用户名: 密码: 验证码:
纳米及表面吸附体系的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纳米和表面体系方面的研究取得了非常大的进展,这些进展不仅丰富了传统的凝聚态物理、量子化学、新型功能材料等学科领域的研究内容,也对信息技术、洁净能源、环境科学等多个方面产生了影响。另一方面,随着研究体系复杂性的日益增加,以及纳米体系不可忽视的量子效应,第一性原理计算已经成为不可或缺的研究手段。在这些前沿领域的研究中,理论计算不仅用来解释观测到的现象,揭示其背后的物理本质,还可以用来指导实验方面的研究,甚至可以通过搭建合适的模型,进行理想实验。
     本论文主要论述了三个方面的工作:利用密度泛函理论研究了边界化学修饰对扶手椅(armchair)型石墨烯纳米条带电子结构性质的影响;利用非平衡格林函数技术结合密度泛函理论的方法研究了石墨烯纳米条带体系的电子输运性质,从理论上设计了两种纳米器件;发展了基于第一性原理计算的表面吸附体系非弹性电子隧穿谱的计算方法,并讨论了在几个实际体系中的具体应用。
     论文起始,第一章简要介绍了第一性原理电子结构计算的理论框架和目前研究中常用的近似与方法。自从量子理论诞生,人们就开始了应用量子理论描述实际体系的征途。而整个电子结构理论,就是人们在用量子力学的基本原理描述真实体系的过程中得到的一种既可以负担得起,又具有可接受的近似程度的方法体系。在这一章中,我们遵循着近似程度由低到高的脉络,首先简单介绍了目前电子结构计算中经常用到的三个基本近似,分别为:非相对论近似、玻恩-奥本海默近似和独立电子近似;然后在此基础上,叙述了Hartree-Fock近似方法和自洽场方法,这是现阶段电子结构计算的基石;随后,简要叙述了在研究中广泛应用的密度泛函理论,以及采用非平衡格林函数技术和密度泛函理论相结合的计算电子输运性质的方法;最后,简单介绍了本论文涉及到的工作中用到的几个软件包。
     纳米科学和表面科学作为新兴的交叉学科展现出了蓬勃的生机,在第二章中,我们简要叙述了近年来该领域的研究进展和现状。首先,从实验技术来看,扫描探针技术的发展,不仅使人们的目光达到化学极限,更重要的是作为一种实验手段,可以搭建、操控各种微观实验体系,甚至可以操控化学反应;近年来发展的分子结技术也是一个巨大的进步,使得人们可以对单个原子、分子量级的体系进行电子输运性质的测量,对下一代微电子电路的发展具有深远的影响。在新型的实验体系方面,石墨烯引发了当前的研究热潮,无论是从其基本物理性质还是在各个领域内的潜在应用来看,石墨烯都是一种令人激动的材料;表面吸附体系则是一个相对传统的研究范畴,但由于其在异相催化、晶体外延生长、生命科学以及分子电子学等领域都具有重要的应用,仍存在许多问题亟待解决。
     石墨烯相关材料的一个非常有吸引力的应用是作为下一代微电子器件。石墨烯纳米条带,作为一种石墨烯的衍生材料,其物理性质受边界手性、宽度、及化学环境等很多因素的影响,边界碳原子被氢饱和的扶手椅型石墨烯纳米带(AGNR)均为半导体。在第三章中,我们用各种不同原子或者基团对AGNR边界碳原子进行化学修饰,发现不仅可以改变AGNR体系的电子结构性质,比如改变带隙、引起半导体-金属转变等,边界化学修饰还可以改变AGNR体系带隙随宽度的变化规律。此外由于AGNR体系一个可能的重要应用就是分子器件,我们研究发现用常见的锚接基团NO2和NH2对AGNR进行边界化学修饰时,体系的电子结构性质变化不大,这就意味着可以比较容易地将具有特殊电子性质的AGNR单元模块化组装于分子电路中。
     分子电子学的研究主要有两个方面,一是通过实验或者理论的方法,研究分子或纳米体系的电子输运性质,以期找到具有特定电子学功能的器件,比如分子整流器件、分子开关、量子点、负微分电阻器件等;此外便是利用体系的电子输运性质,通过某些手段得到体系其他性质,比如化学识别。在第四章中,我们在理论上设计了基于石墨烯纳米带的量子点器件和负微分电阻器件,这两种纳米器件都具有良好的稳定性,有望在实际中应用。
     在第五章中,给出了基于第一性原理电子结构计算进行表面吸附体系非弹性电子隧穿谱的模拟方法。我们采用Tersoff-Hamann近似和有限差分方法,实现了STM实验体系中非弹性电子隧穿谱的计算程序,在两个广泛研究的体系:CO分子吸附在Cu(100)表面和乙炔分子吸附在Cu(100)表面的测试表明,我们的程序健壮性较好,能够重现实验结果,跟以前的理论计算结果也一致。随后我们将程序用于顺-2-丁烯分子吸附在Pd(100)表面和三聚氰胺分子吸附在Cu(100)表面两个体系的研究,体现了利用非弹性电子隧穿谱进行表面化学识别的优越性。非弹性电子隧穿谱在表面科学的研究中是一种强有力的实验工具。
In the recent decades, we witnessed tremendous progresses in nanoscience and surface science. All these developments not only extended the scope of conventional subjects such as condensed matter physics, quantum chemistry, and functional ma-terial, but also possess great impacts on information technology, clear energy, envi-ronmental science and so on. On the other hand, with the increasing complexity and the considerable quantum effects in nano-scale systems, first-principles calculations became more and more important in research activities. Theoretical calculations can not only be employed to explain the experimental observation, to reveal the underly-ing physics, but also to guide of experiments, even to perform ideal experiments via constructing appropriate models.
