用户名: 密码: 验证码:
聚乙烯纳米铝复合电介质材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国以及全球电力的输送正朝高压、超高压方向发展。经济以及城市化的发展对电缆的需求量逐年增加。作为电力输送系统的一部分,电缆终端处的电场非常集中,击穿容易发生。电缆终端击穿失效是导致供电事故的主要因素之一。除了电缆终端以外,大功率发电机线棒、户外绝缘套管等的应力控制也是电力设备中非常值得关注的关键问题。具有高介电常数的材料可将电缆终端半导电屏蔽剥离处的高电场强度降至安全范围内,将高电位移向电缆末端,而不是集中在电缆屏蔽切断处附近,从而使电缆终端外绝缘电场分布趋于发散、均匀,确保电路输送安全。
     聚乙烯具有高的介电强度,非常低的电导,是用于生产电线电缆的优质绝缘材料。因聚乙烯在高频下具有非常低的介电损耗并具有优异的力学性能,更是最合适的高频电缆用绝缘材料。然而,聚乙烯的介电常数很低,在电缆终端处的应用受到了限制。为了拓展聚乙烯在电缆终端处的应用,必须增加它的介电常数。
     添加金属颗粒、导电纤维以及碳纳米管等是增加聚合物介电常数的重要手段。聚合物/导体复合材料是典型的逾渗体系,复合材料的介电常数反比于填充物的实际填充分数与临界填充分数(逾渗阈值)之差。因此,要得到高的介电常数就必须使得填充物的分数接近临界值而又不能高于临界值。如果填充分数合适,可以得到非常高的介电常数。然而,具有逾渗行为的复合材料的介电性能对材料的组成非常敏感,组成的轻微变化就会引起材料性能的很大变化,比如复合材料会在很小的浓度范围内发生由绝缘体到导体的转变,使材料失去作为电介质的价值,这给材料的生产以及材料性能指标的重现性带来了很大的挑战。
     在本文中,选择了一种自钝化的纳米铝为原材料,制备了具有较高介电常数的聚乙烯纳米铝复合材料。铝是一种自钝化金属,纳米颗粒经钝化后表面形成一层几纳米厚的氧化膜,这层氧化膜一方面可以阻止金属核的进一步氧化,还可以阻止颗粒之间形成类似金属的导电通路,保证材料在较高的填充体积下保持绝缘性能;纳米铝的其它优点是具有较低的密度,利于复合材料的加工,并且铝对于聚乙烯没有降解作用。
     本工作主要研究了以下几个基本问题:(1)聚乙烯纳米铝复合材料的介电性能与纳米铝含量以及施加交流电场频率的关系;(2)聚乙烯纳米铝复合材料的介电增强机理;(3)纳米铝的表面化学特征对复合材料微结构以及电学性质的影响;(4)聚乙烯纳米铝复合材料的微结构、电学性质以及流变性质之间的关联;(5)影响聚乙烯纳米铝复合材料的介电强度的因素以及提高介电强度的方法。
     (1)聚乙烯纳米铝复合材料的介电性能与纳米铝含量以及施加交流电场频率的关系。聚乙烯纳米铝复合材料的介电性能(介电常数与介电损耗)不仅与纳米颗粒的含量有关,还与测试的频率有关。大的介电行为的差别主要出现在低频区。在纳米颗粒含量较低的情况下,复合材料基本上没有表现出介电弥散现象,这是因为纳米颗粒的尺寸很小,少量纳米颗粒与聚合物基体间形成的界面可以被忽略。随着纳米颗粒含量增加,纳米颗粒与聚合物基体之间的有效界面面积增加,纳米颗粒之间的介质厚度变薄,造成了明显的界面空间电荷极化。当纳米颗粒的浓度超过24wt%时,低频区的介电参数(介电常数与介电损耗)随着纳米颗粒的增加而减少,这个现象可能是由三方面的原因造成的。一是溶剂残留或纳米颗粒的不完善堆积造成了微孔洞的存在;二是纳米颗粒在高浓度时出现了严重的团聚造成纳米颗粒与聚合物之间有效界面面积的减小;三是纳米颗粒的团聚造成等效氧化壳层厚度的增加。
     根据对复合材料介电参数的研究,发现聚乙烯纳米铝复合材料并没有表现出常规的聚合物金属复合材料所普遍拥有的介电逾渗现象。
     (2)聚乙烯纳米铝复合材料的介电增强机理、模型。将复合材料看作是由聚乙烯基体、大量金属核以及自钝化氧化层组成的等效电路,解释了聚乙烯纳米铝复合材料的介电常数与频率以及颗粒含量的关系。
     (3)纳米铝的表面化学对复合材料微结构以及电学性质的影响。纳米铝颗粒经过辛基硅烷表面处理以后,纳米颗粒在聚乙烯基体中的分散的到了显著改善,复合材料的介电性能得到了提高。根据逾渗理论,表面改性的和未改性的纳米颗粒复合材料的逾渗阈值均低于理论值,临界指数均高于根据理论计算的普适值。但纳米颗粒经过表面处理以后,复合材料具有较高的逾渗阈值与临界指数。聚乙烯纳米铝复合材料具有低于理论值的逾渗阈值是由于纳米颗粒的小尺寸以及彼此容易团聚的特性造成的。复合材料具有高与普适值的临界指数是因为纳米颗粒之间的接触电阻存在一定的分布造成的。逾渗阈值以及临界指数的差别均与纳米颗粒的表面处理以及表面处理引起的颗粒在聚合物基体中的分散改善有关。研究结果说明,纳米颗粒的表面处理使人为的控制纳米复合材料的介电性能变为可能。
     (4)聚乙烯纳米铝复合材料的微结构、电学性质以及流变性质之间的关联。研究显示,纳米复合材料的微结构、导电以及流变性质之间存在着很强的关联。纳米铝颗粒表面处理改性以后,复合材料具有高的流变逾渗阈值。纳米复合材料的电逾渗阈值要低于形成导电通路所需要的纳米颗粒的浓度,这是因为形成流变逾渗所要求的纳米颗粒团簇之间的距离要大于形成导电通路所要求的纳米颗粒之间的距离。
     (5)影响聚乙烯纳米铝复合材料的介电强度的因素及提高介电强度的方法。聚合物金属复合材料的介电强度是由金属颗粒的分布及分散情况决定的,与颗粒本身的尺寸没有必然的关系。颗粒的浓度超过14vol%,只有表面处理的纳米颗粒聚乙烯复合材料还保持一定的介电强度,微米复合材料、采用相容剂的纳米复合材料以及表面未处理的纳米颗粒复合材料都失去了介电强度。这一结果说明,通过表面化学处理,改善金属颗粒的分散以及提高颗粒与聚合物基体的相容性是提高聚合物金属复合材料的介电强度的有效手段。
     本论文的主要创新之处:
     1.通常的聚合物金属复合材料在高金属含量的情况下是导电材料。本文选择了一种自钝化的纳米金属铝颗粒作为填充剂,制备了具有较高介电常数的聚合物纳米复合材料,这种填充剂使得复合材料在高填充的情况下仍保持电介质材料的特性,拓展了聚合物金属复合材料的应用。
     2.在较高纳米铝含量的情况下,制备的聚乙烯复合材料仍保持较好的力学性能和介电强度。
The rapid development of economy around the world, especially in our country brings out the rapid increase of the demand of electric power, which leads the development of electric transmission and distribution systems to be directed forward the trends of high voltage (HV) or extra high voltage (EHV). And also, the quantitive and qualitive demands for power cables become larger and larger with the rapid urbanization process and with the operation condition growing severer and severer. Cable terminations are considered to occupy an important part of the electric transmission and distribution systems and also to be one of the weakest parts of electric transmission and distribution cable networks. At cable terminations, especially for medium and high voltage cables, the electric field has both radial and tangential components because of their complex configurations, which may be intensive enough to cause the surface discharge or flashover and finally cause the failure of them. Besides cable terminations, the stress control in bushings and the coils of motors and generators have attracted much attention of the investigators. The use of high-dielectric-constant materials has been strongly recommended in order to equalize the inhomogeneous distribution of electric field in the electric power apparatuses.
