用户名: 密码: 验证码:
拓扑绝缘体薄膜的输运性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拓扑绝缘体是一种具有受时间反演对称性保护的拓扑表面态的新型半导体。拓扑表面态具有线性色散关系,并且其自旋和晶格动量满足一定的手性关系。拓扑绝缘体在自旋电子学和量子计算领域具有潜在的应用背景,已经引起极大关注。
     Bi2Se3、Bi2Te3及Sb2Te3这一类拓扑绝缘体体系具有较简单的能带结构,即对于某一表面,其体能带带隙中只存在一个表面能带简并点,有利于实验研究。但该体系的载流子浓度较高,为能够将体能带在输运性质测量中的贡献尽量降低,选择对分子束外延方法生长的薄膜体系进行研究。
     理论预言表面态的输运性质将表现出弱反局域化行为。实验表明未掺杂的Bi2Se3薄膜在磁场垂直于表面情况下的磁电导表现为弱反局域化行为,而低温下的电阻-温度曲线则表现出与预期相反的绝缘体行为。通过对磁场平行于薄膜平面情况下的磁电导行为的研究,确认了电子-电子相互作用对输运性质的影响,从而解释了电阻-温度曲线的反常行为。
     对不同浓度Cr元素掺杂Bi2Se3薄膜的磁电导测量表明,随着掺杂浓度的提高,低温磁电导表现出从弱反局域化到弱局域化的转变。原位的角分辨光电子谱测量显示,表面态能带的带隙随着掺杂浓度升高逐渐增大。这与理论计算得到的结论一致,即表面态能带带隙的增大会导致局域化行为的转变。更有趣的是,重掺杂样品的磁电导随温度升高表现出从弱局域化行为到弱反局域化行为的转变,与稀磁半导体类似。角分辨光电子谱测量也显示了重掺杂样品表面态能带的消失。因而上述局域化行为的转变应与磁性掺杂导致的能带拓扑相变具有紧密联系,其具体机制需要进一步的理论和实验研究。
     通过对Sb2Te3进行Bi元素掺杂,获得了具有低载流子浓度的(Bi,Sb)2Te3薄膜。对其在超强磁场下的输运性质测量观察到表面态的朗道能级导致的量子振荡现象。分析表明,由于其线性色散关系和较大的塞曼分裂,表面态具有非常规的朗道能级能谱。
     本论文通过对分子束外延方法生长的拓扑绝缘体薄膜的输运性质的系统研究揭示了表面态的特殊的局域化行为和朗道能级能谱,为理解拓扑绝缘体这一体系的奇特性质提供了有价值的线索。
Topological insulator is a new kind of semiconductors with topological surfacestates protected by time-reversal symmetry. The topological surface states showspin-polarized linear dispersion. Topological insulator has attracted intense studies forits potential applications in spintronics and quantum computation.
     The topological insulator family of Bi2Se3、Bi2Te3and Sb2Te3possess relativelysimple band structure with only one degenerate point of surface bands in the bulk bandgap, which is ideal for experimental studies. However, the carrier densities of thesebinary compounds are so high that both the surface states and the bulk states contributeto the transport properties. Thin films grown by molecular beam epitaxy are chosen inorder to limit the contribution from the bulk states.
     Weak antilocalization behavior of the topological surface states is expectedtheoretically. Magnetoconductance measurements on pure Bi2Se3thin films withmagnetic field perpendicular to the films are consistent with weak antilocalizationbehavior. The resistance-temperature curve shows insulating behavior at lowtemperatures, in contradiction with the expected metallic behavior for weakantilocalization. Electron-electron interaction is revealed in magnetoconductancemeasurement with magnetic field parallel to the films, explaining the emergence of theinsulating behavior.
     Magnetoconductance measurements on Cr-doped Bi2Se3thin films exhibit acrossover from weak antilocalization behavior to weak localization behavior withincreasing doping level. In situ ARPES measurements demonstrate that the band gap ofthe surface states increases with the doping level. These results are qualitativelyconsistent with related theoretical calculations, which show that a crossover oflocalization behavior takes place due to enlarged band gap of surface states band bymagnetic doping. More interestingly, the magnetoconductance of heavily-doped Bi2Se3films changes from weak localization to weak antilocalization with increasingtemperature. Similar behavior was observed in diluted magnetic semiconductorswithout topological surface states. The disappearance of the surface state band in theheavily-doped samples is also observed by ARPES. Thus the crossovers of localization behavior are intimately related to the topological phase transition of the band structureof topological insulator thin films. The accurate description, however, needs furthertheoretical and experimental investigations.
     Lower carrier density is achieved in Sb2Te3films doped with Bi. Quantumoscillations due to Landau levels of surface states are observed in transportmeasurements under ultrahigh magnetic field. Quantitative analysis shows that thecombination of linear dispersion and large Zeeman splitting leads to an unconventionalspectrum of Landau quantization of surface states.
     The systemic transport studies on topological insulator thin films uncover thespecial localization behavior and Landau levels of topological surface states, providinginsights into the exotic properties of topological insulator.