     All the works in this thesis can be divided into three parts:the study of the effects of chemical modification of edged carbon atoms in armchair edged graphene nanorib-bons (AGNRs); the study of electronic transport properties of graphene nanoribbons (GNR) based nano-systems by using the non-equilibrium Green's function technique combined with density functional theory; the development of computational proce-dures to simulate inelastic electron tunneling spectra in surface-adsorbate systems.
     At the beginning, we briefly introduced the background of the first-principles electronic structure calculation and some methods/approximations widely used in the nowadays research. People started the journey of describing real systems by using quantum mechanics since the birth of quantum theory in the beginning of twentieth century, from this point of view, the whole electronic structure theory is an outcome of the process of people looking for a method affordable and in the mean time can give acceptable results to describe the real world. In Chapter 1, along with the thread of approximations from the most rudimental level to the advanced, we first introduced the three basic approximations widely adopted in electronic structure calculations, i.e. non-relativistic approximation, Born-Oppenheimer approximation, and the inde-pendent particle approximation; Hartree-Fock approximation and self-consistent field method as the cornerstones of the modern electronic structure theory are then intro-duced; Next, we gave a brief description on density functional theory and the non-equilibrium Green's function technique combined with density functional theory; In the end, a short introduction for software packages used in this thesis is presented.
     In chapter 2, we depicted the rapid developing interdisciplinary subjects named nanoscience and surface science. On the one hand, the development of scanning probe techniques enables us to observe objects at the chemical limit, such as single atom or single molecule, and more important, scanning probe techniques allow us to con-struct and control various microscopic systems, even allow us to control chemical re-actions; Molecular junction is another great progress that allows us to perform single atomic/molecular electric measurements, and has great potential in the future micro-circuits. On the other hand, the emerging of new materials provides platforms for peculiar physics, for instance, the rise of graphene attracted tremendous research inter-ests both in basic physics and various applied subjects. Due to the requirement of the detailed physics of surface-adsorbate systems in the research of heterogenous cataly-sis, epitaxial growth, life science and molecular electronics, there are many challenging open questions in surface science.
     Graphene related materials are expected to have great potential in the next gen-eration micro electric devices. As a kind of derived material, GNRs can be prepared from graphene. The electronic properties of GNRs are sensitive to its chirality, width, chemical environment, and many other issues. All the hydrogen saturated AGNRs are semiconductors. In chapter 3, we studied the effect on the electronic properties of edge chemical modification of AGNRs. We found that chemical modification not only changes the electronic structures of AGNRs, such as energy gap engineering and semiconductor-metal transition, but also changes the family behavior in gap-width re-lation. Furthermore, AGNR is expected to be a kind of molecular device, our study on the electronic structures of AGNRs upon chemical modification by NO2 and NH2, which is widely used in molecular electronics as anchoring groups, shows that the modification does not alter the electronic structure qualitatively, which implies that we can integrate AGNR functional units into molecular circuits without focusing on much extra work.
     There are mainly two kinds of research in the area of molecular electronics. First is the direct investigation of the electron transport properties of molecular or nano systems, which can be achieved via various experimental or theoretical approaches. Activities such as device design can also be classified into this field, indeed, many kinds of molecular devices such as molecular rectifier, molecular switch, quantum dot, and negative differential resistance (NDR) device have been designed or proposed the-oretically. The other is the application of electron transport properties to realize other purpose, such as chemical identification. In chapter 4, we designed a quantum dot and a NDR device based on GNRs by using theoretical calculations, the functionality are robust for both devices.
     In chapter 5, we discussed our own implementation for the simulation of inelastic electron tunneling spectra (IETS) in surface-adsorbate systems. Our method is based on Tersoff-Hamann aprroximation and finite difference method; We benchmarked our code in two test systems:CO adsorbed on Cu(100) and acetylene adsorbed on Cu(100), both cases give reliable/robust results and excellent performance. Then we applied it in two practical programs:cis-2-butene adsorbed on Pd(110) surface and melamine tautomers adsorbed on Cu(100) surface, all these test cases and practical applications are remarkable demonstrations of the fact that IETS is a power tool in surface sci-ence, especially in the chemical identification of adsorbate species, configuration, and conformation.
引文
[1]P. A. M. Dirac. The principles of quantum mechanics. Oxford University Press, Oxford,4th edition,1958.
    [2]W. Pauli. Uber den zusammenhang des abschlusses der elektronengrupen im atom mit der komplex struktur der spektren. Z. Phys,36:902,1925.
    [3]P. A. M. Dirac. Quantum mechanics of many-electron systems. Proc. Roy. Soc. A,123:714,1929.