     Polyethylene is known to be one of the most widely used polymeric insulating materials. The high dielectric strength, very low electrical conductivity, low dielectric loss at high frequencies and remarkable mechanical properties allow it to be used as an outstanding insulation in wire and cable applications, particularly in high frequency cables. However, its low dielectric constant makes it impossible for PE to be used for electrical stress control in cable terminations. One effective method for expanding its application to cable terminations is to increase its dielectric constant.
     1111The common approach to increase the dielectric constant of a polymer, e.g. PE, is known to adopt metal particles, conductive fibers and carbon tubes. Polymer/conductor composites are classical percolation systems, in which the permittivity of a composite showing the percolation behavior is inversely proportional to the difference between the real filling volume fraction of fillers and the critical filling volume fraction (the threshold value of percolation). Hence, if high values of permittivity are needed for composite materials, the filling volume fraction of fillers should be similar to the critical value but not higher than it; if an appropriate value of the filling volume fraction is selected, then very high permittivity value of the composite material can be realized. However, the dielectric properties of the composites having the percolation characteristic are known to be quite sensitive to the constitution of the material; a little change in the constitution can produce significant changes in the performances of composites. A very low value of percolation threshold gives challenges to production of a composite and reproducibility of performance indices of the material.
     1111In our work, we have chosen aluminum (Al) nanoparticles as fillers. Al is a self-passivation metal, where the self-passivated oxide layer forms a thin insulating boundary around the surface of its metallic core, allowing the polyethylene/Al composites as a percolation system to have a high dielectric constant. In addition, Aluminum not only is low in density, but also has not any catalysis and degradation effects on polyethylene in contrast to copper, which leads polyethylene/Al nanocomposites to be a kind of the promising materials for application in cable terminations.
     In our work, we mainly focused on the following five scientific topics: (1) the filler concentration and frequency dependences of dielectric behaviors of PE/Al nanocomposites; (2) the mechanism/model for the higher dielectric constant of the PE/Al nanocomposites; (3) the influence of the chemistry characteristics of Al nanoparticle surface on the microstructure, electrical properties and rheological behaviors of PE/Al nanocomposites; (4) the correlation between rheological, electrical, and microstructure characteristics of PE/Al nanocomposites; (5) the factors influencing the dielectric strength of PE/Al nanocomposites and some methods used to improve the dielectric strength of the nanocompsites.
     (1) The filler concentration and frequency dependences of dielectric behaviors of PE/Al nanocomposites: The dielectric properties (dielectric permittivity and loss tangent) of PE/Al nanocomposites are dependent not only on the Al nanofiller concentration, but also on the measuring frequency. The significant differences of the dielectric behaviors are found in the extra-low frequency range of 0.1Hz to 10Hz. In the case of quite low loading levels, agglomerates can be hardly found and any dielectric dispersion can not be observed in the extra-low frequency range, which may be attributed to that the formation of the interfaces between Al nanoparticles and PE matrix can be still neglected because of the small number and extra-small diameter of the nanoparticles. The higher the nanofiller loading level, the larger the total effective area of the interfaces between the polymer matrix and the fillers, and the thinner the insulating spacers separating Al nanoparticles, which results in the significant increment of the interfacial space-charge polarization. The values of dielectric characteristics becomes lower again as the filler loading exceeds 24wt%, which may be ascribed to voiding from imperfect filler packing and solvent evaporation, the decrease of the effective area of the interface between polymer matrix and the nanofillers, the increase of the average thickness of the equivalent oxide shell of any Al nanofiller cluster, and the decrease of the volume fraction of the polymer matrix due to the increase of that of the nanofiller cluster. It is found that the dielectric permittivity of the PE/Al nanocomposites does not show any percolative characteristics which have been reported in classical polymer/conductor composites.
     (2) The mechanism/model for the higher dielectric constant of the PE/Al nanocomposites: PE/Al nanocomposites were modeled with a general equivalent electric circuit consisting of CPE, CAl, RAl, Co, Ro, Ci and Ri (CPE represents the average capacitance of PE domain between two electrodes; CAl, RAl are the equivalent average capacitances and ac resistances between the Al core and the internal interface of the oxide layer, respectively; Co, Ro are the equivalent average capacitance and ac resistance of the oxide layer, respectively; Ci, Ri are the equivalent average capacitance and ac resistance between nanoparticles or between nanoparticles and the electrodes, respectively). It has been found that the equivalent electric circuit can be used to clearly explain the filler concentration and frequency dependences of dielectric behaviors of PE/Al nanocomposites
     (3) The influence of the chemistry characteristics of Al nanoparticle surface on the microstructure, electrical properties and rheological behaviors of PE/Al nanocomposites: The surface modification of the nanoparticle has been shown to significantly improve the particle dispersion in the PE matrix. The percolation theory has been used to investigate the effect of the surface modification of Al nanofillers on the electrical conductivity of the nanocomposites. The value of percolation threshold for the PE nanocomposites containing octyl-trimethoxysilane-coated Al nanoparticles is higher than for those loaded with un-treated nanoparticles, while both of these values are lower than the predicted ones. The dc critical exponent values are lower for PE nanocomposites filled with un-treated Al nanoparticles than with octyl-trimethoxysilane-coated ones, while the values for these two cases are much higher than the predicted ones. It can be understood that the low values of percolation threshold of the nanocomposites may be related to the small size of the Al nanoparticles and their agglomeration inside the composites, and the much higher critical exponents of the nanocomposites could be ascribed to the nature of the inter-particle contact. The differences of threshold and critical exponent between the nanocomposites can be closely related to the fact that the surface modification can improve the dispersion of the nanoparticles in the polymer matrix. Our results also indicate that the surface modification makes it possible to easily control the values of dielectric permittivity in the comparatively wide range and also to provide an excellent approach able to considerably reduce the dielectric loss of the nanocomposites.
     (4) The correlation between rheological, electrical, and microstructure characteristics in PE/Al nanocomposites: A strong correlation between the time and concentration dependences of dc conductivity and the rheological properties has been observed in the different nanocomposite systems. The rheological threshold of the composites is smaller than the percolation threshold of electrical conductivity for both of the nanocomposite systems. The difference in percolation threshold is understood in terms of the smaller particle-particle distance required for electrical conduction as compared to that required to impede polymer mobility.
