629,2003-07-03
    [48]白钢,朱余荣.窄间隙焊采用脉冲旋转喷射过渡MAG焊技术的开发.焊接技术,1998:27(1):2-4
    [49]Terumi NAKAMURA, Kazuo HIRAOKA, Chiaki SHIGA. Development of Ultra-Narrow Gap GMA Welding Process. In:Recent Technology of Welding in Vessel and Pipe,2000: Ⅲ-Ⅱ6.
    [50]Terumi NAKAMURA,Hiraoka Kazuo. Wire melting behaviour by non-steady heat conduction numerical analysis in gas mental arc welding. Quarterly Journal of the Japan Welding Society,2002,20(1):53-62
    [51]Terumi NAKAMURA,Hiraoka Kazuo. GMA welding process with synchronized control of current waveform and wire feed rate. Quarterly Journal of the Japan Welding Society,2002,20(2):246-258
    [52]郑韶先,朱亮.焊剂带约束电弧用于超窄间隙的焊接.机械工程学报,2009,45(2):219-223
    [53]郑韶先,朱亮.焊剂带约束电弧在超窄间隙中的加热特性.焊接学报,2008,28(5):57-64
    [54]朱亮,苗红丽,金将等.超窄间隙焊剂带约束电弧电压及电流波形特征.焊接学报,2010,31(8):85-88.
    [55]朱亮,金将,苗红丽等.焊剂带约束超窄间隙焊接母材熔化及熔池形成.焊接学报,2010,31(9):9-12.
    [56]冯志鹏.超窄间隙焊接焊剂带开发及焊接工艺试验.兰州:兰州理工大学硕士学位论文
    [57]朱亮,王洪涛,符平坡.钢轨对接超窄间隙焊接试验.焊接,2012,3:10-13
    [58]王洪涛.钢轨对接超窄间隙焊接工艺试验.兰州:兰州理工大学硕士学位论文.
    [59]K. Sampath. Constrains-based modeling enables successful development of a welding electrode specification for critical navy applications. Welding Journal,2005, 81(1):131-s-138-s
    [60]吴始栋.舰船先进结构材料的发展.材料开发与应用.1999,14(2):36-41
    [61]吴启东.钨极焊接电弧在窄间隙中的电场分布.焊接学报.1983,1(4):39-54
    [62]Satoru Asai. Using narrow-gap GTAW for power-generation equipment. Practical welding today,2003,2(7),3:1-3
    [63]Poly S. Excellent joint efficiency in GTAW hot wire narrow gap application.Tube and Pipe Technology,2006,2(19):195
    [64]张富臣,罗传红.窄间隙焊接技术中焊接方法特性的遗传.焊接技术.2002,8,31(4):8-10.
    [65]Yasuhiro BUTSUS AKI, Yoshihide MARUMOTO. Application of Oscillation Narrow Gap GTA Welding with hot Wire for Rotating Pipes.Recent Technology of Welding in Vessel and Pipe,2000:Ⅱ226-Ⅱ230.
    [66]Kouichi MITSUHATA, Jyunya TOYOTA.Application of Narrow-gap Oscillating GTA Welding Process with Hot Wire for Fixed Heavy Wall Pipes.Recent Technology of Welding in Vessel and Pipe,2000:Ⅱ226-Ⅱ230.
    [67]Satoru Asai.Using narrow-gap GTAW for power-generation equipment. Practical welding today,2003,2(7),3:1-3
    [68]Leng Xuesong, Zhang Guangjun, Wu Lin. Experimental study on improving welding efficiency of twin electrode TIG welding. Science and Technology of Welding and Joining,2006,11(5):550-554
    [69]Kobayashi,Yamada.Developnment of high efficiency twin arc TIG welding method. ⅡW DOC.Ⅻ-1669-01.