    [4]R. M. Martin. Electronic Structure:Basic Theory and Practical Methods. Cam-bridge Unversity Press,2004.
    [5]M. S. Hybertsen and S. G. Louie. Spin-orbit splitting in semiconductors and insulators from the ab initio pseudopotential. Phys. Rev. B,34(4):2920,1986.
    [6]A. Szabo and N. Ostlund. Modern Quantum Chemistry. McGraw-Hill,1st edi-tion,1989.
    [7]R. Shankar. Principles of Quantum Mechanics. Plenum Press,2nd edition,1994.
    [8]徐光宪,黎乐民,王德民.量子化学.科学出版社,北京,1985.
    [9]L. H. Thomas. The calculation of atomic fields. Proc. Cambridge Phil. Roy. Soc.,23:542,1927.
    [10]E. Fermi. Un metodo statistico per la determinazione di alcune priorieta dell'atome. Rend. Accad. Naz. Lincei,6:602,1927.
    [11]P. A. M. Dirac. Note on exchange phenomena in the thomas-fermi atom. Proc. Cambridge Phil. Roy. Soc.,26:376,1930.
    [12]P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.,136(3B): B864,1964.
    [13]李震宇.新材料物性的第一性原理研究.PhD thesis,中国科学技术大学,2004.
    [14]向红军.纳米材料的理论研究及线性标度电子结构方法的发展.PhD thesis,中国科学技术大学,2006.
    [15]W. Koch and M. C. Holthausen. A Chemists'guide to density functional theory. Wiely-VCH, Weinheim,2001.
    [16]C. Fiolhais, F. Nogueira, and M. A.L. Marques, editors. A Primer in Density Functional Theory, volume 620 of Lecture Notes in Physics. Springer,1st edi-tion,2003.
    [17]J. C. Slater. Atomic shielding constants. Phys. Rev.,36(1):57,1930.
    [18]S. F. Boys. Electronic wave functions, i. a general method of calculation for the stationary states of any molecular system. Proc. Roy. Soc. London A,200(1063): 542,1950.
    [19]A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A,38(6):3098,1988.
    [20]J P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B,45(23):13244,1992.
    [21]J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett.,77(18):3865,1996.
    [22]W. Kohn. Nobel lecture:Electronic structure of matter-wave functions and den-sity functionals. Rev. Mod. Phys.,71(5):1253,1999.
    [23]W. Kohn. An essay on condensed matter physics in the twentieth century. Rev. Mod. Phys.,71(2):S59,1999.
    [24]T. L. Beck. Real-space mesh techniques in density-functional theory. Rev. Mod. Phys.,72(4):1041,2000.
    [25]P. Fulde. Correlations in Molecules and Solids. Springer, Berlin,1995.
    [26]M. Brandbyge, J. Mozos, P. Ordejon, J. Taylor, and K. Stokbro. Density-functional method for nonequilibrium electron transport. Phys. Rev. B,65(16): 165401,2002.
    [27]S.-H. Ke, H. U. Baranger, and W. Yang. Electron transport through molecules: Self-consistent and non-self-consistent approaches. Phys. Rev. B,70(8):085410, 2004.
    [28]I. Rungger and S. Sanvito. Algorithm for the construction of self-energies for electronic transport calculations based on singularity elimination and singular value decomposition. Phys. Rev. B,78(3):035407,2008.
    [29]A. R. Williams, P. J. Feibelman, and N. D. Lang. Green's-function methods for electronic-structure calculations. Phys. Rev. B,26(10):5433,1982.
    [30]M. P. Lopez Sancho, J. M. Lopez Sancho, and J. Rubio. Quick iterative scheme for the calculation of transfer matrices:application to mo (100). J. Phys. F Metal Phys.,14(5):1205,1984.
    [31]S. Datta. Electronic transport in mesoscopic systems. Cambridge University Press, New York,1997.
    [32]S. Datta. Quantum transport:Atom to transistor. Cambridge University Press, New York,2005.
    [33]M. Di Ventra. Electrical transport in Nanoscale systems. Cambridge Univ. Press,2008.
    [34]Y. Imry and R. Landauer. Conductance viewed as transmission. Rev. Mod. Phys., 71(2):S306,1999.
    [35]G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B,54(16):11169, 1996.
    [36]G. Kresse and J. Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.,6 (1):15,1996.
    [37]URL http://cms.mpi. univie. ac. at/vasp/.
    [38]G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B,59(3):1758,1999.
    [39]D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B,41(11):7892,1990.
    [40]D M Wood and A Zunger. A new method for diagonalising large matrices. J. Phys. A,18(9):1343,1985.
    [41]E. R. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comp. Phys., 17(1):87,1975.
    [42]P. Pulay. Convergence acceleration of iterative sequences, the case of scf itera-tion. Chem. Phys. Lett.,73(2):393,1980.
    [43]P. Pulay. Improved scf convergence acceleration. J. Comp. Chem.,3:556,1982.
    [44]D. D. Johnson. Modified broyden's method for accelerating convergence in self-consistent calculations. Phys. Rev. B,38(18):12807,1988.
    [45]J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, and P. Ordejon. The siesta method for ab initio order-n materials simulation. J. Phys. Condens. Matter,14(11):2745,2002.