引文
[1] HASAN M Z, KANE C L. Colloquium: Topological Insulators. REVIEWS OFMODERN PHYSICS,2010,82(4):3045-3067.
    [2] MOORE J E. The Birth of Topological Insulators. NATURE,2010,464(7286):194-198.
    [3] QI X-L, ZHANG S-C. The Quantum Spin Hall Effect and Topological Insulators.PHYSICS TODAY,2010,63(1):33-38.
    [4] QI X-L, ZHANG S-C. Topological Insulators and Superconductors. REVIEWS OFMODERN PHYSICS,2011,83(4):1057-1110.
    [5] ANDERSON P W. Basic Notions of Condensed Matter Physics. Menlo Park,California: Benjamin/Cummings,1984.
    [6] KLITZING V K, DORDA G, PEPPER M. New Method for High-AccuracyDetermination of the Fine-Structure Constant Based on Quantized Hall Resistance.PHYSICAL REVIEW LETTERS,1980,45(6):494-497.
    [7] LAUGHLIN R B. Quantized Hall Conductivity in Two Dimensions. PHYSICALREVIEW B,1981,23(10):5632-5633.
    [8] THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized HallConductance in a Two-Dimensional Periodic Potential. PHYSICAL REVIEWLETTERS,1982,49(6):405-408.
    [9] NAKAHARA M. Geometry, Topology and Physics. Avon: IOP Publishing,1990.
    [10] BERRY M V. Quantal Phase-Factors Accompanying Adiabatic Changes.PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES,1984,392(1802):45-57.
    [11] HALPERIN B I. Quantized Hall Conductance, Current-Carrying Edge States, and theExistence of Extended States in a Two-Dimensional Disordered Potential. PHYSICALREVIEW B,1982,25(4):2185-2190.
    [12] YOSHIOKA D. The Quantum Hall Effect. Berlin; New York: Springer,2002.
    [13] KANE C L, MELE E J.2Topological Order and the Quantum Spin Hall Effect.PHYSICAL REVIEW LETTERS,2005,95(14):146802.
    [14] FU L, KANE C L. Time Reversal Polarization and a2Adiabatic Spin Pump.PHYSICAL REVIEW B,2006,74(19):195312.
    [15] FU L, KANE C L, MELE E J. Topological Insulators in Three Dimensions.PHYSICAL REVIEW LETTERS,2007,98(10):106803.
    [16] FU L, KANE C L. Topological Insulators with Inversion Symmetry. PHYSICALREVIEW B,2007,76(4):045302.
    [17] MOORE J E, BALENTS L. Topological Invariants of Time-Reversal-Invariant BandStructures. PHYSICAL REVIEW B,2007,75(12):121306.
    [18] ROY R.2Classification of Quantum Spin Hall Systems: An Approach UsingTime-Reversal Invariance. PHYSICAL REVIEW B,2009,79(19):195321.
    [19] ROY R. Topological Phases and the Quantum Spin Hall Effect in Three Dimensions.PHYSICAL REVIEW B,2009,79(19):195322.
    [20] QI X-L, HUGHES T L, ZHANG S-C. Topological Field Theory of Time-ReversalInvariant Insulators. PHYSICAL REVIEW B,2008,78(19):195424.
    [21] WALLACE P R. The Band Theory of Graphite. PHYSICAL REVIEW,1947,71(9):622-634.
    [22] KANE C L, MELE E J. Quantum Spin Hall Effect in Graphene. PHYSICAL REVIEWLETTERS,2005,95(22):226801.
    [23] HALDANE F D M. Model for a Quantum Hall Effect without Landau Levels:Condensed-Matter Realization of the "Parity Anomaly". PHYSICAL REVIEWLETTERS,1988,61(18):2015-2018.
    [24] FU L. Hexagonal Warping Effects in the Surface States of the Topological InsulatorBi2te3. PHYSICAL REVIEW LETTERS,2009,103(26).
    [25] SHAN W-Y, LU H-Z, SHEN S-Q. Effective Continuous Model for Surface States andThin Films of Three-Dimensional Topological Insulators. NEW JOURNAL OFPHYSICS,2010,12(4):43048.
    [26] BERNEVIG B A, HUGHES T L, ZHANG S-C. Quantum Spin Hall Effect andTopological Phase Transition in Hgte Quantum Wells. SCIENCE,2006,314(5806):1757-1761.
    [27] KONIG M, WIEDMANN S, BRUNE C, et al. Quantum Spin Hall Insulator State inHgTe Quantum Wells. SCIENCE,2007,318(5851):766-770.
    [28] ROTH A, BRUNE C, BUHMANN H, et al. Nonlocal Transport in the Quantum SpinHall State. SCIENCE,2009,325(5938):294-297.
    [29] TEO J C Y, FU L, KANE C L. Surface States and Topological Invariants inThree-Dimensional Topological Insulators: Application to Bi1-xSbx. PHYSICALREVIEW B,2008,78(4):45426.
    [30] HSIEH D, QIAN D, WRAY L, et al. A Topological Dirac Insulator in a Quantum SpinHall Phase. NATURE,2008,452(7190):970-975.
