用户名: 密码: 验证码:
对双相不锈钢微观形变行为的研究—原位实验与自洽模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料内部的应力状态对构件的强度、断裂韧性和疲劳行为影响巨大,直接关系到材料的服役安全及使用寿命。对于目前在工程领域广泛应用的多相合金而言,由于其各相具有不同的热膨胀系数及机械性能,在对这类材料进行热处理或施加外力载荷的过程中,材料的应力状态呈现晶粒尺度上的不均匀分布,并导致相间应力及晶粒取向相关应力的产生。因此,随着当今数值分析和计算技术的发展,大量研究正在致力于运用先进的计算机模拟技术对材料的宏观与微观形变行为做出准确预测,从而为航空、海洋等领域用工程材料的研发提供可靠的理论依据。
     近年来,X射线以及中子衍射技术已经被成功地运用于对构件内部应力分布的测量。由于中子的穿透能力远远高于X射线,材料内部几个厘米深处的衍射强度可以被统计性地获得。而运用这两种实验技术表征材料微观力学行为的原理基本相同,即在某一宏观试样方向下对材料中不同晶面衍射峰的位置和宽度变化进行选择性的测量,从而计算出材料在该特征方向、测量体积内的晶格应变分布。
     要获得材料内部的微观应力状态,一种简单的方法是根据材料的弹塑性本构关系,将由衍射实验测得的对应于不同晶面族的点阵应变转化为该取向晶粒的微观应力,从而计算出不同取向晶粒间的交互作用力。然而,这种方法仅适用于具有各向同性力学行为的材料,分析结果受到试样晶体学织构的影响。另一种方法是利用多晶体形变微观力学模型描述材料在应力载荷作用下的微观应力演化。模型假设:多晶金属材料是由许多取向各异的晶粒构成的集合体,材料的宏观力学性能表现为该集合体包含的所有晶粒的应力与应变的体积平均。因此,利用多晶体形变模型可以对材料在承载过程中具有某种特征取向的晶粒集合体的弹塑性行为做出计算。对于模拟被广泛作为工程材料使用的多相合金而言,模型则需要在计算各个单相本身晶粒取向相关应力的同时,考虑存在于不同相的晶粒与晶粒之间(相与相之间)相互作用的影响。
     本论文运用原位中子衍射技术,对一种双相(奥氏体-铁素体)不锈钢在承受压缩载荷过程中各相多个晶面的晶格应变分别进行了测量。通过分析两相中晶格应变分布以及其随宏观载荷的变化,我们得知,材料中存在明显的晶粒间相互作用力。实验数据为对双相不锈钢的弹塑性各向异性研究和微观力学行为模拟提供了丰富的材料参数信息。论文还通过运用常规的机械性能测试手段对双相钢的宏观力学行为进行了表征。在以上实验基础上建立的双相合金的弹塑性自洽模型,考虑了形变前平衡于两相之间的热残余应力,材料的初始晶粒取向以及在形变过程中各相的织构演化。因此,模型可以为双相各向异性材料在承载过程中,由于不同相和不同取向晶粒的力学行为差异所引起的相间及晶粒间弹塑性交互作用做出准确预测。
     另外,本论文通过原位电子背散射衍射(EBSD)技术对双相不锈钢在拉伸形变下的微观结构演化与晶粒尺度的弹塑性应变进行了表征。实验表明,随着形变的进行,材料中的小角度晶界呈现特征性分布。即在某些晶界、孪晶界以及晶粒内部,小角度晶界的密度随形变量的增大而连续增加。通过使用自洽模型,我们对双相钢在拉伸载荷作用下的形变进行了模拟。根据计算得出的双相材料中存在于各相的晶粒取向相关应力以及两相相互作用力的分布及演化规律,实验结果被解释为由具有不同取向和晶体结构的晶粒在形变过程中发生了应力与应变的相互协调所致。并且,模拟得到的奥氏体和铁素体中特征取向的微观应变与实验获得的各相中不同取向晶粒的平均应变吻合得较好。
     本文还将自洽模型应用到对双相不锈钢冷轧织构的模拟。由于材料中各相的形变机制直接影响其形变织构,模拟结果表明,在对单个晶粒选取适当的滑移系作为形变机制以及应力/应变张量作为边界条件的前提下,模型可以较为理想地对铁素体相在轧制过程中的织构演化做出模拟。对于奥氏体相而言,只有在形变量较低,即剪切带机制还未成为该相的主要形变机制时,模型才能对其织构状态做出准确预测。另外,我们利用多晶双相自洽模型对单相奥氏体钢的冷轧织构进行了模拟。通过向低层错能面心立方金属的形变引入微观剪切带机制,模型可以实现奥氏体钢在大形变量下的冷轧织构由铜型向黄铜型的转变。
With modern analytical tools and computational methods it is possible to estimate the stresses to which a component is subjected in service. However, this is not sufficient for the reliable prediction of component performance, due to the fact that in many cases an unexpected failure would occur because of the presence of internal stresses. These internal stresses are in microscopic scales, and combined with the service stresses of the material, thus the component life may be shortened seriously. Furthermore, as for multiphase materials, microstresses can arise from differences in thermal expansion abilities, yield stress, and stiffness among the different phase constituents. Therefore, considerable effort is now being made to explore a framework within which stresses in microscopic scales can be incorporated into design in aerospace, marine, nuclear, and other critical engineering industries.