    [70]孙俊生,武传松.熔池表面形状对电弧电流密度分布的影响.物理学报,2000,49(12):2427-2432
    [71]武传松.焊接热过程和熔池形态.北京:机械工业出版社,2008,247-248
    [72]Christensen N,Davies V,Gjermunden K. Distribution of temperatures in arc welding. British weld.J.,1965,12(12):54-57
    [73]K T Shih. Anode current density in high-current pulsed arcs. J.Appl Phys,1972,43(12): 5002-5005
    [74]赵鹏生,王耀文.等离子焊接电弧电流密度分布模型.焊接学报,1991,12(3):182-188
    [75]D S Oh,Y S Kim and S M Cho.Derivation of current density distribution by arc pressure measurement in GTA welding. Science and technology of welding and joining,2005,4(10):442-446
    [76]范红刚,杨军,史耀武,雷永平.直流TIG焊接电弧阳极电流密度数值计算.西安交通大学学报,1997,31(4):77-82
    [77]O H Nestor. Heat intensity and current density distributions at the anode of high current,inert gas arcs. Journal of Applied Physics,1962,33(5):1638-1648
    [78]Fanara C, Vilarinho. Electrical characterization of atmospheric pressure arc plasmas. European Physical Journal D.2004, D28:241-251
    [79]L. O, Vilarinho, Optical emission spectroscopy, Internal report Cranfield University, Cranfield,2002
    [80]M.F. Thomton,Ph.D.thesis,Cranfield University,1993
    [81]Fanara C, Richardson I M. A Langmuir multi-probe system for the characterization of atmospheric pressure ac plasmas. European Physical Journal D.2001, D34:2715-2725.
    [82]李渊博,朱亮.低扰动静电探针对TIG电弧载流区的分析.焊接学报,2011,32(8):69-72
    [83]Baksht F G, Mitrofanov N K, Rybakov A B, etal. Probe diagnostics of strongly ionized inert-gas plasma at atmospheric pressure. Technical Physics,1998,43(6):660-663
    [84]Mason R C. Probe measurements on high pressure arcs.Physical Review.1937, 51(1):28-42.
    [85]Orlando Auciello, Deniel L Flamm. The diagnostics of plasma(Beijing:publishing house of electronics industry),1994
    [86]Smy P R. The use of Langmuir probes in the study of high pressure plasma. Advances In Physics,1976,25(5):517-553
    [87]项志遴,俞昌旋.高温等离子体诊断技术.上海:科学技术出版社,1982,27-36
    [88]安腾宏平,长谷川光雄著.焊接电弧现象.北京:机械工业出版社,1985
    [89]杨春利,林三宝等著.电弧焊基础.哈尔滨:哈尔滨工业大学出版社,2003
    [90]徐平坤,魏国钊.耐火材料新工艺技术.北京:冶金工艺出版社,2005
    [91]张文钺.焊接冶金学(基本原理).北京:机械工业出版社,2006
    [92]费文媛.陶瓷原料分析技术.北京:中国轻工业出版社,2012.
    [93]理查德J布鲁克.陶瓷工艺.北京:科学出版社,1999.
    [94]王超.陶瓷成型技术.北京:中国轻工业出版社,2012.
    [95]周玉.陶瓷材料学.北京:科学出版社,2004
    [96]李国一,徐玉松,王晓艳,高延敏.金属蚀刻技术.新材料,2009,2(3):20-23
    [97]杨丁.金属蚀刻技术.北京:国防工业出版社,2008
    [98]朱刘,甚微,郑家新.新型光致抗蚀剂在不锈钢标牌制作中的应用.材料与设备,1999,3
    [99]王善元.纤维增强复合材料.上海:中国纺织大学出版社,1998
    [100]吴启东.窄间隙磁控钨极氩弧焊炬合理结构的研究.焊接,1984,4:9-13
    [101]G A Fedorenko,G M Andreev. Efficiency of gas shielding in welding joints with deep and narrow gap. Welding Intenational,2010,7(12):533-539
    [102]M Dawy. Electrical properties and infrared studies of heated mica sheets. Egypt J,2002,1(25):137-152
    [103]单辉祖.材料力学.北京:高等教育出版社,1999
    [104]贾起芬,刘习军,李昀择.工程力学.北京:天津大学出版社,2002
    [105]Razer Y P, Gas discharge physics (springer-verlag,Berlin,1991)
    [106]Leandro Prevosto, Hector Kelly, Beatriz Mancinelli. An interpretation of Langmuir probe floating voltage signals in a cutting arc. Transactions on plasma science, 2009,37(6):1092-1098
    [107]B.E.Cherrington. The Use of Electrostatic Probes for Plasma Diagnostics-A Review. Plasma Chemistry and Plasma Processing,1982,2(2):113-140
    [108]Castro R M, Cirino G A, Verdonck P, etal. A comparative study of single and double Langmuir probe technique for RF plasma characterization. Plasma Phys, 1999,39(3):235-246
    [109]Climents R M and Smy P R 1973 J.Appl.Phys.44 3550
    [110]H N Olsen. Thermal and electrical properties of an Argon plasma. The physics of fluids,1959,2(6):614-623
    [111]朱祖芳.铝合金阳极氧化与表面处理技术.北京:化学工业出版社,2010
    [112]Fanara C. Sweeping electrostatic probes in atmospheric pressure arc plasmas part-I: general observations and characteristic curves. IEEE Transactions on Plasma. Science, 2005,33(3):1072-1081.