    [31] HSIEH D, XIA Y, WRAY L, et al. Observation of Unconventional Quantum SpinTextures in Topological Insulators. SCIENCE,2009,323(5916):919-922.
    [32] NISHIDE A, TASKIN A A, TAKEICHI Y, et al. Direct Mapping of the Spin-FilteredSurface Bands of a Three-Dimensional Quantum Spin Hall Insulator. PHYSICALREVIEW B,2010,81(4):41309.
    [33] GUO H, SUGAWARA K, TAKAYAMA A, et al. Evolution of Surface States inBi1-XsbxAlloys across the Topological Phase Transition. PHYSICAL REVIEW B,2011,83(20):201104.
    [34] ZHANG H, LIU C-X, QI X-L, et al. Topological Insulators in Bi2Se3, Bi2Te3andSb2Te3with a Single Dirac Cone on the Surface. NATURE PHYSICS,2009,5(6):438-442.
    [35] XIA Y, QIAN D, HSIEH D, et al. Observation of a Large-Gap Topological-InsulatorClass with a Single Dirac Cone on the Surface. NATURE PHYSICS,2009,5(6):398-402.
    [36] CHEN Y L, ANALYTIS J G, CHU J H, et al. Experimental Realization of aThree-Dimensional Topological Insulator, Bi2Te3. Science,2009,325(5937):178-181.
    [37] HSIEH D, XIA Y, QIAN D, et al. Observation of Time-Reversal-ProtectedSingle-Dirac-Cone Topological-Insulator States in Bi2Te3and Sb2Te3. PHYSICALREVIEW LETTERS,2009,103(14):146401.
    [38] LIN H, MARKIEWICZ R S, WRAY L A, et al. Single-Dirac-Cone TopologicalSurface States in the TlBiSe2Class of Topological Semiconductors. PHYSICALREVIEW LETTERS,2010,105(3):036404.
    [39] YAN B, LIU C-X, ZHANG H-J, et al. Theoretical Prediction of Topological Insulatorsin Thallium-Based III-V-VI(2) Ternary Chalcogenides. EUROPHYSICS LETTERS,2010,90(3):37002.
    [40] JIN H, SONG J-H, FREEMAN A J, et al. Candidates for Topological Insulators:Pb-Based Chalcogenide Series. PHYSICAL REVIEW B,2011,83(4):041202.
    [41] YAN B, ZHANG H-J, LIU C-X, et al. Theoretical Prediction of Topological Insulatorin Ternary Rare Earth Chalcogenides. PHYSICAL REVIEW B,2010,82(16):161108.
    [42] WANG Y J, LIN H, DAS T, et al. Topological Insulators in the QuaternaryChalcogenide Compounds and Ternary Famatinite Compounds. NEW JOURNAL OFPHYSICS,2011,13(8):085017.
    [43] LIN H, WRAY L A, XIA Y, et al. Half-Heusler Ternary Compounds as NewMultifunctional Experimental Platforms for Topological Quantum Phenomena.NATURE MATERIALS,2010,9(7):546-549.
    [44] AL-SAWAI W, LIN H, MARKIEWICZ R S, et al. Topological Electronic Structure inHalf-Heusler Topological Insulators. PHYSICAL REVIEW B,2010,82(12):125208.
    [45] CHADOV S, QI X, KUEBLER J, et al. Tunable Multifunctional Topological Insulatorsin Ternary Heusler Compounds. Nature Materials,2010,9(7):541-545.
    [46] XIAO D, YAO Y, FENG W, et al. Half-Heusler Compounds as a New Class ofThree-Dimensional Topological Insulators. PHYSICAL REVIEW LETTERS,2010,105(9):096404.
    [47] FENG W, XIAO D, DING J, et al. Three-Dimensional Topological Insulators inI-Iii-Vi2and Ii-Iv-V2Chalcopyrite Semiconductors. PHYSICAL REVIEW LETTERS,2011,106(1):016402.
    [48] SUN Y, CHEN X-Q, YUNOKI S, et al. New Family of Three-Dimensional TopologicalInsulators with Antiperovskite Structure. PHYSICAL REVIEW LETTERS,2010,105(21):216406.
    [49] VIROT F, HAYN R, RICHTER M, et al. Metacinnabar (Beta-Hgs): A Strong3dTopological Insulator with Highly Anisotropic Surface States. PHYSICAL REVIEWLETTERS,2011,106(23):236806.
    [50] ZHANG W, YU R, FENG W, et al. Topological Aspect and QuantumMagnetoresistance of Beta-Ag2Te. PHYSICAL REVIEW LETTERS,2011,106(15):156808.
    [51] SATO T, SEGAWA K, GUO H, et al. Direct Evidence for the Dirac-Cone TopologicalSurface States in the Ternary Chalcogenide Tlbise2. PHYSICAL REVIEW LETTERS,2010,105(13):136802.
    [52] KURODA K, YE M, KIMURA A, et al. Experimental Realization of aThree-Dimensional Topological Insulator Phase in Ternary Chalcogenide TlBiSe2.PHYSICAL REVIEW LETTERS,2010,105(14):146801.