     The microstresses can be determined non-destructively utilizing diffraction techniques. In these techniques, the Bragg diffraction of X-rays and neutrons in the crystal structure of materials is mostly applied for measuring the lattice spacings in grains within the crystal material. The penetration depth of X-rays in normal structure materials is in the order of micron limiting the measurements to the surface of the components, whereas the penetration depth of neutrons in the same materials is usually in the order of centimeter, making it possible to measure a bulk average of the elastic strains within sub-sets of grains for the component. In a diffraction measurement, the grains, those participate in the measurement are the ones that have a specific lattice plane normal in a given direction. This selective nature of diffraction techniques therefore permits the elastic tensor in macroscopic directions of the material to be determined for a series of grain sub-sets along different crystallographic orientations.
     Based on the diffraction data, the simplest way for estimating the stress state is to multiply the measured elastic lattice strain component with the Young's modulus for the used reflection (for the grain sub-set). The moduli for the specific reflections are known as the diffraction elastic constants. If elastic strain components are determined in multiple directions, it is possible to use the generalized Hooke's law in the calculations of the stress state, and thereby to obtain the three-dimensional stress state of the engineering component. However, this assumes isotropic materials, which means that the intergranular strains existing in the real polycrystalline materials with crystallographic texture or crystalline anisotropy are neglected. Another way to determine the stress state is to perform numerical modeling of a polycrystal deformation. Using micromechanical models, which are based on the deformation of the constituent grains of the polycrystalline material, it is possible to predict the elastic and plastic deformation of the polycrystal and, thereby, of specific grain sub-sets within the material. For modeling the micromechanical behaviors of multiphase materials now in most extensive engineering applications, the microstresses characterizing the elastoplastic properties of materials on different microscopic scales, i.e., considering the interactions of phase to phase and grain to grain, have to be described.
     In the current work, the evolution of lattice strains in a superduplex stainless steel of austenite and ferrite, SAF 2507, during uniaxial compressive loading were measured by using the in-situ neutron diffraction technique. The results provide unambiguous evidence for the existence of large intergranular stresses and valuable experimental inputs for the numerical modeling aiming at accurate evaluations of both the grain-orientation-dependent stress and the phase stress existing in two-phase materials. Based on the experimental lattice strain distributions as well as the laboratorial mechanical tests, the thesis details the implementation of a newly developed two-phase Visco-Plastic Self-Consistent (VPSC) model for simulating the heterogeneous stress within the duplex material. In the presented simulations, thermal residual stresses, initial microstructure and grain orientation, together with texture evolution of the material are involved in the mechanical process; The elastic and plastic interactions among grains with their specific crystal orientations and mechanical performances are considered within the mixed phases, according to which the stress partition between phases and among orientated grains are characterized by the phase stress and the grain-orientation-dependent stress. Therefore, a clear and quantitative exploration into the micromechanical behavior of two-phase materials is achieved.