    [46]URL http://www. icmab. es/siesta/.
    [47]E. Artacho, D. Sanchez-Portal, P. Ordejon, A. Garcia, and J. M. Soler. Linear-scaling ab-initio calculations for large and complex systems. Phys. Stat. Sol. (b), 215:809,1999.
    [48]Javier Junquera, Oscar Paz, Daniel Sanchez-Portal, and Emilio Artacho. Numer-ical atomic orbitals for linear-scaling calculations. Phys. Rev. B,64(23):235111, 2001.
    [49]E. Anglada, J. M. Soler, J. Junquera, and E. Artacho. Systematic generation of finite-range atomic basis sets for linear-scaling calculations. Phys. Rev. B,66 (20):205101,2002.
    [50]N. Troullier and J. L. Martins. Efficient pseudopotentials for plane-wave calcu-lations. Phys. Rev. B,43(3):1993,1991.
    [51]N. Troullier and J. L. Martins. Efficient pseudopotentials for plane-wave calcu-lations, ii. operators for fast iterative diagonalization. Phys. Rev. B,43(11):8861, 1991.
    [52]D. R. Hamann, M. Schluter, and C. Chiang. Norm-conserving pseudopotentials. Phys. Rev. Lett,43(20):1494,1979.
    [53]P. Ordejon, D. A. Drabold, M. P. Grumbach, and R. M. Martin. Unconstrained minimization approach for electronic computations that scales linearly with sys-tem size. Phys. Rev. B,48(19):14646,1993.
    [54]P. Ordejon, D. A. Drabold, R. M. Martin, and M. P. Grumbach. Linear system-size scaling methods for electronic-structure calculations. Phys. Rev. B,51(3): 1456,1995.
    [55]J. Taylor, H. Guo, and J. Wang. Ab initio modeling of quantum transport prop-erties of molecular electronic devices. Phys. Rev. B,63(24):245407,2001.
    [56]URL http://www. quantumwise. com.
    [57]URL http://www. abinit.org.
    [58]URL http://www. quantum-espresso. org.
    [59]URL http://dcwww. camd. dtu. dk/campos/Dacapo/.
    [60]URL http://www.gaussian. com/.
    [61]URL http://accelrys. com/products/materials-studio/.
    [62]URL http://www. smeagol. tcd. ie/.
    [63]B. Larade, J. Taylor, Q. R. Zheng, H. Mehrez, P. Pomorski, and H. Guo. Renor-malized molecular levels in a sc3n@c80 molecular electronic device. Phys. Rev. B,64(19):195402,2001.
    [64]E. Schrodinger. Are there quantum jumps?:Part ii. Br. J. Philos. Sci.,Ⅲ:233, 1952.
    [65]R. P. Feynman. There's plenty of room at the bottom. Caltech's Engineering and Science,23:22,1960.
    [66]G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel.7×7 reconstruction on si(111) resolved in real space. Phys. Rev. Lett.,50(2):120,1983.
    [67]G. Binnig, C. F. Quate, and Ch. Gerber. Atomic force microscope. Phys. Rev. Lett.,56(9):930,1986.
    [68]M. Di Ventra, S. Evoy, and J. R. Heflin. Introduction to Nanoscale Science and Technology. Springer, New York,2004.
    [69]W. Ho. Single-molecule chemistry. J. Chem. Phys.,117(24):11033-11061, 2002.
    [70]Q. Fu, and Y. Luo L. Yuan, and Jin long Yang. Exploring at nanoscale from first principles. Frontiers of Physics in China,4:256,2009.
    [71]赵瑾.团簇及单分子隧道结的研究.PhD thesis,中国科学技术大学,2003.
    [72]李斌.扫描隧道显微镜成像机制中若干问题的理论研究.PhD thesis,中国科学技术大学,2002.
    [73]白春礼.扫描隧道显微术及其应用.上海科学技术出版社,上海,1992.
    [74]C. J. Chen. Introduction to scanning tunneling microscopy. Oxford University Press, New York,1993.
    [75]胡振芃.基于第一性原理计算的STM相关问题研究.PhD thesis,中国科学技术大学,2008.
    [76]URL http://en.wikipedia.org/wiki/Scanning_tunneling_microscope.
    [77]A. Aviram and M. A. Ratner. Molecular rectifiers. Chemical Physics Letters,29 (2):277,1974.
    [78]L. Venkataraman. Benzene provides the missing link in molecular junctions. Physics,1:5,2008.
    [79]C. Joachim, J. K. Gimzewski, R. R. Schlittler, and C. Chavy. Electronic trans-parence of a single c60 molecule. Phys. Rev. Lett.,74(11):2102,1995.
    [80]S. Chang, J. He, A. Kibel, M. Lee, O. Sankey, P. Zhang, and S. Lindsay. Tun-nelling readout of hydrogen-bonding-based recognition. Nat. Nano.,4(5):297, 2009.
    [81]J. He, L. Lin, P. Zhang, and S. Lindsay. Identification of dna basepairing via tunnel-current decay. Nano. Lett.,7(12):3854,2007.
    [82]E. A. Osorio, T. Bjornholm, J.-M. Lehn, M. Ruben, and H. S. J. van der Zant. Single-molecule transport in three-terminal devices. J. Phys. Condens. Matter, 20(37):374121,2008.