    [53] SOUMA S, ETO K, NOMURA M, et al. Topological Surface States in Lead-BasedTernary Telluride Pb(Bi1-xSbx)2Te4. PHYSICAL REVIEW LETTERS,2011,108(11):116801.
    [54] SATO T, SEGAWA K, KOSAKA K, et al. Unexpected Mass Acquisition of DiracFermions at the Quantum Phase Transition of a Topological Insulator. NATUREPHYSICS,2011,7(11):840-844.
    [55] LIU C, LEE Y, KONDO T, et al. Metallic Surface Electronic State in Half-HeuslerCompounds RPtBi (R=Lu, Dy, Gd). PHYSICAL REVIEW B,2011,83(20):205133.
    [56] XU S-Y, XIA Y, WRAY L A, et al. Topological Phase Transition and TextureInversion in a Tunable Topological Insulator. SCIENCE,2011,332(6029):560-564.
    [57] HSIEH D, XIA Y, QIAN D, et al. A Tunable Topological Insulator in the Spin HelicalDirac Transport Regime. NATURE,2009,460(7259):1101-1105.
    [58] PARK S R, JUNG W S, KIM C, et al. Quasiparticle Scattering and the ProtectedNature of the Topological States in a Parent Topological Insulator Bi2Se3. PHYSICALREVIEW B,2010,81(4):41405.
    [59] BIANCHI M, GUAN D, BAO S, et al. Coexistence of the Topological State and aTwo-Dimensional Electron Gas on the Surface of Bi2Se3. NATURECOMMUNICATIONS,2010,1:128.
    [60] LI Y-Y, WANG G, ZHU X-G, et al. Intrinsic Topological Insulator Bi2Te3Thin Filmson Si and Their Thickness Limit. ADVANCED MATERIALS,2010,22(36):4002-4007.
    [61] SAKAMOTO Y, HIRAHARA T, MIYAZAKI H, et al. Spectroscopic Evidence of aTopological Quantum Phase Transition in Ultrathin Bi2Se3Films. PHYSICALREVIEW B,2010,81(16):165432.
    [62] ZHANG Y, HE K, CHANG C-Z, et al. Crossover of the Three-DimensionalTopological Insulator Bi2se3to the Two-Dimensional Limit. NATURE PHYSICS,2010,6(8):584-588.
    [63] WRAY L A, XU S-Y, XIA Y, et al. Observation of Topological Order in aSuperconducting Doped Topological Insulator. Nature Physics,2010,6(11):855-859.
    [64] WRAY L A, XU S-Y, XIA Y, et al. A Topological Insulator Surface under StrongCoulomb, Magnetic and Disorder Perturbations. NATURE PHYSICS,2011,7(1):32-37.
    [65] CHEN Y L, CHU J H, ANALYTIS J G, et al. Massive Dirac Fermion on the Surface ofa Magnetically Doped Topological Insulator. SCIENCE,2010,329(5992):659-662.
    [66] SOUMA S, KOSAKA K, SATO T, et al. Direct Measurement of the Out-of-Plane SpinTexture in the Dirac-Cone Surface State of a Topological Insulator. PHYSICALREVIEW LETTERS,2011,106(21):216803.
    [67] ARAKANE T, SATO T, SOUMA S, et al. Tunable Dirac Cone in the TopologicalInsulator Bi2-xSbxTe3-ySey. NATURE COMMUNICATIONS,2012,3:636.
    [68] KURODA K, ARITA M, MIYAMOTO K, et al. Hexagonally Deformed Fermi Surfaceof the3d Topological Insulator Bi2Se3. PHYSICAL REVIEW LETTERS,2010,105(7):076802.
    [69] PARK S R, HAN J, KIM C, et al. Chiral Orbital-Angular Momentum in the SurfaceStates of Bi2Se3. PHYSICAL REVIEW LETTERS,2012,108(4):46805.
    [70] WRAY L A, XU S, XIA Y, et al. Spin-Orbital Ground States of SuperconductingDoped Topological Insulators: A Majorana Platform. PHYSICAL REVIEW B,2011,83(22):224516.
    [71] JOZWIAK C, CHEN Y L, FEDOROV A V, et al. Widespread Spin Polarization Effectsin Photoemission from Topological Insulators. PHYSICAL REVIEW B,2011,84(16):165113.
    [72] SOBOTA J A, YANG S, ANALYTIS J G, et al. Ultrafast Optical Excitation of aPersistent Surface-State Population in the Topological Insulator Bi2Se3. PHYSICALREVIEW LETTERS,2012,108(11):117403.
    [73] KONG D, CHEN Y, CHA J J, et al. Ambipolar Field Effect in the Ternary TopologicalInsulator (BixSb1-x)2Te3by Composition Tuning. NATURE NANOTECHNOLOGY,2011,6(11):705-709.
    [74] WANG Y H, HSIEH D, PILON D, et al. Observation of a Warped Helical Spin Texturein Bi2Se3from Circular Dichroism Angle-Resolved Photoemission Spectroscopy.PHYSICAL REVIEW LETTERS,2011,107(20):207602.