     In-situ tensile tests were also carried out with the electron back scattering diffraction (EBSD) technique to characterize the evolution of microstructures and local elastic and plastic strain during deformation of the duplex steel. It was observed that as deformation proceeded low angle boundary continuously increased at some characteristic regions in both phases. Still using the developed VPSC model, the evolution of heterogeneous stresses within the material during tensile was simulated. Based on the calculated distributions of grain-orientation-dependent stress in respective phases and stress partition between the phases, the experimental results are explained by the accommodation of micromechanical properties of grains of different orientations and phases. Good agreement of the measured and the simulated average strains for specifically orientated grains is achieved for both phases.
     The model was also applied for simulating rolling textures of the duplex steel. It is confirmed that the model with featured slip systems and stress/strain states could characterize the texture development of the ferritic phase at moderate and large reductions. However, for the austenitic phase a reliable prediction could only be achieved at low strain levels when shear banding is not the dominant mechanism. For modeling deformation textures of the austenite, a simplified approach which incorporated the micro-scale shear banding mechanism was applied by performing the two-phase VPSC model on the single-phase material. The prediction of a transition from the Copper-type texture to the Brass-type texture was achieved at large deformation.
引文
1. www.lapump.com/html/duplex_stainless.html
    2. Leffler B. Stainless steels and their properties[M], Stockholm:Avesta Sheffield AB Research Foundation,1996,30.
    3. Eckenrod J J, Kovach C W. Effect of nitrogen on the sensitization, corrosion and mechanical properties of 18Cr-8Ni stainless steels[M], Ohio:Materials Park, ASM-STP 679,1979,17.
    4. Leffler B. Stainless steels and their properties[M], Stockholm:Avesta Sheffield AB Research Foundation,1996,6.
    5. Nordberg H. Mechanical properties of austenitic and duplex stainless steels [M], Florence: Avesta Sheffield Research Foundation, Innovation Stainless Steels,1993,217.
    6. Pohl M. The ferrite/austenite ratio of duplex stainless steels[J], Z Metallkd,1995,86(2): 97-102.
    7. Steel grades, properties and global standards. Avesta:Avesta Research Centre, Outokumpu Stainless AB, Sweden,2005.
    8. Hutchinson W B, Ushioda K, Runnsjo G Anisotropy of tensile behaviour in a duplex stainless steel sheet [J], Mater Sci Tec,1985,1:728-731.
    9. American Society for Testing and Materials standards (ASTM G150)
    10. Kovach C W. High-performance stainless steels. Pittsburgh:Technical report for Technical Marketing Resources, Inc. of Pittsburgh, Pennsylvania USA,2000.
    11. American Society for Testing and Materials standards (ASTM A240 and A176)
    12. Practical guidelins for the fabrication of duplex stainless steels. Pittsburgh:Technical Marketing Resources, Inc. of Pittsburgh, Pennsylvania USA.2005.
    13. Moverare J, Oden M. Influence of elastic and plastic anisotropy on the flow behavior in a duplex stainless steel [J], Metall Mater Tran A,2002,33(1):57-71.
    14. Song J L, Bate P S. Plastic anisotropy in a superplastic duplex stainless steel [J], Acta Mater,1997,45(7):2747-2757.
    15. Laukonis J V. Anisotropic strain localization in tensile prestrained sheet steel [J], Metall Tran A,1981,12A(3):467-472.
    16. Raphanel J L, Schmitt J-H, Baudelet B. Effect of a prestrain on the subsequent yielding of low carbon steel sheets:experiments and simulations [J], Int J Plast,1986,2(4):371-378.
    17. Johan J, Oden M. Deformation behaviour of a prestrained duplex stainless steel [J], Mater Sci Eng A,2002,337(1-2):25-38.
    18. Technical datasheets. Avesta:AvestaPolarit, Avesta Sheffield AB, Sweden.
    19. Harjo S, Tomota Y, Ono M. Measurements of thermal residual elastic strains in ferrite-austenite Fe-Cr-Ni alloys by neutron and X-ray diffractions[J], Acta Mater,1998, 47(1):353-362.
    20. Dye D, Stone H J, Reed R C. Intergranular and interphase microstresses [J], Current opinion in Solid State and Materials Science,2001,5:31-37.