     (5) The factors influencing the dielectric strength of PE/Al nanocomposites and some methods used to improve the dielectric strength of the nanocompsites: Combined with the observation results on the microstructure of the nanocomposites, the main factor to determine the dielectric strength of the PE/Al nanocomposites is the particle dispersion properties and the externally-introduced charge carriers may only be the secondary factor. It has been also found that only the Al nanofiller surface-treated with the silane coupling agent makes it possible for the PE/Al nanocomposites to still keep the relatively higher breakdown strength even in the higher Al loading levels above 14vol%, which may be ascribed to the existence of very thin barriers of polymeric material between metallic clusters. The dielectric strength results of the macro- and nanocomposites hint at that the surface modification of the metal nanoparticle is surely necessary for preparing the useful polymer/metal composites with high dielectric permittivity and low dielectric loss but without any significant reduction of their dielectric breakdown strength.
     The innovations of this dissertation are listed as follows:
     1. It is known that the polymer/metal composites with high metal loading levels show the typical conductive behaviors. In this paper, a self-passivated Al has been chosen as fillers, and PE/Al nanocomposites were prepared for the development of a high permittivity material. It has been found that the composites with relatively high Al concentration have high dielectric constant while they still keep good electrical properties even in so high filler loadings. On the basis of this finding, we have expanded the applications of polymer/metal composites in this work.
     2. It has been found that the nanocomposites at high filler concentrations still keep good mechanical properties and breakdown strength, which is very important for practical applications.
引文
1. Njuguna B, Pielichowski K: Polymer nanocomposites for aerospace applications: Properties. Advanced Engineering Materials 2003, 5:769-778.
    2. Gauthier C, Chazeau L, Prasse T, Cavaille JY: Reinforcement effects of vapour grown carbon nanofibres as fillers in rubbery matrices. Composites Science and Technology 2005, 65:335-343.
    3. Gonon P, Boudefel A: Electrical properties of epoxy/silver nanocomposites. Journal of Applied Physics 2006, 99:024308.
    4. Feng QQ, Dang ZM, Li N, Cao XL: Preparation and dielectric property of Ag-PVA nano-composite. Materials Science and Engineering B-Solid State Materials for Advanced Technology 2003, 99:325-328.
    5. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH: Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 2003, 44:5893-5899.
    6. Tanaka T, Montanari GC, Mulhaupt R: Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, materialcharacterization and future applications. IEEE Transactions on Dielectrics and Electrical Insulation 2004, 11:763-784.
    7.雷清泉,范勇,王暄:纳米高聚物复合材料的结构特性、应用和发展趋势及其思考.电工技术学报2006, 21:1-7.
    8. Phang SW, Kuramoto N: Development and investigation of polyaniline micro/nanocomposites that possess moderate conductivity, dielectric and magnetic properties. Polymer Journal 2008, 40:25-32.
    9. Huijbregts LJ, Brom HB, Brokken-Zijp JCM, Kleinjan WE, Michels MAJ: Dielectric quantification of conductivity limitations due to nanofiller size in conductive powders and nanocomposites. Physical Review B 2008, 77: 075322.
    10. Hwang JH, Raj PM, Abothu IR, Yoon C, Iyer M, Jung HM, Hong JK, Tummala R: Temperature dependence of the dielectric properties of polymer composite based RF capacitors. Microelectronic Engineering 2008, 85:553-558.
    11. Kobayashi Y, Tanase T, Tabata T, Miwa T, Konno M: Fabrication and dielectric properties of the BaTiO3-polymer nano-composite thin films. Journal of the European Ceramic Society 2008, 28:117-122.
    12. Tomer V, Randall CA, Polizos G, Kostelnick J, Manias E: High- and low-field dielectric characteristics of dielectrophoretically aligned ceramic/polymer nanocomposites. Journal of Applied Physics 2008, 103:034115.
    13. Mdarhri A, Carmona F, Brosseau C, Delhaes P: Direct current electrical and microwave properties of polymer-multiwalled carbon nanotubes composites. Journal of Applied Physics 2008, 103:054303.
    14. Wu J, Schnettler A: Degradation assessment of nanostructured superhydrophobic insulating surfaces using multi-stress methods. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:73-80.
    15. Tuncer E, Sauers I, James DR, Ellis AR, Duckworth RC: Nanodielectric system for cryogenic applications: Barium titanate filled polyvinyl alcohol. IEEE Transactionson Dielectrics and Electrical Insulation 2008, 15:236-242.
    16. Tanaka T, Ohki Y, Ochi M, Harada M, Imai T: Enhanced partial discharge resistance of epoxy/clay nanocomposite prepared by newly developed organic modification and solubilization methods. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:81-89.
    17. Takala M, Karttunen M, Salovaara P, Kortet S, Kannus K, Kalliohaka T: Dielectric properties of nanostructured polypropylene-polyhedral oligomeric silsesquioxane compounds. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:40-51.
    18. Takada T, Hayase Y, Tanaka Y: Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:152-160.
    19. Tagami N, Okada M, Hirai N, Ohki Y, Tanaka T, Imai T, Harada M, Ochi M: Dielectric properties of epoxy/clay nanocomposites-effects of curing agent and clay dispersion method. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:24-32.
    20. Smith RC, Liang C, Landry M, Nelson JK, Schadler LS: The mechanisms leading to the useful electrical properties of polymer nanodielectrics. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:187-196.
    21. Singha S, Thomas MJ: Dielectric properties of epoxy nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:12-23.
    22. Singha S, Thomas MJ: Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz-1 GHz. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:2-11.
    23. Sarathi R, Sahu RK, Tanaka T: Understanding the hydrophobic characteristics of epoxy nanocomposites using wavelets and fractal technique. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:178-186.
    24. Reddy CC, Ramu TS: Polymer nanocomposites as insulation for HV DC cables - Investigations on the thermal breakdown. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:221-227.
    25. Ramirez I, Cherney E, Jayaram S, Gauthier M: Nanofilled silicone dielectrics prepared with surfactant for outdoor insulation applications. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:228-235.
    26. Ning S, Ramprasad R: Local properties at interfaces in nanodielectrics: An ab initio computational study. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:170-177.
    27. Murakami Y, Nemoto M, Okuzumi S, Masuda S, Nagao M, Hozumi N, Sekigpchi Y, Murata Y: DC conduction and electrical breakdown of MgO/LDPE nanocomposite. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:33-39.
    28. Maity P, Kasisomayajula SV, Parameswaran V, Basu S, Gupta N: Improvement in surface degradation properties of polymer composites due to pre-processed nanometric alumina fillers. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:63-72.
    29. Maity P, Basu S, Parameswaran V, Gupta N: Degradation of polymer dielectrics with nanometric metal-oxide fillers due to surface discharges. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:52-62.
    30. MacCrone RK, Nelson JK, Smith RC, Schadler LS: The use of electron paramagnetic resonance in the probing of the nano-dielectric interface. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:197-204.
    31. Lee KY, Kim KY, Han WY, H. PD: Thermal, electrical characteristics and morphology of poly(Ethylene-Co-Ethyl Acrylate)/CNT nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:205-213.
    32. Green CD, Vaughan AS, Mitchell GR, Liu T: Structure property relationships in polyethylene/montmorillonite nanodielectrics. IEEE Transactions on Dielectrics andElectrical Insulation 2008, 15:134-143.