    [75] TANAKA Y, NAKAYAMA K, SOUMA S, et al. Evolution of Electronic StructureUpon Cu Doping in the Topological Insulator Bi2se3. PHYSICAL REVIEW B,2012,85(12):125111.
    [76] VALLA T, PAN Z H, GARDNER D, et al. Photoemission Spectroscopy of Magneticand Nonmagnetic Impurities on the Surface of the Bi2Se3Topological Insulator.PHYSICAL REVIEW LETTERS,2012,108(11):117601.
    [77] PAN Z H, VESCOVO E, FEDOROV A V, et al. Electronic Structure of theTopological Insulator Bi2Se3Using Angle-Resolved Photoemission Spectroscopy:Evidence for a Nearly Full Surface Spin Polarization. PHYSICAL REVIEW LETTERS,2011,106(25):257004.
    [78] ZHANG T, CHENG P, CHEN X, et al. Experimental Demonstration of TopologicalSurface States Protected by Time-Reversal Symmetry. PHYSICAL REVIEWLETTERS,2009,103(26):266803.
    [79] ALPICHSHEV Z, ANALYTIS J G, CHU J H, et al. Stm Imaging of Electronic Waveson the Surface of Bi2Te3: Topologically Protected Surface States and HexagonalWarping Effects. PHYSICAL REVIEW LETTERS,2010,104(1):016401.
    [80] ALPICHSHEV Z, ANALYTIS J G, CHU J H, et al. Stm Imaging of a Bound StateAlong a Step on the Surface of the Topological Insulator Bi2Te3. PHYSICAL REVIEWB,2011,84(4):041104.
    [81] CHENG P, SONG C, ZHANG T, et al. Landau Quantization of Topological SurfaceStates in Bi2Se3. PHYSICAL REVIEW LETTERS,2010,105(7):076801.
    [82] JIANG Y, WANG Y, CHEN M, et al. Landau Quantization and the Thickness Limit ofTopological Insulator Thin Films of Sb2Te3. PHYSICAL REVIEW LETTERS,2012,108(1):016401.
    [83] HANAGURI T, IGARASHI K, KAWAMURA M, et al. Momentum-ResolvedLandau-Level Spectroscopy of Dirac Surface State in Bi2Se3. PHYSICAL REVIEW B,2010,82(8):081305.
    [84] BEIDENKOPF H, ROUSHAN P, SEO J, et al. Spatial Fluctuations of Helical DiracFermions on the Surface of Topological Insulators. NATURE PHYSICS,2011,7(12):939-943.
    [85] BRUNE C, LIU C X, NOVIK E G, et al. Quantum Hall Effect from the TopologicalSurface States of Strained Bulk HgTe. PHYSICAL REVIEW LETTERS,2011,106(12):126803.
    [86] NOVIK E, PFEUFFER-JESCHKE A, JUNGWIRTH T, et al. Band Structure ofSemimagnetic Hg1-yMnyTe Quantum Wells. PHYSICAL REVIEW B,2005,72(3):036321.
    [87] HOR Y S, RICHARDELLA A, ROUSHAN P, et al. p-Type Bi2Se3for TopologicalInsulator and Low-Temperature Thermoelectric Applications. PHYSICAL REVIEW B,2009,79(19):195208.
    [88] HOR Y S, QU D, ONG N P, et al. Low Temperature Magnetothermoelectric Effect andMagnetoresistance in Te Vapor Annealed Bi2Te3. JOURNAL OF PHYSICS-CONDENSED MATTER,2010,22(37):375801.
    [89] ANALYTIS J G, MCDONALD R D, RIGGS S C, et al. Two-Dimensional SurfaceState in the Quantum Limit of a Topological Insulator. NATURE PHYSICS,2010,6(12):960-964.
    [90] REN Z, TASKIN A A, SASAKI S, et al. Large Bulk Resistivity and Surface QuantumOscillations in the Topological Insulator Bi2Te2Se. PHYSICAL REVIEW B,2010,82(24):241306.
    [91] CHECKELSKY J G, HOR Y S, CAVA R J, et al. Bulk Band Gap and Surface StateConduction Observed in Voltage-Tuned Crystals of the Topological Insulator Bi2Se3.PHYSICAL REVIEW LETTERS,2011,106(19):196801.
    [92] CHEN J, QIN H J, YANG F, et al. Gate-Voltage Control of Chemical Potential andWeak Antilocalization in Bi2Se3. PHYSICAL REVIEW LETTERS,2010,105(17):176602.
    [93] PENG H, LAI K, KONG D, et al. Aharonov-Bohm Interference in TopologicalInsulator Nanoribbons. NATURE MATERIALS,2010,9(3):225-229.
    [94] ZHANG G H, QIN H J, TENG J, et al. Quintuple-Layer Epitaxy of Thin Films ofTopological Insulator Bi2Se3. APPLIED PHYSICS LETTERS,2009,95(5).