    21. Clausen B, Lorentzen T, Leffers T. Self-consistent modeling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses [J], Acta Mater,1998,46(9):3087-3098.
    22. Daymond M R, Bourke M A M, Von Dreele R B, Clausen B, Lorentzen T. Use of Rietveld refinement for elastic macrostrain determination and for evaluation of plastic strain history from diffraction spectra [J], J Appl Phys,1997,82(4):1554-1562.
    23. Clausen B, Lorentzen T, Bourke M A M, Daymond M R. Lattice strain evolution during uniaxial tensile loading of stainless steel [J], Mater Sci Eng A,1999,259:17-24.
    24. Holden T M, Holt R A, Clarke A P. Intergranular strains on Inconel 600 and the impact on interpreting stress fields in bent steamgenerator tubing [J], Mater Sci Eng A,1998,246: 180-198.
    25. Fitzpatrick M E, Hutching M T, Whiters P J. Separation of macroscopic, elastic mismatch and thermal expansion misfit stresses in metal matrix composite quenched plates from neutron diffraction measurements [J], Acta Mater,1997,45:4867-4876.
    26. Ohnuki T, Fujita M, Tomota Y, Ono M. Residual stress measurements by x-ray and neutron diffractions in heat-treated SiCw/A2014 composites [J], J Japan Inst Metals, 1998,62:261-266.
    27. Webster G A, Ezeilo A N. Neutron scattering in engineering applications [J], Phys B, 1997,234(236):949-955.
    28. Siegmund T, Werner E, Fischer F D. On the thermomechanical deformation behavior of duplex-type materials [J], J Mech Phys Solids,1995,43:495-532.
    29. Clyne T W, Withers P J. An introduction to metal matrix composites [M]. Cambridge: Cambridge:Cambridge University Press,1993.
    30. Lorentzen T, Clarke A P. Thermomechanically induced residual strains in Al/SiCp metal-matrix composites [J], Comp Sci Technol,1998,58(3-4):345-353.
    31. Daymond M R, Lund C, Bourke MAM, Dunand D C. Elastic phasestrain distribution in a particulate-reinforced metal-matrix composite deforming by slip or creep [J], Metall Mater Tran A,1999,30A:2989-2997.
    32. Martinez-Perez M L, Mompean F J, Ruiz-Hervias J, Borlado C R, Atienza J M, Garcia-Hernandez M, Elices M, Gil-Sevillano J, Peng R L and Buslaps T. Residual stress profiling in the ferrite and cementite phases of cold-drawn steel rods by synchrotron X-ray and neutron diffraction [J], Acta Mater,2004,52:5303-5313.
    33. Winholtz R A, Cohen J B. Load sharing of the phases in 1080 steel during low-cycle fatigue [J], Metall Tran A,1992,23A:341-354.
    34. Stone H J, Holden T M, Reed R C. On the generation of microstrains during the plastic deformation of Waspaloy [J], Acta Mater,1999,47(17):4435-4448.
    35. Liaw P K, Choo H, Buchanan R A, Hubbard C R, Wang X L. Development of an in situ neutron-scattering facility for research and education in the mechanical behavior of materials [J], Mater Sci Eng A,2006,437(1):126-133.
    36. Pang J W L, Holden T M, Mason T E. In situ generation of intergranular strains in an A17050 alloy [J], Acta Mater,1998,46(5):1503-1518.
    37. Turner P A, Tome C N. A study of residual stresses in Zircaloy-2 with rod texture [J], Acta Metal Mater,1994,42(12):4143-4153.
    38. Bourke M A M, Goldstone J A, Shi N, Allison J E, Stout M G, Lawson A C. Measurement and prediction of strain in individual phases of a 2219Al/TiC/15p-T6 composite during loading [J], Scripta Metall Mater,1993,29(6):771-776.
    39. Mari D, Krawitz A D, Richardson J W, Benoit W. Residual stress in WC-Co measured by neutron diffraction [J], Mater Sci Eng A,1996,209(1-2):197-205.
    40. Withers P J, Clarke A P. A neutron diffraction study of load partitioning in continuous Ti/SiC composites [J], Acta Mater,1998,46(18):6585-6598.