    33. Fuse N, Ohki Y, Kozako M, Tanaka T: Possible mechanisms of superior resistance of polyamide nanocomposites to partial discharges and plasmas. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:161-169.
    34. Frechette MF, Larocque RY, Trudeau M, Veillette R, Rioux R, Pelissou S, Besner S, Javan M, Cole K, That MTT, et al: Nanostructured polymer microcomposites: A distinct class of insulating materials. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:90-105.
    35. Fleming RJ, Fleming RJ, Ammala A, Casey PS, Lang SB: Conductivity and space charge in LDPE containing nano- and micro-sized ZnO particles. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:118-126.
    36. Chen Z, Fothergill JC, Rowe SW: The effect of water absorption on the dielectric properties of epoxy nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:106-117.
    37. Bor-Kuan C, Du JU, Hou CW: The effects of chemical structure on the dielectric properties of polyetherimide and nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:127-133.
    38. Starke TKH, Johnston C, Grant PS: Evolution of percolation properties in nanocomposite films during particle clustering. Scripta Materialia 2007, 56:425-428.
    39. Huang XY, Jiang PK, Kim CN, Ke QQ: Polymer nanocomposite dielectrics. Progress in Chemistry 2007, 19:1776-1782.
    40. Liu WD, Zhu BK, Zhang J, Xu YY: Preparation and dielectric properties of polyimide/silica nanocomposite films prepared from sol-gel and blending process. Polymers for Advanced Technologies 2007, 18:522-528.
    41. Yudin VE, Otaigbe JU, Gladchenko S, Olson BG, Nazarenko S, Korytkova EN, Gusarov VV: New polyimide nanocomposites based on silicate type nanotubes: Dispersion, processing and properties. Polymer 2007, 48:1306-1315.
    42. Chen Y, Duan HL, Chen Y, Wang J: Prediction of complex dielectric constants of polymer-clay nanocomposites. Physics Letters A 2007, 372:68-71.
    43. Liu YL, Liu CS, Cho CI, Hwu MJ: Polyhedral oligomeric silsequioxane monolayer as a nanoporous interlayer for preparation of low-k dielectric films. Nanotechnology 2007, 18:225701.
    44. Li HY, Liu G, Liu B, Chen W, Chen ST: Dielectric properties of polylmide/Al2O3 hybrids synthesized by in-situ polymerization. Materials Letters 2007, 61:1507-1511.
    45. Hao N, Bohning M, Goering H, Schonhals A: Nanocomposites of polyhedral oligomeric phenethylsilsesquioxanes and poly(bisphenol A carbonate) as investigated by dielectric spectroscopy. Macromolecules 2007, 40:2955-2964.
    46. Hao N, Boehning M, Schoenhals A: Dielectric properties of nanocomposites based on polystyrene and polyhedral oligomeric phenethyl-silsesquioxanes. Macromolecules 2007, 40:9672-9679.
    47. Kang DH, Kim D, Yoon SH, Kim D, Barry C, Mead J: Properties and dispersion of EPDM/modified-organoclay nanocomposites. Macromolecular Materials and Engineering 2007, 292:329-338.
    48. Wang YZ, Chen WY, Yang CC, Lin CL, Chang FC: Novel epoxy nanocomposite of low D-k introduced fluorine-containing POSS structure. Journal of Polymer Science Part B-Polymer Physics 2007, 45:502-510.
    49. Motori A, Montanari GC, Saccani A, Patuelli F: Electrical conductivity and polarization processes in nanocomposites based on isotactic polypropylene and modified synthetic clay. Journal of Polymer Science Part B-Polymer Physics 2007, 45:705-713.
    50. Lin QH, Cohen SA, Gignac L, Herbst B, Klaus D, Simonyi E, Hedrick J, Warlaumont J, Lee HJ, Wu WL: Low dielectric constant nanocomposite thin films based on silica nanoparticle and organic thermosets. Journal of Polymer Science PartB-Polymer Physics 2007, 45:1482-1493.
    51. Nikonorova NA, Barmatov EB, Pebalk DA, Barmatova MV, Dominguez-Espinosa G, Diaz-Calleja R, Pissis P: Electrical properties of nanocomposites based on comb-shaped nematic polymer and silver nanoparticles. Journal of Physical Chemistry C 2007, 111:8451-8458.
    52. Capsal JF, Dantras E, Dandurand J, Lacabanne C: Electroactive influence of ferroelectric nanofillers on polyamide 11 matrix properties. Journal of Non-Crystalline Solids 2007, 353:4437-4442.
    53. Clayton LM, Knudsen B, Cinke M, Meyyappan M, Harmon JP: DC conductivity and interfacial polarization in PMMA/nanotube and PMMA/soot composites. Journal of Nanoscience and Nanotechnology 2007, 7:3572-3579.
    54. Clayton LM, Cinke M, Meyyappan M, Harmon JP: Dielectric properties of PMMA/soot nanocomposites. Journal of Nanoscience and Nanotechnology 2007, 7:2494-2499.
    55. Dutta K, De SK: Electrical conductivity and dielectric properties of SiO2 nanoparticles dispersed in conducting polymer matrix. Journal of Nanoparticle Research 2007, 9:631-638.
    56. Hallouet B, Wetzel B, Pelster R: On the dielectric and magnetic properties of nanocomposites. Journal of Nanomaterials 2007:Article ID 34527.
    57. Roy M, Nelson JK, MacCrone RK, Schadler LS: Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. Journal of Materials Science 2007, 42:3789-3799.
    58. Pissis P, Fragiadakis D: Dielectric studies of segmental dynamics in epoxy nanocomposites. Journal of Macromolecular Science Part B-Physics 2007, 46:119-136.
    59. Todorova Z, El-Tantawy F, Dishovsky N, Dimitrov R: Investigation of conductivity characteristics of nitrile butadiene rubber vulcanizates filled with semiconductingcarbide ceramic. Journal of Applied Polymer Science 2007, 103:2158-2165.
    60. Fang FF, Kim JH, Choi HJ, Seo Y: Organic/inorganic hybrid of polyaniline/BaTiO3 composites and their electrorheological and dielectric characteristics. Journal of Applied Polymer Science 2007, 105:1853-1860.
    61. Dias NL, de Aquino HA, Pereira DS, Rosa AH: Dielectric properties of thermosetting material nanocomposites. Journal of Applied Polymer Science 2007, 106:205-213.
    62. Sekhar KC, Nath R: Study of ferroelectric properties in sodium nitrite: poly(vinyl alcohol) nanocomposite films. Journal of Applied Physics 2007, 102:-.
    63. Huang XY, Jiang PK, Kim CU: Electrical properties of polyethylene/aluminum nanocomposites. Journal of Applied Physics 2007, 102:124103.
    64. Dutta K, De SK: Double dielectric relaxations in SnO2 nanoparticles dispersed in conducting polymer. Journal of Applied Physics 2007, 102:084110.
    65. Xu JW, Wong CP: Low-loss percolative dielectric composite. Applied Physics Letters 2005, 87:082907.
    66. Mohanraj GT, Dey PK, Chaki TK, Chakraborty A, Khastgir D: Effect of temperature, pressure, and composition on DC resistivity and AC conductivity of conductive styrene-butadiene rubber-particulate metal alloy nanocomposites. Polymer Composites 2007, 28:696-704.