    [95] SONG C-L, WANG Y-L, JIANG Y-P, et al. Topological Insulator Bi2Se3Thin FilmsGrown on Double-Layer Graphene by Molecular Beam Epitaxy. APPLIED PHYSICSLETTERS,2010,97(14):143118.
    [96] WANG G, ZHU X G, WEN J, et al. Atomically Smooth Ultrathin Films of TopologicalInsulator Sb2Te3. NANO RESEARCH,2010,3(12):874-880.
    [97] WANG G, ZHU X-G, SUN Y-Y, et al. Topological Insulator Thin Films of Bi2Te3withControlled Electronic Structure. ADVANCED MATERIALS,2011,23(26):2929-2932.
    [98] JIANG Y, SUN Y Y, CHEN M, et al. Fermi-Level Tuning of Epitaxial Sb2Te3ThinFilms on Graphene by Regulating Intrinsic Defects and Substrate Transfer Doping.PHYSICAL REVIEW LETTERS,2012,108(6):066809.
    [99] LIU C-X, ZHANG H, YAN B, et al. Oscillatory Crossover from Two-Dimensional toThree-Dimensional Topological Insulators. PHYSICAL REVIEW B,2010,81(4):041307.
    [100] LU H-Z, SHAN W-Y, YAO W, et al. Massive Dirac Fermions and Spin Physics in anUltrathin Film of Topological Insulator. PHYSICAL REVIEW B,2010,81(11):115407.
    [101] LINDER J, YOKOYAMA T, SUDBO A. Anomalous Finite Size Effects on SurfaceStates in the Topological Insulator Bi2Se3. PHYSICAL REVIEW B,2009,80(20):205401.
    [102] CHANG C-Z, HE K, LIU M-H, et al. Growth of Quantum Well Films of TopologicalInsulator Bi2Se3on Insulating Substrate. SPIN,2011,1:21.
    [103] MARSHALL W S, SWENSON C A, GAVRILIN A, et al. Development of "FastCool" Pulse Magnet Coil Technology at NHMFL. PHYSICA B: CONDENSEDMATTER,2004,346-347:594-598.
    [104] LAGENDIJK A, VAN TIGGELEN B, WIERSMA D. Fifty Years of AndersonLocalization. PHYSICS TODAY,2009,62(8):24-29.
    [105] ANDERSON P W. Absence of Diffusion in Certain Random Lattices. PHYSICALREVIEW,1958,109(5):1492-1505.
    [106] MOTT N F. Conduction in Glasses Containing Transition Metal Ions. JOURNAL OFNON-CRYSTALLINE SOLIDS,1968,1(1):1-17.
    [107] MOTT N F. Electrons in Disordered Structures. ADVANCES IN PHYSICS,1967,16(61):49-144.
    [108] MOTT N, PEPPER M, POLLITT S, et al. Anderson Transition. PROCEEDINGS OFTHE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICALAND ENGINEERING SCIENCES,1975,345(1641):169-205.
    [109] ABRAHAMS E, ANDERSON P, LICCIARDELLO D, et al. Scaling Theory ofLocalization-Absence of Quantum Diffusion in2Dimensions. PHYSICAL REVIEWLETTERS,1979,42(10):673-676.
    [110] GORKOV L, LARKIN A, KHMELNITSKII D. Particle Conductivity in aTwo-Dimensional Random Potential. JETP LETTERS,1979,30(4):228-232.
    [111] HIKAMI S, LARKIN A I, NAGAOKA Y. Spin-Orbit Interaction andMagnetoresistance in the2Dimensional Random System. PROGRESS OFTHEORETICAL PHYSICS,1980,63(2):707-710.
    [112] LEE P A, RAMAKRISHNAN T V. Disordered Electronic Systems. REVIEWS OFMODERN PHYSICS,1985,57(2):287-337.
    [113] KRAVCHENKO S V, KRAVCHENKO G V, FURNEAUX J E, et al. PossibleMetal-Insulator-Transition at B=0in2Dimensions. PHYSICAL REVIEW B,1994,50(11):8039-8042.
    [114] FINKELSTEIN A M. Weak Localization and Coulomb Interaction inDisordered-Systems. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER,1984,56(3):189-196.
    [115] CHECKELSKY J G, HOR Y S, LIU M H, et al. Quantum Interference in MacroscopicCrystals of Nonmetallic Bi2Se3. PHYSICAL REVIEW LETTERS,2009,103(24):246601.
    [116] HE H-T, WANG G, ZHANG T, et al. Impurity Effect on Weak Antilocalization in theTopological Insulator Bi2te3. PHYSICAL REVIEW LETTERS,2011,106(16):166805.
    [117] ALEINER I L, EFETOV K B. Effect of Disorder on Transport in Graphene.PHYSICAL REVIEW LETTERS,2006,97(23):236801.
    [118] MCCANN E, KECHEDZHI K, FAL'KO V I, et al. Weak-LocalizationMagnetoresistance and Valley Symmetry in Graphene. PHYSICAL REVIEWLETTERS,2006,97(14):146805.
    [119] KATSNELSON M I. Zitterbewegung, Chirality, and Minimal Conductivity inGraphene. EUROPEAN PHYSICAL JOURNAL B,2006,51(2):157-160.