    41. Dragoi D, Ustundag E, Clausen B, Bourke M A M. Investigation of thermal residual stresses in tungsten-fiber/bulk metallic glass matrix composites [J], Scripta Mater,2001, 45(2):245-252.
    42. Daymond M R, Withers P J. A new stroboscopic neutron diffraction method for monitoring materials subjected to cyclic loads:Thermal cycling of metal matrix composites [J], Scripta Mater,1996,35(6):717-720.
    43. Tomota Y, Lukas P, Harjo S, Park J H, Tsuchida N, Neov D. In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation [J], Acta Mater,2003,51: 819-830.
    44. Larsson C, Clausen B, Holden T M, Bourke M A M. Measurements and predictions of strain pole figures for uniaxially compressed stainless steel [J], Scripta Mater,2004,51: 571-575.
    45. Johansson J, Oden M, Zeng X H. Evolution of the residual stress state in a duplex stainless steel during loading [J], Acta Mater,1999,47(9):2669-2684.
    46. Harjo S, Tomota Y, Luka P, Neov D, Vrana M, Mikula P, Ono M. In situ neutron diffraction study of α-γ Fe-Cr-Ni alloys under tensile deformation [J], Acta Mater 1999, 49(13):2471-2479.
    47. Baczmanski A, Braham C. Elastoplastic properties of duplex steel determined using neutron diffraction and self-consistent model [J], Acta Mater,2004,52(5):1133-1142.
    48. Tomota Y, Tokuda H, Adachi Y, Wakita M, Minakawa N, Moriai A, Morii Y. Tensile behavior of TRIP-aided multi-phase steels studied by in situ neutron diffraction [J], Acta Mater 2004,52(20):5737-5745.
    49. Atienza J M, Ruiz-Hervias J, Martinez-Perez M L, Mompean F J, Garcia-Hernandez M, Elices M. Residual stresses in cold drawn pearlitic rods [J], Scripta Mater,2005,52: 1223-1228.
    50. Wang Y D, Peng R L, Wang X L, McGreevy R L. Grain-orientation-dependent residual stress and the effect of annealing in cold-rolled stainless steel [J], Acta Mater,2002, 50(7),1717-1734.
    51. Mineur M, Villechaise P, Mendez J. Influence of the crystalline texture on the fatigue behavior of a 316L austenitic stainless steel [J], Mater Sci Eng A,2000,286(2),257-268.
    52. Jorge-Badiola D, Iza-Mendia A, Gutierrez I. Study by EBSD of the development of the substructure in a hot deformed 304 stainless steel [J], Mater Sci Eng A,2005,394(1-2): 445-454.
    53. Bugat S, Besson J, Gourgues A-F, N'Guyen F, Pineau A. Microstructure and damage initiation in duplex stainless steels [J], Mater Sci Eng A,2001,317(1-2):32-36.
    54. Park K K, Oh S T, Baeck S M, Kim D I, Han J H, Han H N, Park S H, Lee C G, Kim S J, Hwan K. In situ deformation behavior of retained austenite in TRIP steel [J], Mater Sci Forum,2002,408-412:571-576.
    55. Frechard S, Martin F, Clement C, Cousty J. AFM and EBSD combined studies of plastic deformation in a duplex stainless steel [J], Mater Sci Eng A,2006,418:312-319.
    56. Girones A, Villechaise P, Mateo A, Anglada M, Mendez J. EBSD studies on the influence of texture on the surface damage mechanisms developed in cyclically loaded aged duplex stainless steels [J], Mater Sci Eng A,2004,387-389:516-521.
    57. Zielinski W, Swiatnicki W, Bartsch M, Messerschmidt U. Non-uniform distribution of plastic strain in duplex steel during TEM in situ deformation [J], Mater Chem Phys,2003, 81(2-3):476-479.
    58. Dawson P R, Boyce D, MacEvan S, Rogge R. Residual stresses in hy100 polycrystals: Comparisons of experiment and simulations [J], Metall Trans A,2000,31:1543-1555.
    59. Wang Y D, Tian H, Stoica A D, Wang X L, Liaw P K, Richardson J W. Evidence on the Development of Large Grain-Orientation-Dependent Residual Stresses in a Cyclically-Deformed Alloy [J], Nature Materials,2003,2:101-106.