    67. Gross S, Camozzo D, Di Noto V, Armelao L, Tondello E: PMMA: A key macromolecular component for dielectric low-kappa hybrid inorganic-organic polymer films. European Polymer Journal 2007, 43:673-696.
    68. Tjong SC, Liang GD: Electrical behavior of high density polyethylene/ZnO nano-composites. E-Polymers 2007:p1.
    69. Dang ZM, Xu HP, Wang HY: Significantly enhanced low-frequency dielectric permittivity in the BaTiO3/poly(vinylidene fluoride) nanocomposite. Applied Physics Letters 2007, 90:012901.
    70. Biswas A, Bayer IS, Karulkar PC, Tripathi A, Avasthi DK, Norton MG, Szczech JB: Nanostructured barium titanate composites for embedded radio frequency applications. Applied Physics Letters 2007, 91:212902.
    71. Gun'ko VM, Zarko VI, Goncharuk EV, Andriyko LS, Turov VV, Nychiporuk YM, Leboda R, Skubiszewska-Zieba J, Gabchak AL, Osovskii VD, et al: TSDC spectroscopy of relaxational and interfacial phenomena. Advances in Colloid and Interface Science 2007, 131:1-89.
    72. Kim P, Jones SC, Hotchkiss PJ, Haddock JN, Kippelen B, Marder SR, Perry JW: Phosphonic acid-modiried barium titanate polymer nanocomposites with high permittivity and dielectric strength. Advanced Materials 2007, 19:1001-+.
    73. Shen Y, Lin YH, Nan CW: Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Advanced Functional Materials 2007, 17:2405-2410.
    74. Liang G, Tjong SC: Electrical conducting behavior of polyethylene composites filled with self-passivated aluminum nanoparticles and carbon nanotubes. Advanced Engineering Materials 2007, 9:1014-1017.
    75. Dutta K, De SK: High dielectric permittivity in silica-polyaniline nanocomposites. Journal of Nanoscience and Nanotechnology 2006, 6:499-504.
    76. Hong JI, Schadler LS, Siegel RW, Martensson E: Rescaled electrical properties of ZnO/low density polyethylene nanocomposites. Applied Physics Letters 2003, 82:1956-1958.
    77. Bergman DJ, Stroud D: The Physical Properties of Macroscopically Inhomogeneous Media. Solid State Physics 1992, 46:148-270.
    78. Kusy RP: Influence of particle size ratio on the continuity of aggregates. Journal of Applied Physics 1977, 48:5301-5305
    79. Dey A, De S, De A, De SK: Characterization and dielectric properties of polyaniline-TiO2 nanocomposites. Nanotechnology 2004, 15:1277-1283.
    80. Rubin Z, Sunshine SA, Heaney MB, Bloom I, Balberg I: Critical behavior of the electrical transport properties in a tunneling-percolation system. Physical Review B 1999, 59:12196-12199.
    81. Chiteme C, McLachlan DS: ac and dc conductivity, magnetoresistance, and scaling in cellular percolation systems. Physical Review B 2003, 67:024206.
    82. Feng S, Halperin BI, Sen PN: Transport properties of continuum systems near the percolation threshold. Phys Rev B 1987, 35:197–214.
    83. Cao Y, Irwin PC: The electrical conduction in polyimide nanocomposites. In Conference on Electrical Insulation and Dielectric Phenomena, 2003 Annual Report Albuquerque, New Mexico, USA. IEEE Dielectrics and Insulation Society; 2003: 116-119.
    84. Cao Y, Irwin PC, Younsi K: The future of nanodielectrics in the electrical power industry. IEEE Transactions on Dielectrics and Electrical Insulation 2004, 11:797-807.
    85.李吉晓,张冶文,夏钟福,秦晓岿,彭宗仁:空间电荷在聚合物老化和击穿过程中的作用.科学通报2000, 45:2469-2475.
    86. Boggs S: A rational consideration of space charge. IEEE Electrical Insulation Magazine 2004, 20:22-27.
    87. Montanari GC, Fabiani D, Palmieri F: Modification of electrical properties and performance of EVA and PP insulation through nanostructure by organophilic silicates. IEEE Transactions on Dielectrics and Electrical Insulation 2004, 11:754-762.
    88. Auckland DW, Su W, Varlow BR: Nonlinear fillers in electrical insulation. IEE Proceedings-Science Measurement and Technology 1997, 144:127-133.
    89. Khalil MS, Cherifi A, Toureille A, Reboul JP: Influence of BaTiO3 additive and electrode material on space-charge formation in polyethylene. Evidence from thermal step space-charge measurements. IEEE Transactions on Dielectrics andElectrical Insulation 1996, 3:743-746.
    90. Fleming RJ, Pawlowski T, Ammala A, Casey PS, Lawrence K: Electrical conductivity and space charge in LDPE containing TiO2 nanoparticles. IEEE Transactions on Dielectrics and Electrical Insulation 2005, 12:745-753.
    91. Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R, Zenger W: Polymer nanocomposite dielectrics - The role of the interface. IEEE Transactions on Dielectrics and Electrical Insulation 2005, 12:629-643.
    92. Lewis TJ: Interfaces: nanometric dielectrics. Journal of Physics D-Applied Physics 2005, 38:202-212.
    93. Lewis TJ: Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Transactions on Dielectrics and Electrical Insulation 2004, 11:739-753.
    94. Nelson JK, Hu Y: Nanocomposite dielectrics - properties and implications. Journal of Physics D-Applied Physics 2005, 38:213-222.
    95. Ma DL, Hugener TA, Siegel RW, Christerson A, Martensson E, Onneby C, Schadler LS: Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites. Nanotechnology 2005, 16:724-731.
    96. Cho SD, Jang KW, Hyun JG, Lee S, Paik KW, Kim H, Kim JH: Epoxy/BaTiO3 comnosite films and pastes for high dielectric constant and low-tolerance embedded capacitors fabrication in organic substrates. IEEE Transactions on Electronics Packaging Manufacturing 2005, 28:297-303.
    97. Adikary SU, Chan HLW, Choy CL, Sundaravel B, Wilson IH: Characterisation of proton irradiated Ba0.65Sr0.35TiO3/P(VDF-TrFE) ceramic-polymer composites. Composites Science and Technology 2002, 62:2161-2167.
    98. Qi L, Lee BI, Chen SH, Samuels WD, Exarhos GJ: High-dielectric-constant silver-epoxy composites as embedded dielectrics. Advanced Materials 2005, 17:1777-1781.
    99. Zhang SH, Zhang NY, Huang C, Ren KL, Zhang QM: Microstructure andelectromechanical properties of carbon nanotube/poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) composites. Advanced Materials 2005, 17:1897-1901.
    100. Wang L, Dang ZM: Carbon nanotube composites with high dielectric constant at low percolation threshold. Applied Physics Letters 2005, 87:042903.
    101. Kinoshita K, Yamaji A: Grain size effects on dielectric properties in barium titanate ceramics. Journal of Applied Physics 1976, 47:371~373.
    102. Chattopadhyayv S, Ayyub P, Palkar VR, Multani M: Size induced diffuse phase transition in the nanometer ferroelectric BaTiO3. Phys Rev B 1995, 52:13177-13183.