    [120] ALTLAND A. Low-Energy Theory of Disordered Graphene. PHYSICAL REVIEWLETTERS,2006,97(23):236802.
    [121] TWORZYDLO J, TRAUZETTEL B, TITOV M, et al. Sub-Poissonian Shot Noise inGraphene. PHYSICAL REVIEW LETTERS,2006,96(24):246802.
    [122] MORPURGO A F, GUINEA F. Intervalley Scattering, Long-Range Disorder, andEffective Time-Reversal Symmetry Breaking in Graphene. PHYSICAL REVIEWLETTERS,2006,97(19):196804.
    [123] KHVESHCHENKO D V. Electron Localization Properties in Graphene. PHYSICALREVIEW LETTERS,2006,97(3):036802.
    [124] ZIEGLER K. Robust Transport Properties in Graphene. PHYSICAL REVIEWLETTERS,2006,97(26):266802.
    [125] MOROZOV S V, NOVOSELOV K S, KATSNELSON M I, et al. Strong Suppression ofWeak Localization in Graphene. PHYSICAL REVIEW LETTERS,2006,97(1):016801.
    [126] NOMURA K, MACDONALD A H. Quantum Transport of Massless Dirac Fermions.PHYSICAL REVIEW LETTERS,2007,98(7):076602.
    [127] OSTROVSKY P M, GORNYI I V, MIRLIN A D. Quantum Criticality and MinimalConductivity in Graphene with Long-Range Disorder. PHYSICAL REVIEWLETTERS,2007,98(25):256801.
    [128] RYCERZ A, TWORZYDLO J, BEENAKKER C. Anomalously Large ConductanceFluctuations in Weakly Disordered Graphene. EUROPHYSICS LETTERS,2007,79(5):57003.
    [129] NOMURA K, KOSHINO M, RYU S. Topological Delocalization of Two-DimensionalMassless Dirac Fermions. PHYSICAL REVIEW LETTERS,2007,99(14):146806.
    [130] BARDARSON J H, TWORZYDLO J, BROUWER P W, et al. One-Parameter Scalingat the Dirac Point in Graphene. PHYSICAL REVIEW LETTERS,2007,99(10).
    [131] WU X S, LI X B, SONG Z M, et al. Weak Antilocalization in Epitaxial Graphene:Evidence for Chiral Electrons. PHYSICAL REVIEW LETTERS,2007,98(13):136801.
    [132] TIKHONENKO F V, HORSELL D W, GORBACHEV R V, et al. Weak Localization inGraphene Flakes. PHYSICAL REVIEW LETTERS,2008,100(5):056802.
    [133] TIKHONENKO F V, KOZIKOV A A, SAVCHENKO A K, et al. Transition betweenElectron Localization and Antilocalization in Graphene. PHYSICAL REVIEWLETTERS,2009,103(22):226801.
    [134] RYU S, MUDRY C, OBUSE H, et al.2Topological Term, the Global Anomaly, andthe Two-Dimensional Symplectic Symmetry Class of Anderson Localization.PHYSICAL REVIEW LETTERS,2007,99(11):116601.
    [135] BERGMANN G. Weak Localization in Thin-Films-a Time-of-Flight Experiment withConduction Electrons. PHYSICS REPORTS-REVIEW SECTION OF PHYSICSLETTERS,1984,107(1):1-58.
    [136] OBUSE H, FURUSAKI A, RYU S, et al. Two-Dimensional Spin-Filtered ChiralNetwork Model for the Z2Quantum Spin-Hall Effect. PHYSICAL REVIEW B,2007,76(7):075301.
    [137] OBUSE H, FURUSAKI A, RYU S, et al. Boundary Criticality at the AndersonTransition between a Metal and a Quantum Spin Hall Insulator in Two Dimensions.PHYSICAL REVIEW B,2008,78(11):115301.
    [138] IMURA K-I, KURAMOTO Y, NOMURA K. Weak Localization Properties of theDoped2Topological Insulator. PHYSICAL REVIEW B,2009,80(8):085119.
    [139] RYU S, MUDRY C, OBUSE H, et al. The Z2Network Model for the Quantum SpinHall Effect: Two-Dimensional Dirac Fermions, Topological Quantum Numbers andCorner Multifractality. NEW JOURNAL OF PHYSICS,2010,12(6):065005.
    [140] GHAEMI P, MONG R S K, MOORE J E. In-Plane Transport and EnhancedThermoelectric Performance in Thin Films of the Topological Insulators Bi2Te3andBi2Se3. PHYSICAL REVIEW LETTERS,2010,105(16):166603.
    [141] LU H Z, SHEN S Q. Weak Localization of Bulk Channels in Topological InsulatorThin Films. PHYSICAL REVIEW B,2011,84(12):125138.
    [142] ALTSHULER B L, ARONOV A G. Zero Bias Anomaly in Tunnel Resistance andElectron-Electron Interaction. SOLID STATE COMMUNICATIONS,1979,30(3):115-117.