    60. Miller M P, Bernier J V, Park J S, Kazimirov A Y. Experimental measurement of lattice strain pole figures using synchrotron x rays [J], Rev Sci Instrum,2005,76:1-11.
    61. Bernier J V, Miller M P. Determination of the mean orientation dependent elastic strains and stresses in polycrystalline alloys from strain pole figures [J], J Appl Cryst,2006,39: 358-368.
    62. Marin E B, Dawson P R. On modelling the elasto-viscoplastic response of metals using polycrystal plasticity [J], Comput Methods Appl Mech Engrg,1998,165(1-4):1-21.
    63. Hutchinson J W. Bounds and self-consistent estimates for creep of polycrystalline materials [J], Proc R Soc Lond,1976, A348:101-127.
    64. Karaman Ⅰ, Sehitoglu H, Maier H J, Chumlyakov Y I. Competing mechanisms and modeling of deformation in austenitic stainless steel single crystals with and without nitrogen [J], Acta Mater,2001,49(19):3919-3933.
    65. Dye D, Stone H J, Reed R C A two phase elastic-plastic self-consistent model for the accumulation of microstrains in Waspaloy [J], Acta Mater,2001,49(7):1271-1283.
    66. Daymond M R, Priesmeyer H G. Elastoplastic deformation of ferritic steel and cementite studied by neutron diffraction and self-consistent modelling [J], Acta Meter,2002,50(6): 1613-1626.
    67. Dakhlaoui R, Baczmanski A, Braham C, Wronski S, Wierzbanowski K, Oliver E C. Effect of residual stresses on individual phase mechanical properties of austeno-ferritic duplex stainless steel [J], Acta Meter,2006,54(19):5027-5039.
    68. Pawlik K, Ozga P. LaboTex:The Texture Analysis Software. Gottinger Arbeiten zur Geologie und Palaontologie, SB4; 1999.
    69. Dingley D J, Field D P. Electron backscatter diffraction and orientation imaging microscopy [J], Mater Sci Tech,1997,13:69-78.
    70. Kallend J S, Kocks U F, Rollett A D, Wenk H R. Operational texture analysis [J], Mater Sci Eng A,1991,132:1-11.
    71. Wang Y D, Peng R L, McGreevy R. High anisotropy of orientation dependent residual stress in austenite of cold rolled stainless steel [J], Scripta Mater,1999,41:995-1000.
    72. Daymond M R, Tome C N, Bourke M A M. Measured and predicted intergranular strains in textured austenitic steel [J], Acta Mater,2000,48(2):553-564.
    73. Pang J W L, Holden T M, Mason T E. The development of intergranular strains in a high-strength steel [J], J Strain Anal,1998,33:373-383.
    74. Kroner E. Berechnung der Elastischen Konstanten des Vielkristalles aus den Konstanten des Einkristalls [J], Z Phys,1958,151:504-518.
    75. Hill R. The essential structure of constitutive laws for metal composites and polycrystals [J], J Mech Phys Solis,1967,15:79-95.
    76. Taylor G I. Analysis of plastic strain in a cubic crystal, in:Timoshenko Aniv Vol, New York:Macmillan,1938,218-224.
    77. Bishop J F W, Hill R. A theory of the plastic distortion of a polycrystalline aggregate under combined stress [J], Phil Mag,1951,42:414-427.
    78. Leffers T, Bilde-Sorensen J B. Intra- and intergranular heterogeneities in the plastic deformation of brass during rolling [J], Acta Metall Mater,1990,38:1917-1926.
    79. Marin E B, Dawson P R. On modeling the elasto-viscoplastic response of metals using polycrystal plasticity [J], Comput Methods Appl Mech Engrg 1998,165:1-21.
    80. Kroner E. Zur plasticchen Verformung des Vielkristalls [J], Acta Metall Mater,1961,9: 155-161.
    81. Hill R. Continuum micromechanics of elasto-plastic polycrystals [J], J Mech Phys Solids, 1965;13:89-101.
    82. Eshelby J. The determination of the elastic field of an ellipsoidal inclusion, and related problems [J], Proc R Soc Lond,1957, A241:376-396.