    103. Arlt G, Hennings D, With dG: Dielectric properties of fine-grained barium titanate ceramics. Journal of Applied Physics 1985, 58:1619-1625
    104.王岚,党智敏:碳纳米管填充的高介电常数聚合物基复合电介质材料.电工技术学报2006, 21:24-28.
    105. Zhang QM, Li HF, Poh M, Xia F, Cheng ZY, Xu HS, Huang C: An all-organic composite actuator material with a high dielectric constant. Nature 2002, 419:284-287.
    106. Li JY, Huang C, Zhang QM: Enhanced electromechanical properties in all-polymer percolative composites. Applied Physics Letters 2004, 84:3124-3126.
    107. Huang C, Zhang QM, Li JY, Rabeony M: Colossal dielectric and electromechanical responses in self-assembled polymeric nanocomposites. Applied Physics Letters 2005, 87:182901.
    108. Ramesh S, Shutzberg BA, Huang C, Jie G, Giannelis EP: Dielectric nanocomposites for integral thin film capacitors: materials design, fabrication and integration issues. IEEE Transactions on Advanced Packaging 2003, 26:17-24.
    109. Kempa T, Carnahan D, Olek M, Correa M, Giersig M, Cross M, Benham G, Sennett M, Ren Z, Kempa K: Dielectric media based on isolated metallic nanostructures.Journal of Applied Physics 2005, 98:034310.
    110. Kozako M, Fuse N, Ohki Y, Okamoto T, Tanaka T: Surface degradation of polyamide nanocomposites caused by partial discharges using IEC(b) electrodes. IEEE Transactions on Dielectrics and Electrical Insulation 2004, 11:833-839.
    111. Tanaka T, Kozako M, Fuse N, Ohki Y: Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Transactions on Dielectrics and Electrical Insulation 2005, 12:669-681.
    1. Huang C, Zhang QM, Li JY, Rabeony M: Colossal dielectric and electromechanical responses in self-assembled polymeric nanocomposites. Applied Physics Letters 2005, 87:182901.
    2. Huang XY, Jiang PK, Kim CU, Ke QQ: Polymer nanocomposite dielectrics. Progress in Chemistry 2007, 19:1776-1782.
    3. Huang XY, Jiang PK, Kim CU: Electrical properties of polyethylene/aluminum nanocomposites. Journal of Applied Physics 2007, 102:124103.
    4. Xu JW, Wong CP: Low-loss percolative dielectric composite. Applied Physics Letters 2005, 87:082907.
    5. Nelson PN, Hervig HC: High Dielectric Constant Materials For Primary Voltage Cable Terminations. IEEE Transactions on Power Apparatus and Systems 1984,PAS-103:3211-3216.
    6. Shen Y, Yue ZX, Li M, Nan CW: Enhanced initial permeability and dielectric constant in a double-percolating Ni0.3Zn0.7Fe1.95O4-Ni-Polymer composite. Advanced Functional Materials 2005, 15:1100-1103.
    7. Hong JI, Schadler LS, Siegel RW, Martensson E: Rescaled electrical properties of ZnO/low density polyethylene nanocomposites. Applied Physics Letters 2003, 82:1956-1958.
    8. Dakin TW: Conduction and polarization mechanisms and trends in dielectric. Electrical Insulation Magazine, IEEE 2006, 22:11-28.
    9. Ramesh S, Shutzberg BA, Huang C, Gao J, Giannelis EP: Dielectric nanocomposites for integral thin film capacitors: Materials design, fabrication, and integration issues. Ieee Transactions on Advanced Packaging 2003, 26:17-24.
    10. Qi L, Lee BI, Chen SH, Samuels WD, Exarhos GJ: High-dielectric-constant silver-epoxy composites as embedded dielectrics. Advanced Materials 2005, 17:1777-1781.
    11. Pelster R, Simon U: Nanodispersions of conducting particles: preparation, microstructure and dielectric properties. Colloid and Polymer Science 1999, 277:2-14.
    12. Gonon P, Boudefel A: Electrical properties of epoxy/silver nanocomposites. Journal of Applied Physics 2006, 99:024308.
    13. Ueki MM, Zanin M: Influence of additives on the dielectric strength of high-density polyethylene. IEEE Transactions on Dielectrics and Electrical Insulation 1999, 6:876-881.
    14. Ma DL, Hugener TA, Siegel RW, Christerson A, Martensson E, Onneby C, Schadler LS: Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites. Nanotechnology 2005, 16:724-731.
    15. Khalil MS: The role of BaTiO3 in modifying the de breakdown strength of LDPE.IEEE Transactions on Dielectrics and Electrical Insulation 2000, 7:261-268.
    16. Kim S, Kavitha D: Identification of pyrolysis reaction model of linear low density polyethylene (LLDPE). Chemistry Letters 2006, 35:446-447.
    17. Lee JY, Liao YG, Nagahata R, Horiuchi S: Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process. Polymer 2006, 47:7970-7979.
    18. Schadler LS: in Nanocomposite Science and Technology Weinheim: Wiley-VCH 2003.
    1. Ma DL, Hugener TA, Siegel RW, Christerson A, Martensson E, Onneby C, Schadler LS: Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites. Nanotechnology 2005, 16:724-731.
    2. Balazs AC, Emrick T, Russell TP: Nanoparticle polymer composites: Where two small worlds meet. Science 2006, 314:1107-1110.
    3. Nelson JK, Hu Y: Nanocomposite dielectrics - properties and implications. Journal of Physics D-Applied Physics 2005, 38:213-222.
    4. Lewis TJ: Interfaces: nanometric dielectrics. Journal of Physics D-Applied Physics 2005, 38:202-212.
    5. Lewis TJ: Interfaces are the dominant feature of dielectrics at the nanometric level. IEEETransactions on Dielectrics and Electrical Insulation 2004, 11:739-753.
    6. Roy M, Nelson JK, MacCrone RK, Schadler LS: Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. Journal of Materials Science 2007, 42:3789-3799.
    7. Pelster R, Simon U: Nanodispersions of conducting particles: preparation,microstructure and dielectric properties. Colloid and Polymer Science 1999, 277:2-14.
    8. Hallouet B, Wetzel B, Pelster R: On the dielectric and magnetic properties of nanocomposites. Journal of Nanomaterials 2007:Article ID 34527.
    9. Hallouet B, Pelster R: 3D-simulation of topology-induced changes of effective permeability and permittivity in composite materials. Journal of Nanomaterials 2007:Article ID 80814.
    10. Maity P, Kasisomayajula SV, Parameswaran V, Basu S, Gupta N: Improvement in surface degradation properties of polymer composites due to pre-processed nanometric alumina fillers. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:63-72.
    11. Ramirez I, Cherney E, Jayaram S, Gauthier M: Nanofilled silicone dielectrics prepared with surfactant for outdoor insulation applications. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:228-235.
    12. Roy M, Nelson JK, MacCrone RK, Schadler LS, Reed CW, Keefe R, Zenger W: Polymer nanocomposite dielectrics - The role of the interface. IEEE Transactions on Dielectrics and Electrical Insulation 2005, 12:629-643.
    13. Tanaka T, Kozako M, Fuse N, Ohki Y: Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Transactions on Dielectrics and Electrical Insulation 2005, 12:669-681.