    [83]C. J. Muller, J. M. van Ruitenbeek, and L. J. de Jongh. Experimental observation of the transition from weak link to tunnel junction. Physica C:Superconductiv-ity,191(3-4):485,1992.
    [84]H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett.,75(2):301,1999.
    [85]M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour. Conductance of a Molecular Junction. Science,278(5336):252,1997.
    [86]J. G. Kushmerick, A. S. Blum, and D. P. Long. Metrology for molecular elec-tronics. Analytica Chimica Acta,568(1-2):20,2006. Molecular Electronics and Analytical Chemistry.
    [87]URL http://www. intel. com/technology/.
    [88]G. E. Moore. Cramming more components onto integrated circuits. Electronics, 38:114,1965.
    [89]Y. Xue. Molecular electronic devices:Electronic structure and transport prop-erties. PhD thesis, Purdue University,2000.
    [90]武晓君.纳米管的吸附行为及单分子期间的输运性质的研究.PhD thesis,中国科学技术大学,2005.
    [91]A. Aviram and M. Ratner, editors. Molecular Electronics:Science and Technol-ogy. New York Academy of Science, New York,1998.
    [92]J. K. Gimzewski and C. Joachim. Nanoscale Science of Single Molecules Using Local Probes. Science,283(5408):1683,1999.
    [93]S. Pan, Q. Fu, T. Huang, A. Zhao, B. Wang, Y. Luo, J. Yang, and J. Hou. Design and control of electron transport properties of single molecules. Proc. Natl. Acad. Sci. USA,106(36):15259,2009.
    [94]Z. Yao, H. W. Ch. Postma, L. Balents, and C. Dekker. Carbon nanotube in-tramolecular junctions. Nature,402(6759):273,1999.
    [95]R. M. Metzger, B. Chen, U. Hopfner, M. V. Lakshmikantham, D. Vuillaume, T. Kawai, X. Wu, H. Tachibana, T. V. Hughes, H. Sakurai, J. W. Baldwin, C. Hosch, M. P. Cava, L. Brehmer, and G. J. Ashwell. Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J. Am. Chem. Soc.,119(43):10455,1997.
    [96]Z. H. Xiong, Di Wu, Z. Valy Vardeny, and Jing Shi. Giant magnetoresistance in organic spin-valves. Nature,427(6977):821,2004.
    [97]M. Ouyang and D. D. Awschalom. Coherent Spin Transfer Between Molecularly Bridged Quantum Dots. Science,301(5636):1074,2003.
    [98]W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park. Kondo resonance in a single-molecule transistor. Nature,417(6890):725,2002.
    [99]J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, and D. C. Ralph. Coulomb blockade and the kondo effect in single-atom transistors. Nature,417(6890): 722,2002.
    [100]A. Zhao, Q. Li, L. Chen, H. Xiang, W. Wang, S. Pan, and journal= Science vol-ume= 309 number= 5740 pages= 1542 year= 2005 Wang, B title= Controlling the Kondo Effect of an Adsorbed Magnetic Ion Through Its Chemical Bonding.
    [101]M. Di Ventra, S. T. Pantelides, and N. D. Lang. First-principles calculation of transport properties of a molecular device. Phys. Rev. Lett.,84(5):979,2000.
    [102]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science,306(5696):666,2004.
    [103]C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer. Ultrathin epitaxial graphite:2d electron gas properties and a route toward graphene-based nano-electronics. J. Phys. Chem. B,108(52):19912,2004.
    [104]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer. Electronic Con-finement and Coherence in Patterned Epitaxial Graphene. Science,312(5777): 1191,2006.
    [105]V. P. Gusynin and S. G. Sharapov. Unconventional integer quantum hall effect in graphene. Phys. Rev. Lett.,95(14):146801,2005.
    [106]K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim. Room-Temperature Quantum Hall Effect in Graphene. Science,315(5817):1379-2007.
    [107]Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim. Experimental observation of the quantum hall effect and berry's phase in graphene. Nature,438(7065):201, 2005.
    [108]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Two-dimensional gas of massless dirac fermions in graphene. Nature,438(7065):197,2005.
    [109]S. Y. Zhou, G.-H. Gweon, J. Graf, A. V. Fedorov, C. D. Spataru, R. D. Diehl, Y. Kopelevich, D.-H. Lee, Steven G. Louie, and A. Lanzara. First direct observa-tion of dirac fermions in graphite. Nat. Phys.,2(9):595,2006.
    [110]A. Bostwick, T. Ohta, T. Seyller, K. Horn, and E. Rotenberg. Quasiparticle dynamics in graphene. Nat. Phys.,3(1):36,2007.
    [111]G. Li and E. Y. Andrei. Observation of landau levels of dirac fermions in graphite. Nat. Phys.,3(9):623,2007.
    [112]C.-H. Park, L. Yang, Y.-W. Son, M. L. Cohen, and S. G. Louie. Anisotropic behaviours of massless dirac fermions in graphene under periodic potentials. Nat. Phys.,4(3):213,2008.
    [113]Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov. Dirac charge dynamics in graphene by infrared spectroscopy. Nat. Phys.,4(7):532,2008.