    83. Kocks U F, Tome C N, Wenk H R. Texture and anisotropy [M]. Cambridge:Cambridge University Press,1998,467-470.
    84. Taylor G I, Elam C F. The distortion of an aluminum crystal during tensile test [J], Phil Tran Roy soc London,1923, A102:643-667.
    85. Taylor G I, Elam C F. The plastic extension and fracture of aluminum crystals [J], Phil Tran Roy soc London,1925, A108:28-51.
    86. Taylor G I, Elam C F. The distortion of iron crystals [J], Phil Tran Roy soc London,1926, A112:337-361.
    87. Piercy G R, Cahn R W, Cottrell A H. A study of primary and conjugate ship in crystals of alpha-brass [J], Acta Metall,1955,3:332-338.
    88. Piercy G R, Cahn R W, Cottrell A H. Polyslip in polycrystals [J] Acta Metall,1958,6: 85-94.
    89. Kocks U F, Tome C N, Wenk H R. Texture and anisotropy [M]. Cambridge:Cambridge University Press,1998,347-35.2.
    90. Taylor G I. Plastic strain in metals[J], J Inst Met,1938,62:307-324.
    91. Kocks U F, Chandra H. Slip geometry in partially constrained deformation [J], Acta Metall,1982,30(3):695-709.
    92. Canova G R, Kocks U F, Jonas J J. Theory of torsion texture development [J], Acta Metall,1984,32(2):211-226.
    93. Tome C, Canova G R, Kocks U F, Christodoulou N, Jonas J J. The relation between macroscopic and microscopic strain hardening in f.c.c. polycrystals [J], Acta Metall,1984, 32(10):1637-1653.
    94. Baczmanski A, Zattarin P, Lipinski P, Wierzbanowski K. Different methods of slip system selection used in plastic deformation models, in:Proceedings of Int Conf JSTMM, Tunis: Tunisie,2000,33.1-7.
    95. Zattarin P, Baczmanski A, Lipinski P, Wierzbanowski K. Modified self-consistent model for time independent plasticity of polycrystalline material [J], Arch Metall,2000,45: 163-184.
    96. Hutchinson J W. Elastic-plastic behaviour of polycrystalline metals and composites [J], Proc R Soc Lond,1970, A319:247-272.
    97. Lipinski P, Berveiller M. Elastoplasticity of micro-inhomogeneous metals at large strains [J], Int J Plasticity,1989,5:149-172.
    98. Lipinski P, Naddari A, Berveiller M. Recent results concerning the modeling of polycrystalline plasticity at large strains [J], Int J Solids Struct,1992,29:1873-1881.
    99. Turner P A, Christodoulou N, Tome C N. Modeling the mechanical response of rolled Zircaloy-2 [J], Int J Plast,1995,11(3):251-265.
    100. Smith W F, Hashemi J. Foundations of materials science and engineering [M]. New York:McGraw-Hill Press,2006,234-240.
    101. Ledbetter H M. Monocrystal-polycrystal elastic constants of a stainless steel [J], Phys Stat Sol A,1984,85:89-96.
    102. Simmons G, Wang H. Single crystal elastic constants and calculated aggregate properties: a handbook. MIT Press; 1971.
    103. Vignal V, Mary N, Valot C, Oltra R, Coudreuse L. Influence of Elastic Deformation on Initiation of Pits on Duplex Stainless Steels [J], Electrochem Solid-State Lett,2004,7(4): C39-C42.
    104. Peng R L, Wang Y D, Chai G C, Jia N, Johansson S, Wang G. On the development of grain-orientation-dependent and inter-phase stresses in a super duplex stainless steel under uniaxial loading [J], Mater Sci Forum,2006,524-525:917-922.
    105. Jia N, Wang Y D, Wu S D, Han W Z, Wang Y N, Deng J N, Liaw P K. Anomalous hardening in copper due to the growth of deformation-induced micro-twins after annealing [J], Scripta Mater,2006,54:1247-1252.
    106. Christensen R M, Lo K H. Solutions for effective shear properties in three phase sphere and cylinder models [J], J Mech Phys Solids,1979,27:315-330.
    107. Hirsch J, Lucke K, Hatherly M. Mechanism of deformation and development of rolling textures in polycrystalline fcc metals [J], Acta Metall,1988,36(11):2905-2927.