    14. Tanaka T, Ohki Y, Ochi M, Harada M, Imai T: Enhanced partial discharge resistance of epoxy/clay nanocomposite prepared by newly developed organic modification and solubilization methods. IEEE Transactions on Dielectrics and Electrical Insulation 2008, 15:81-89.
    15. Dakin TW: Conduction and polarization mechanisms and trends in dielectric. Electrical Insulation Magazine, IEEE 2006, 22:11-28.
    16. O'Konski CT: Dielectric Properties of Sodium, Potassium and AmmoniumBicarbonates. Journal of American Chemistry Society 1951, 73:5093-5096.
    17. Mary B, Dubois C, Carreau PJ, Brousseau P: Rheological properties of suspensions of polyethylene-coated aluminum nanoparticles. Rheologica Acta 2006, 45:561-573.
    18. Gromov AA, Forter-Barth U, Teipel U: Aluminum nanopowders produced by electrical explosion of wires and passivated by non-inert coatings: Characterisation and reactivity with air and water. Powder Technology 2006, 164:111-115.
    19. Gertsman VY, Kwok QSM: TEM investigation of nanophase aluminum powder. Microscopy and Microanalysis 2005, 11:410-420.
    20. Kwon YS, Gromov AA, Ilyin AP, Rim GH: Passivation process for superfine aluminum powders obtained by electrical explosion of wires. Applied Surface Science 2003, 211:57-67.
    21. Timothy JC, Gurcan A, Shuji O, Rajiv KK, Aiichiro N, Priya V: Oxidation of aluminum nanoclusters. Physical Review B (Condensed Matter and Materials Physics) 2005, 71:205413.
    22. Sako S, Ohshima K, Fujita T: Surface Oxide Film of Metallic Small Particle Journal of The Physical Society of Japan 1990, 59:662-666
    23. Ingemar Olefjord, Nylund A: Surface analysis of oxidized aluminium. 2. Oxidation of aluminium in dry and humid atmosphere studied by ESCA, SEM, SAM and EDX. Surface and Interface Analysis 1994, 21:290-297.
    24. Anders Nylund, Olefjord I: Surface analysis of oxidized aluminium. 1. Surface analysis of oxidized aluminium. 1. Hydration of Al2O3 and decomposition of Al(OH)3 in a vacuum as studied by ESCA. Surface and Interface Analysis 1994, 21:283-289.
    25. Balberg I: Tunneling and nonuniversal conductivity in composite materials. Physical Review Letters 1987, 59:1305.
    26. Rubin Z, Sunshine SA, Heaney MB, Bloom I, Balberg I: Critical behavior of the electrical transport properties in a tunneling-percolation system. Physical Review B1999, 59:12196.
    27. Huang XY, Jiang PK, Kim CN, Ke QQ: Polymer nanocomposite dielectrics. Progress in Chemistry 2007, 19:1776-1782.
    28. Huang XY, Jiang PK, Kim CU: Electrical properties of polyethylene/aluminum nanocomposites. Journal of Applied Physics 2007, 102:124103.
    29. Soloukhin VA, Brokken-Zijp JCM, With Gd: Conductive ATO-acrylate nanocomposite hybrid coatings: Experimental results and modeling. Journal of Polymer Science Part B: Polymer Physics 2007, 45:2147-2160.
    30. Fisch R, Harris AB: Critical behavior of random resistor networks near the percolation threshold. Physical Review B 1978, 18:416.
    31. McLachlan DS, Sauti G: The AC and DC conductivity of nanocomposites. Journal of Nanomaterials 2007:Article ID 30389.
    32. McLachlan DS, Blaszkiewicz M, Newnham RE: Electrical Resistivity of Composites. Journal of the American Ceramic Society 1990, 73:2187-2203.
    33. Gonon P, Boudefel A: Electrical properties of epoxy/silver nanocomposites. Journal of Applied Physics 2006, 99:024308.
    34. Roberts JN, Schwartz LM: Grain consolidation and electrical conductivity in porous media. Physical Review B 1985, 31:5990.
    35. Kusy RP: Influence of particle size ratio on the continuity of aggregates. Journal of Applied Physics 1977, 48:5301-5305.
    36. Angelos M, Turner DT: Influence of Particle Size on the Electrical Resistivity of Compacted Mixtures of Polymeric and Metallic Powders. Journal of Applied Physics 1971, 42:614-618.
    37. Balberg I, Anderson CH, Alexander S, Wagner N: Excluded volume and its relation to the onset of percolation. Physical Review B 1984, 30:3933.
    38. Balberg I: Excluded-volume explanation of Archie's law. Physical Review B 1986, 33:3618.
    39. Clerc JP, Giraud G, Laugier JM, Luck JM: The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models. Advances in Physics 1990, 39:191 - 309.
    40. Youngs IJ: Exploring the universal nature of electrical percolation exponents by genetic algorithm fitting with general effective medium theory. Journal of Physics D-Applied Physics 2002, 35:3127-3137.
    41. Kogut PM, Straley JP: Distribution-induced non-universality of the percolation conductivity exponents. Journal of Physics C: Solid State Phys 1979, 11:2151-2159
    42. Halperin BI, Feng S, Sen PN: Differences between Lattice and Continuum Percolation Transport Exponents. Physical Review Letters 1985, 54:2391.
    43. Feng S, Halperin BI, Sen PN: Transport properties of continuum systems near the percolation threshold. Physical Review B 1987, 35:197.
    44. Stanley HE: Cluster shapes at the percolation threshold: and effective cluster dimensionality and its connection with critical-point exponents. Journal of Physics A: Mathematical and General 1977:L211.
    45. Coniglio A: Cluster structure near the percolation threshold. Journal of Physics A: Mathematical and General 1982:3829.
    46. Pike GE, Seager CH: Electrical properties and conduction mechanisms of Ru-based thick-film (cermet) resistors. Journal of Applied Physics 1977, 48:5152-5169.
    47. Balberg I, Azulay D, Toker D, Millo O: Percolation and tunneling in composite materials. International Journal of Modern Physics B 2004, 18:2091-2121.
    1. Huang XY, Jiang PK, Kim CU, Ke QQ: Polymer nanocomposite dielectrics. Progress in Chemistry 2007, 19:1776-1782.
    2. Huang XY, Jiang PK, Kim CU: Electrical properties of polyethylene/aluminum nanocomposites. Journal of Applied Physics 2007, 102:124103
    3. Bhattacharya SK, Ed.: Metal-filled polymers: properties and applications. New York: Marcel Dekker 1986.
    4. Shen Y, Lin YH, Li M, Nan CW: High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Advanced Materials 2007, 19:1418-1422.
    4. Shen Y, Lin YH, Nan CW: Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell.structured particles. Advanced Functional Materials 2007, 17:2404-2410.
    6. Laurent C, Kay E, Souag N: Dielectric breakdown of polymer films containing metal clusters. Journal of Applied Physics 1988, 64:336-342.
    7. Balazs AC, Emrick T, Russell TP: Nanoparticle polymer composites: Where two small worlds meet. Science 2006, 314:1107-1110.
    8. Lee JY, Su KE, Chan EP, Zhang QL, Ernrick T, Crosby AJ: Impact of surface.modified nanoparticles on glass transition temperature and elastic modulus of polymer thin films. Macromolecules 2007, 40:7754-7757.