    [114]P. W. Sutter, J.-I. Flege, and E. A. Sutter. Epitaxial graphene on ruthenium. Nat. Mater.,7(5):406,2008.
    [115]D. Martoccia, P. R. Willmott, T. Brugger, M. Bjorck, S. Gunther, C. M. Schlepiitz, A. Cervellino,S. A. Pauli, B. D. Patterson, S. Marchini, J. Wint-terlin, W. Moritz, and T. Greber. Graphene on ru(0001):A 25 x 25 supercell. Phys. Rev. Lett.,101(12):126102,2008.
    [116]Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGov-ern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nano.,3(9):563,2008.
    [117]V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner. High-throughput solution processing of large-scale graphene. Nat. Nano.,4(1):25,2009.
    [118]A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett.,9(1):30,2009.
    [119]K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature,457(7230):706,2009.
    [120]Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.-L. Gu, F. Liu, and W. Duan. Intrinsic current voltage characteristics of graphene nanoribbon transistors and effect of edge doping. Nano Lett.,7(6):1469,2007.
    [121]X. Liang, Z. Fu, and-S. Y. Chou. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer. Nano Lett.,7(12):3840,2007.
    [122]J. Milton Pereira, P. Vasilopoulos, and F. M. Peeters. Tunable quantum dots in bilayer graphene. Nano Lett.,7(4):946,2007.
    [123]B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard. Spin qubits in graphene quantum dots. Nat. Phys.,3(3):192,2007.
    [124]Z. F. Wang, Q. W. Shi, Q. Li, X. Wang, J. G. Hou, H. Zheng, Y. Yao, and J. Chen. Z-shaped graphene nanoribbon quantum dot device. Appl. Phys. Lett.,91 (5):053109,2007.
    [125]J. R. Williams, L. DiCarlo, and C. M. Marcus. Quantum Hall Effect in a Gate-Controlled p-n Junction of Graphene. Science,317(5838):638,2007.
    [126]D. A. Abanin and L. S. Levitov. Quantized Transport in Graphene p-n Junctions in a Magnetic Field. Science,317(5838):641,2007.
    [127]R. V. Gorbachev, A. S. Mayorov, A. K. Savchenko, D. W. Horsell, and F. Guinea. Conductance of p-n-p graphene structures with "air-bridge" top gates. Nano Lett.,8(7):1995,2008.
    [128]L. Weng, L. Zhang, Y. P. Chen, and L. P. Rokhinson. Atomic force microscope local oxidation nanolithography of graphene. Appl. Phys. Lett.,93(9):093107, 2008.
    [129]L. Tapaszto, G. Dobrik, P. Lambin, and L. P. Biro. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nano.,3(7):397,2008.
    [130]M. Y. Han, B. Ozyilmaz, Y Zhang, and P. Kim. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett.,98(20):206805,2007.
    [131]S. S. Datta, D. R. Strachan, S. M. Khamis, and A. T. C. Johnson. Crystallo-graphic etching of few-layer graphene. Nano Lett.,8(7):1912,2008.
    [132]X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science,319(5867):1229,2008.
    [133]K. Nakada M. Fujita, K. Wakabayashi and K. Kusakabe. J. Phys. Soc. Jpn,69: 1920,1996.
    [134]X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett.,100(20):206803,2008.
    [135]Y.-W. Son, M. L. Cohen, and S. G. Louie. Energy gaps in graphene nanoribbons. Phys. Rev. Lett.,97(21):216803,2006.
    [136]Y.-W. Son, M. L. Cohen, and S. G. Louie. Erratum:Energy gaps in graphene nanoribbons [phys. rev. lett.97,216803(2006)]. Phys. Rev. Lett.,98(8):089901, 2007.
    [137]Y.-W. Son, M. L. Cohen, and S. G. Louie. Half-metallic graphene nanoribbons. Nature,444(7117):347,2006.
    [138]Y.-W. Son, M. L. Cohen, and S. G. Louie. Half-metallic graphene nanoribbons. Nature,446(7133):342,2007.
    [139]L. Yang, C.-H. Park, Y.-W. Son, M. L. Cohen, and S. G. Louie. Quasiparticle en-ergies and band gaps in graphene nanoribbons. Phys. Rev. Lett.,99(18):186801, 2007.
    [140]O. Hod, V. Barone, J. E. Peralta, and G. E. Scuseria. Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett.,7(8):2295,2007.
    [141]E. Rudberg, P. Salek, and Y. Luo. Nonlocal exchange interaction removes half-metallicity in graphene nanoribbons. Nano Lett.,7(8):2211,2007.
    [142]E.-J. Kan, Z. Li, J. Yang, and J. G. Hou. Will zigzag graphene nanoribbon turn to half metal under electric field? Appl. Phys. Lett.,91(24):243116,2007.
    [143]Z. Li, J. Yang, and J. G. Hou. Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc.,130(13):4224,2008.
    [144]阚二军.新型磁性材料的第一性原理计算与设计研究.PhD thesis,2008.
    [145]孙莲.一些纳米材料的第一性原理研究.PhD thesis,2008.