    108. Wassermann G The effect of mechanical twinning on the formation of rolling textures in face-centered-cubic metals [J], Z Metallkd,1963,54:61-65.
    109. Akdut N, Foct J. Phase boundaries and deformation in high nitrogen duplex stainless steels Ⅰ.-Rolling texture development [J], Scripta Metall Mater,1995,32:103-108.
    110. Duggan B J, Hatherly M, Hutchinson W B, Wakefield P T. Deformation structures and texture in cold-rolled 70:30 brass[J], Metal Sci,1978,12(8):343-351.
    111. Engler O. Deformation and texture of copper-manganese alloys [J], Acta Mater,2000, 48:4827-4840.
    112. Miraglia M, Dawson P, Leffers T. On the influence of mechanical environment on the emergence of brass textures in FCC metal [J], Acta Mater,2007,55:799-812.
    113.Engler O, Huh M Y, Tome C N. Study of through-thickness texture gradients in rolled sheets[J], Metall Mater Tran A,2000,31A(9):2299-2315.
    114. Kocks U F, Tome C N, Wenk H R. Texture and anisotropy [M]. Cambridge:Cambridge University Press,1998,185-187.
    115. Raabe D, Lucke K. Rolling and annealing textures of bcc metals, in:Textures of Materials ICOTOM-10, Switzerland:Trans. Tech. Pubs,1994,597-610.
    116. Bolmaro R E, Browning R V, Guerra F M, Rollett A D. Texture development in Ag-Ni powder composites [J], Mater Sci Eng A,1994,175:113-124.
    117. Wassermann G, Bergmann H W, Frommeyer G Deformation textures in two-phase systems, in:Fifth International Conference on Textures of Materials (ICOTOM 5), Berlin: Springer Verlag,1978,37-46.
    118. Mecking H, Seeger J, Hartig C, Frommeyer G. Textures in two phase intermetallic TiAl alloys after compression and extrusion [J], Mater Sci Forum,1994,157-162:813-820.
    119. Kocks U F, Tome C N, Wenk H R. Texture and anisotropy [M]. Cambridge:Cambridge University Press; 1998,498-500.
    120. Hirsch J, Lucke K. Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals-I. Description of rolling texture development in homogeneous CuZn alloys [J], Acta metal,1988,36(11):2863-2882.
    121. Aravas N, Aifantis E C. On the geometry of slip and spin in finite plastic deformation [J], Int J Plast,1991,7:141-160.
    122. Myagchilov S, Dawson P R. Evolution of texture in aggregates of crystals exhibiting both slip and twinning [J], Modell Simul Mater Sci Eng,1999,7:975-1004.
    123. Kalidindi S R. Modeling anisotropic strain hardening and deformation textures in low stacking fault energy fcc metals [J], Int J Plast,2001,17:837-860.
    124. Paul H, Driver J H, Maurice C, Jasienski Z. Shear band microtexture formation in twinned face centred cubic single crystals [J], Mater Sci Eng A,2003,359(1-2):178-191.
    125. Paul H, Morawiec A, Bouzy E, Fundenberger J J, Piatkowski A. Brass-type shear bands and their influence on texture formation [J], Metall Mater Tran A,2004,35A(12): 3775-3786.
    126. Hu H, Cline R S, Goodman S R. Deformation textures of metals, in:Recrystallization, Grain Growth and Textures, Ohio:American Society for Metals,1966,295-303.
    127. Wierzbanowski K. Computer simulation study of texture transitions in f.c.c metals and alloys, in:Fifth International Conference on Textures of Materials (ICOTOM 5), Berlin: Springer Verlag,1978,309-317.
    128. Gil Sevillano J, Van Houtte P, Aernoudt E. The contribution of macroscopic shear bands to the rolling texture of FCC metals [J], Scripta Metall,1977,11(7):581-585.
    129. Van Houtte P, Gil-Sevillano J, Aernoudt E. Models for shear band formation in rolling and extrusion[J], Z Metallkde,1979,70:426-432.
    130. Lebensohn R A, Canova G R. A self-consistent approach for modelmodelling texture development of two-phase polycrystals:Application to titanium alloys[J], Acta Mater, 1997,45(9):3687-3694.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700