    9. Wei HF, Hsiue GH, Liu CY: Surface modification of multi.walled carbon nanotubes by a sol.gel reaction to increase their compatibility with PMMA resin. Composites Science and Technology 2007, 67:1018-1026.
    10. Durmus A, Kasgoz A, Macosko CW: Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology. Polymer 2007, 48:4492-4502.
    11. Durmus A, Woo M, Kasgoz A, Macosko CW, Tsapatsis M: Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: Structural, mechanical and barrier properties. European Polymer Journal 2007, 43:3737-3749.
    12. Ren J, Silva AS, Krishnamoorti R: Linear Viscoelasticity of Disordered Polystyrene.Polyisoprene Block Copolymer Based Layered.Silicate Nanocomposites. Macromolecules 2000, 33:3739-3746.
    13. Bartholome C, Beyou E, Bourgeat.Lami E, Cassagnau P, Chaumont P, David L, Zydowicz N: Viscoelastic properties and morphological characterization of silica/polystyrene nanocomposites synthesized by nitroxide.mediated polymerization. Polymer 2005, 46:9964-9973.
    14. Kota AK, Cipriano BH, Duesterberg MK, Gershon AL, Powell D, Raghavan SR, Bruck HA: Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 2007, 40:7400-7406.
    14. Kota AK, Cipriano BH, Powell D, Raghavan SR, Bruck HA: Quantitative characterization of the formation of an interpenetrating phase composite in polystyrene from the percolation of multiwalled carbon nanotubes. Nanotechnology 2007, 18:505705.
    16. Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI: Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity. Macromolecules 2004, 37:9048-9054.
    17. Kharchenko SB, Douglas JF, Obrzut J, Grulke EA, Migler KB: Flow.induced properties of nanotube.filled polymer materials. Nat Mater 2004, 3:564-568.
    18. Chausson S: Melt rheology of organoclay and fumed silica nanocomposites. Polymer 2008, 49:2183-2196.
    19. Vermant J, Ceccia S, Dolgovskij MK, Maffettone PL, Macosko CW: Quantifying dispersion of layered nanocomposites via melt rheology. Journal of Rheology 2007, 51:429-450.
    20. Balberg I, Azulay D, Toker D, Millo O: Percolation and tunneling in composite materials. International Journal of Modern Physics B 2004, 18:2091-2121.
    21. Liu YG, Bo SQ, Zhu YJ, Zhang WH: Determination of molecular weight andmolecular sizes of polymers by high temperature gel permeation chromatography with a static and dynamic laser light scattering detector. Polymer 2003, 44:7209-7220.
    
    1. Roberts A, Roberts A: Stress grading for high voltage motor and generator coils. Electrical Insulation Magazine, IEEE 1995, 11:26-31.
    2. Nelson PN, Hervig HC: High Dielectric Constant Materials For Primary Voltage Cable Terminations. IEEE Transactions on Power Apparatus and Systems 1984, PAS-103:3211-3216.
    3. Chen G, Davies AE: The influence of defects on the short-term breakdown characteristics and long-term dc performance of LDPE insulation. IEEE Transactions on Dielectrics and Electrical Insulation 2000, 7:401-407.
    4. Ma DL, Hugener TA, Siegel RW, Christerson A, Martensson E, Onneby C, Schadler LS: Influence of nanoparticle surface modification on the electrical behaviour of polyethylene nanocomposites. Nanotechnology 2005, 16:724-731.
    5. Zheng Z, Boggs S: Defect tolerance of solid dielectric transmission class cable. IEEE Electrical Insulation Magazine 2005, 21:35-41.
    6. Bostrom JO, Marsden E, Hampton RN, Nilsson U, Lennartsson H: Electrical stress enhancement of contaminants in XLPE insulation used for power cables. IEEEElectrical Insulation Magazine 2003, 19:6-12.
    7. Beale PD, Duxbury PM: Theory of dielectric breakdown in metal-loaded dielectrics. Physical Review B 1988, 37:2785-2791.
    8. Huang XY, Jiang PK, Kim CU: Electrical properties of polyethylene/aluminum nanocomposites. Journal of Applied Physics 2007, 102:124103.
    9. Khalil MS: The role of BaTiO3 in modifying the de breakdown strength of LDPE. IEEE Transactions on Dielectrics and Electrical Insulation 2000, 7:261-268.
    10. B. V. Ceres JMS: Dependence of electrical breakdown on spherulite size in isotactic polypropylene. Journal of Applied Polymer Science 1984, 29:4183-4197.
    11. Hosier IL, Vaughan AS, Swingler SG: The effects of measuring technique and sample preparation on the breakdown strength of polyethlyene. IEEETransactions on Dielectrics and Electrical Insulation 2002, 9:353-361.
    12. Hosier IL, Vaughan AS, Swingler SG: On the effects of morphology and molecular composition on the electrical strength of polyethylene blends. Journal of Polymer Science Part B-Polymer Physics 2000, 38:2309-2322.
    13. Hosier IL, Vaughan AS, Swingler SG: Structure-property relationships in polyethylene blends: the effect of morphology on electrical breakdown strength. Journal of Materials Science 1997, 32:4523-4531.
    14. Dodd SJ, Champion JV, Zhao Y, Vaughan AS, Sutton SJ, Swingler SG: Influence of morphology on electrical treeing in polyethylene blends. IEE Proceedings-Science Measurement and Technology 2003, 150:58-64.
    15. Vaughan AS, Zhao Y, Barre LL, Sutton SJ, Swingler SG: On additives, morphological evolution and dielectric breakdown in low density polyethylene. European Polymer Journal 2003, 39:355-365.
    16. Champion JV, Dodd SJ, Zhao Y, Vaughan AS, Brown M, Davies AE, Sutton SJ, Swingler SG: Morphology and the growth of electrical trees in a propylene/ethylene copolymer. IEEE Transactions on Dielectrics and Electrical Insulation 2001,8:284-292.
    17. Huang XY, Jiang PK, Kim CU, Duan JK, Wang GL: Atomic force microscopy analysis of morphology of low density polyethylene influenced by Al nano- and microparticles. Journal of Applied Polymer Science 2008, 107:2494-2499.
    18. Huang XY, Ke QQ, Kim CU, Zhong HF, Wei P, Wang GL, Liu F, Jiang PK: Nonisothermal crystallization behavior and nucleation of LDPE/Al nano- and microcomposites. Polymer Engineering and Science 2007, 47:1052-1061.
    19. Janimak JJ, Markey L, Stevens GC: Spherulitic banding in metallocene catalysed polyethylene spherulites. Polymer 2001, 42:4675-4685.
    20. Bassett DC: Principles of polymer morphology. Cambridge: Cambridge University Press; 1981.
    21. Nagao M, Toyoshima S, Sawa W, Teda M: Dielectric breakdown of ethylene-vinyl acetate composite polymers in low-temperature region. Transactions of the Institute of Electrical Engineers of Japan 1977, 97-A:617-622.
    22. Laurent C, Kay E, Souag N: Dielectric breakdown of polymer films containing metal clusters. Journal of Applied Physics 1988, 64:336-342.
    23. Shen Y, Lin YH, Li M, Nan CW: High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Advanced Materials 2007, 19:1418-1422.
    24. Shen Y, Lin YH, Nan CW: Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Advanced Functional Materials 2007, 17:2405-2410.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700