    [146]L. Sun, Q. Li, H. Ren, H. Su, Q. W. Shi, and J. Yang. Strain effect on electronic structures of graphene nanoribbons:A first-principles study. J. Chem. Phys., 129(7):074704,2008.
    [147]F. Bechstedt. Principles of Surface Physics. Springer-Verlag, Berlin/Heidelberg, 2003.
    [148]G. Binnig, C. F. Quate, and Ch. Gerber. Scanning tunneling microscopy. IBM J. Res. and Dev.,30(4):355,1986.
    [149]R. M. Tromp, E. J. van Loenen, J. E. Demuth, and N. D. Lang. Tip electronic structure in scanning tunneling microscopy. Phys. Rev. B,37(15):9042,1988.
    [150]L. J. Lauhon and W. Ho. Single-molecule chemistry and vibrational spec-troscopy:Pyridine and benzene on cu(001). The Journal of Physical Chemistry A,104(11):2463,2000.
    [151]M.-L. bocquet, H. Lesnard, and N. Lorente. Inelastic spectroscopy identification of stm-induced benzene dehydrogenation. Phys. Rev. Lett.,96(9):096101,2006.
    [152]J. Tersoff and D. R. Hamann. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett.,50(25):1998,1983.
    [153]J. Tersoff and D. R. Hamann. Theory of the scanning tunneling microscope. Phys. Rev. B,31(2):805,1985.
    [154]H. Ren, Q. Li, Y. Luo, and J. Yang. Graphene nanoribbon as a negative differ-ential resistance device. Appl. Phys. Lett.,94(17):173110,2009.
    [155]J. P. Perdew and A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B,23(10):5048,1981.
    [156]R. P. Hosteny, Jr. T. H. Dunning, R. R. Gilman, A. Pipano, and I. Shavitt. Ab initio study of the pi-electron states of trans-butadiene. J. Chem. Phys.,62(12): 4764,1975.
    [157]Z. F. Wang, Q. Li, H. Zheng, H. Ren, H. Su, Q. W. Shi, and J. Chen. Tuning the electronic structure of graphene nanoribbons through chemical edge modifica-tion:A theoretical study. Phys. Rev. B,75(11):113406,2007.
    [158]D. Porezag, Th. Frauenheim, Th. Kohler, G. Seifert, and R. Kaschner. Construc-tion of tight-binding-like potentials on the basis of density-functional theory. Application to carbon. Phys. Rev. B,51(19):12947,1995.
    [159]L. Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and M. L. Steiger-wald. Dependence of single-molecule junction conductance on molecular con- formation. Nature,442(7105):904,2006.
    [160]L. Venkataraman, Y. S. Park, A. C. Whalley, C. Nuckolls, M. S. Hybertsen, and M. L. Steigerwald. Electronics and chemistry:Varying single-molecule junction conductance using chemical substituents. Nano Lett.,7(2):502,2007.
    [161]A. Star, T.-R. Han, J.-C. P. Gabriel, K. Bradley, and G. Gruner. Interaction of aromatic compounds with carbon nanotubes:Correlation to the hammett param-eter of the substituent and measured carbon nanotube fet response. Nano Lett., 3(10):1421,2003.
    [162]M. Winkler and K. N. Houk. Nitrogen-rich oligoacenes:Candidates for n-channel organic semiconductors. J. Am. Chem. Soc.,129(6):1805,2007.
    [163]M. Terrones, A. Jorio, M. Endo, A.M. Rao, Y.A. Kim, T. Hayashi, H. Terrones, J.-C. Charlier, G. Dresselhaus, and M.S. Dresselhaus. New direction in nanotube science. Mater. Today,7(10):30,2004.
    [164]Z. Weng-Sieh, K. Cherrey, N. G. Chopra, X. Blase, Y. Miyamoto, A. Rubio, M. L. Cohen, S. G. Louie, A. Zettl, and R. Gronsky. Synthesis of bxcynz nan-otubules. Phys. Rev. B,51(16):11229,1995.
    [165]K. Harigaya. Possible charge-ordered states in boron-nitride and boron-carbon-nitride nanotubes and nanoribbons. Japn. J. Appl. Phys.,45(9A):7237,2006.
    [166]H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley. C60: Buckminsterfullerene. Nature,318(6042):162,1985.
    [167]S. Iijima and T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Nature,363(6430):603-605,1993.
    [168]A. K. Geim and K. S. Novoselov. The rise of graphene. Nat. Mater.,6(3):183, 2007.
    [169]V. Barone, O. Hod, and G. E. Scuseria. Electronic structure and stability of semiconducting graphene nanoribbons. Nano. Lett.,6(12):2748,2006.
    [170]T. B. Martins, R. H. Miwa, A. J. R. da Silva, and A. Fazzio. Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett.,98 (19):196803,2007.
    [171]D. Jiang, B. G. Sumpter, and S. Dai. Unique chemical reactivity of a graphene nanoribbon's zigzag edge. J. Chem. Phys.,126(13):134701,2007.
    [172]R. C. Jaklevic and J. Lambe. Molecular vibration spectra by electron tunneling. Phys. Rev. Lett.,17(22):1139,1966.
    [173]L. J. Lauhon and W. Ho. Single-molecule vibrational spectroscopy and mi-croscopy:Co on cu(001) and cu(110). Phys. Rev. B,60(12):R8525,1999.