    [143] ALTSHULER B L, ARONOV A G. Damping of One-Electron Excitations in Metals.JETP LETTERS,1979,30(8):482-484.
    [144] ALTSHULER B L, ARONOV A G, LEE P A. Interaction Effects in Disordered FermiSystems in2Dimensions. PHYSICAL REVIEW LETTERS,1980,44(19):1288-1291.
    [145] ALTSHULER B L, KHMELNITZKII D, LARKIN A I, et al. Magnetoresistance andHall-Effect in a Disordered2-Dimensional Electron-Gas. PHYSICAL REVIEW B,1980,22(11):5142-5153.
    [146] OSTROVSKY P M, GORNYI I V, MIRLIN A D. Interaction-Induced Criticality in2Topological Insulators. PHYSICAL REVIEW LETTERS,2010,105(3):036803.
    [147] LU H Z, SHI J R, SHEN S Q. Competition between Weak Localization andAntilocalization in Topological Surface States. PHYSICAL REVIEW LETTERS,2011,107(7):076801.
    [148] LIU Q, LIU C-X, XU C, et al. Magnetic Impurities on the Surface of a TopologicalInsulator. PHYSICAL REVIEW LETTERS,2009,102(15):156603.
    [149] HOSUB J, IM J, FREEMAN A J. Topological and Magnetic Phase Transitions inBi2se3Thin Films with Magnetic Impurities. PHYSICAL REVIEW B,84(13):134408.
    [150] ANDREARCZYK T, JAROSZYNSKI J, GRABECKI G, et al. Spin-RelatedMagnetoresistance of N-Type Zno:Al and Zn1-xMnxO:Al Thin Films. PHYSICALREVIEW B,2005,72(12):121309.
    [151] DIETL T. Interplay between Carrier Localization and Magnetism in Diluted Magneticand Ferromagnetic Semiconductors. JOURNAL OF THE PHYSICAL SOCIETY OFJAPAN,2008,77(3):031005.
    [152] KONDO J. Resistance Minimum in Dilute Magnetic Alloys. PROGRESS OFTHEORETICAL PHYSICS,1964,32(1):37-49.
    [153] ZHENG Y S, ANDO T. Hall Conductivity of a Two-Dimensional Graphite System.PHYSICAL REVIEW B,2002,65(24):245420.
    [154] ONSAGER L. Interpretation of the Vanalphen,Dehaas Effect. PHILOSOPHICALMAGAZINE,1952,43(344):1006-1008.
    [155] MIKITIK G P, SHARLAI Y V. Manifestation of Berry's Phase in Metal Physics.PHYSICAL REVIEW LETTERS,1999,82(10):2147-2150.
    [156] SCHUBNIKOW L, DE HAAS W J. A New Phenomenon in the Change of Resistance ina Magnetic Field of Single Crystals of Bismuth. NATURE,1930,126:500-500.
    [157] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-Dimensional Gas ofMassless Dirac Fermions in Graphene. NATURE,2005,438(7065):197-200.
    [158] ZHANG Y B, TAN Y W, STORMER H L, et al. Experimental Observation of theQuantum Hall Effect and Berry's Phase in Graphene. NATURE,2005,438(7065):201-204.
    [159] LUK'YANCHUK I A, KOPELEVICH Y. Phase Analysis of Quantum Oscillations inGraphite. PHYSICAL REVIEW LETTERS,2004,93(16):166402.
    [160] BRUNE C, LIU C X, NOVIK E G, et al. Quantum Hall Effect from the TopologicalSurface States of Strained Bulk Hgte. PHYSICAL REVIEW LETTERS,2011,106(12):136803.
    [161] ZHANG J, CHANG C-Z, ZHANG Z, et al. Band Structure Engineering in(Bi1-xSbx)2Te3Ternary Topological Insulators. NATURE COMMUNICATIONS,2012,2:574.
    [162] TASKIN A A, ANDO Y. Berry Phase of Nonideal Dirac Fermions in TopologicalInsulators. PHYSICAL REVIEW B,2011,84(3):035301.
    [163] ZHANG Y, JIANG Z, SMALL J P, et al. Landau-Level Splitting in Graphene in HighMagnetic Fields. PHYSICAL REVIEW LETTERS,2006,96(13):136806.
    [164] BYCHKOV Y A, RASHBA E I. Properties of a2d Electron-Gas with Lifted SpectralDegeneracy. JETP LETTERS,1984,39(2):78-81.
    [165] TAKAGAKI Y, JENICHEN B, JAHN U, et al. Weak Antilocalization andElectron-Electron Interaction Effects in Cu-Doped Bi2Se3Films. PHYSICAL REVIEWB,2012,85(11):115314.
    [166] FU Z G, ZHANG P, LI S S. Probing Crossover from Analogous Weak Antilocalizationto Localization by an Aharonov-Bohm Interferometer on Topological Insulator Surface.APPLIED PHYSICS LETTERS,2012,100(13):133103.
    [167] YU S L, XIE X C, LI J X. Mott Physics and Topological Phase Transition inCorrelated Dirac Fermions. PHYSICAL REVIEW LETTERS,2011,107(1):010401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700