    [113]朱祖芳.铝合金表面处理磨层性能及测试.北京:化学工业出版社,2012
    [114]柳玉波.表面处理工艺大全.北京:中国计量出版社,1996
    [115]Prevosto L,Kelly H,Mancinelli B. On the use of sweeping Langmuir probes in cutting arc plasmas-Part Ⅱ:Interaption of the results. IEEE TRANSACTIONS ON PLASMA SCIENCE,2008,36(1):271-277
    [116]Hiroshi Nishikawa,Shinichiro Shobako,Masashi Ohta,etal. Heat input properties of hollow cathode arc as a welding welding heat source. European Physical Journal D.2005, D38:3451-3456
    [117]Leng Xuesong, Zhang Guangjun, Wu Lin. The characteristic of twin-electrode TIG coupling arc pressure. JOURNAL OF PHYSICS D,2006,39:1120-1126
    [118]Shinichiro Shoubako,Masashi Ohta,Takayoshi Ohji. Characteristic of Arc Column on Hollow Cathode Arc. Quarterly Journal of the Japan Welding Society,2005,2(23):
    [119]王怀刚,武传松,张明贤.小孔等离子弧焊接热场的有限元分析.焊接学报,2005,26(7):47-53
    [120]C J Allum. Power dissipation in the column of a TIG welding arc. J.Phys. D:Appl. Phys, 1983,16:2149-2165
    [121]Fanara C. Sweeping electrostatic probes in atmospheric pressure arc plasmas part-Ⅱ: Temperature determination. IEEE Transactions on Plasma. Science,2005,33(3):1082-1 092
    [122]J F Lancaster. Physics of welding.Pergoman press Inc,Maxwell House,Fairview park, Elmslord, New York,10523, USA
    [123]M L Malin,T W Eagar. Pressure produced by gas tungsten arcs. Metallurgical and Materials Transactions. B,1986,17(4):601-607
    [124]H. Maecker. Plasma stream produced by self-magnetic compression and its importance for the mechanism of high current arcs. Applied Scientific Research, Section B,1956,5(1):231-236
    [125]姜炜,徐滨士,吕辉耀,刘存龙.变极性等离子电弧压力的影响因素分析,焊接学报,2009,30(11):25-28
    [126]S S Ushkov,V I Mikhailov and L.V.Boikov. TIG narrow gap welding of Titanium Alloys. Ninth World Conference on Titanium,1754-1757
    [127]李国栋,栗卓新,魏琪,王英杰.氩-氦-二氧化碳混合气体电弧行为及其对焊缝成型的影响.材料工程,2007,3:38-41
    [128]Peter Berger,Helmut Hugel,Axel Hess,Rudolf Weber,Thomas Graf. Understanding of Humping Based on Conservation of Volumn flow. Physics Procedia,2011,12:232-240
    [129]Mendez P F,Eagar T W. Penetration and defect formation in high-current arc welding. Welding Journal,2003,82(10):296-306
    [130]Mendez P F,Eagar T W. Order of the magnitude scaling of complex engineering problems and its application to high productivity arc welding. Combridge:Massachusetts Institute of technology,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700