    [174]B. C. Stipe, M. A. Rezaei, and W. Ho. Localization of inelastic tunneling and the determination of atomic-scale structure with chemical specificity. Phys. Rev. Lett.,82(8):1724,1999.
    [175]B. C. Stipe, M. A. Rezaei, and W. Ho. Coupling of vibrational excitation to the rotational motion of a single adsorbed molecule. Phys. Rev. Lett.,81(6):1263, 1998.
    [176]B. C. Stipe, M. A. Rezaei, and W. Ho. Single-molecule vibrational spectroscopy and microscopy. Science,280(5370):1732,1998.
    [177]N. Lorente and M. Persson. Theory of single molecule vibrational spectroscopy and microscopy. Phys. Rev. Lett.,85(14):2997,2000.
    [178]N. Lorente, M. Persson, L. J. Lauhon, and W. Ho. Symmetry selection rules for vibrationally inelastic tunneling. Phys. Rev. Lett.,86(12):2593,2001.
    [179]G. Teobaldi, M. Pe nalba, A. Arnau, N. Lorente, and W. A. Hofer. Including the probe tip in theoretical models of inelastic scanning tunneling spectroscopy:Co on cu(100). Phys. Rev. B,76(23):235407,2007.
    [180]N. Mingo and K. Makoshi. Calculation of the inelastic scanning tunneling image of acetylene on cu(100). Phys. Rev. Lett.,84(16):3694,2000.
    [181]M. Grobis, K. H. Khoo, R. Yamachika, X. Lu, K. Nagaoka, S. G. Louie, M. F. Crommie, H. Kato, and H. Shinohara. Spatially dependent inelastic tunneling in a single metallofullerene. Phys. Rev. Lett.,94(13):136802,2005.
    [182]J. Bardeen. Tunnelling from a many-particle point of view. Phys. Rev. Lett.,6 (2):57,1961.
    [183]W. A. Hofer, A. S. Foster, and A. L. Shluger. Theories of scanning probe micro-scopes at the atomic scale. Rev. Mod. Phys.,75(4):1287,2003.
    [184]P. Sautet. Images of adsorbates with the scanning tunneling microscope:Theo-retical approaches to the contrast mechanism. Chem. Rev.,97(4):1097,1997.
    [185]N. Lorente. Mode excitation induced by the scanning tunnelling microscope. Appl. Phys. A,78(6):799,2004.
    [186]N. Lorente, M. F. G. Hedouin, R. E. Palmer, and M. Persson. Chemisorption of benzene and stm dehydrogenation products on cu(100). Phys. Rev. B,68(15): 155401,2003.
    [187]Y. Wang, E. Kioupakis, X. Lu, D. Wegner, R. Yamachika, J. E. Dahl, R. M. K. Carlson, S. G. Louie, and M. F. Crommie. Spatially resolved electronic and vibronic properties of single diamondoid molecules. Nat. Mater.,7(1):38,2008.
    [188]C. J. Hirschmugl, G. P. Williams, F. M. Hoffmann, and Y. J. Chabal. Adsorbate-substrate resonant interactions observed for co on cu(100) in the far infrared. Phys. Rev. Lett.,65(4):480,1990.
    [189]S. Andersson and J. B. Pendry. Structure of co adsorbed on cu(100) and ni(100). Phys. Rev. Lett.,43(5):363,1979.
    [190]L. Bartels, G. Meyer, and K.-H. Rieder. Controlled vertical manipulation of sin-gle co molecules with the scanning tunneling microscope:A route to chemical contrast. Appl. Phys. Lett.,71(2):213,1997.
    [191]M. Head-Gordon and J. C. Tully. Molecular-orbital calculations of the lifetimes of the vibrational modes of co on cu(100). Phys. Rev. B,46(3):1853,1992.
    [192]M. Paulsson, T. Frederiksen, H. Ueba, N. Lorente, and M. Brandbyge. Unified description of inelastic propensity rules for electron transport through nanoscale junctions. Phys. Rev. Lett.,100:226604,2008.
    [193]Y. Sainoo, Y. Kim, T. Okawa, T. Komeda, H. Shigekawa, and M. Kawai. Ex-citation of molecular vibrational modes with inelastic scanning tunneling mi- croscopy processes:Examination through action spectra of cis-2-butene on pd(110). Phys. Rev. Lett.,95(24):246102,2005.
    [194]V. Simic-Milosevic, M. Mehlhorn, K.-H. Rieder, J. Meyer, and K. Morgenstern. Electron induced ortho-meta isomerization of single molecules. Phys. Rev. Lett., 98(11):116102,2007.
    [195]K. Morgenstern. Isomerization reactions on single adsorbed molecules. Acc. Chem. Res.,42(2):213,2009.
    [196]P. Liljeroth, J. Repp, and G. Meyer. Current-Induced Hydrogen Tautomeriza-tion and Conductance Switching of Naphthalocyanine Molecules. Science,317 (5842):1203,2007.
    [197]S. Pan, H. Ren, T. Huang, A. Zhao, B. Wang, Y. Luo, J. Yang, and J. Hou. Determining isomers of melamine upon adsorption on cu(100) with scanning tunneling microscopy.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700