用户名: 密码: 验证码:
纯钛和BT20钛合金筒形件旋压织构及在热处理中的演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
筒形件旋压是典型的局部加载成形工艺,具有省力、省料、工装简单等优点,是制造大型薄壁无缝筒形件的有效方法,已广泛应用于航天、航空、兵器、舰船和机械等工业领域。由于旋压变形过程非常复杂,影响因素众多,到目前为止,大量的旋压技术研究工作仍定位于零件成形,旋压缺陷和几何精度控制等方面,零件力学性能控制方面考虑得较少。单晶体的力学性能通常具有各向异性,晶体学织构能对金属材料力学性能产生重大影响,织构也就成为控制材料力学性能的重要手段之一。织构演化存在于塑性变形和热处理两个阶段,本文拟对纯钛和BT20钛合金筒形件旋压变形织构及在后续热处理中的演化进行研究。基于晶体塑性理论的有限元模拟是研究变形织构的重要手段。考虑到纯钛低温塑性变形机制的多样性和旋压变形的复杂性,本文主要开展以位错滑移为变形机制的高温纯钛单道次旋压变形织构的晶体塑性有限元模拟和实验研究,采用实验分析法研究纯钛和BT20钛合金两种材料的多道次旋压变形织构以及在热处理中的演化规律。
     变形织构的数值模拟需要材料的初始织构、变形系统和工艺变形历史等信息。将实测宏观织构离散成晶粒取向后可作为初始织构。纯钛的变形系统限定为基面、柱面和锥面上的滑移系统,以及一级锥面{1010}、二级锥面{1122}上的滑移系统。建立织构模拟的多晶体模型,利用商业软件ABAQUS的用户材料子程序UMAT定义率相关的晶体塑性本构关系,通过拟合750℃时纯钛简单压缩应力应变曲线和织构得到晶体塑性本构关系的参数。采用各向同性的多晶纯钛本构关系进行筒形件旋压变形过程的有限元模拟,根据该有限元模拟结果计算物质点的变形梯度。将变形梯度随时间的变化转化为多晶体模型外表面节点位移随时间的变化,以此研究不同进给比、减薄率和初始织构等条件下的旋压变形织构。结果表明:不同进给比和减薄率的旋压筒形件内外表面均形成含有{0002}<1010>型织构和{0002}型纤维织构两种组分的{0002}型织构。大减薄率和小进给比的旋压变形能够明显增强外表面的{0002}<1010>型织构组分。
     筒形件多道次大变形旋压变形织构分析表明:纯钛旋压后容易在筒表面法向附近形成双峰{0002}型织构,双峰强度不对称,双峰连线偏离筒形件的环向方向,而BT20钛合金旋压后则在筒表面法向附近形成不稳定的单峰或多峰{0002}型织构,当变形量很大(本文84.8%)时形成稳定的单峰{0002}型织构。
     对纯钛和BT20钛合金多道次大变形旋压筒形件进行热处理,通过金相组织观察确定初级再结晶和晶粒正常长大的热处理温度和保温时间。采用电子背散衍射技术(EBSD)对热处理后晶体取向进行测量,计算基于晶体取向频率和晶体体积的极图以及两种极图的差异,分析再结晶晶核的定向形核和定向生长趋势。对比两种材料经过晶粒正常长大阶段后织构演化趋势。结果表明:定向形核是纯钛和BT20钛合金多道次大变形旋压筒形件再结晶织构的主要机制,BT20钛合金晶核定向生长趋势较纯钛的大;两种材料的再结晶织构在晶粒长大过程中弱化,而在附近取向上形成较强的新织构组分。
Tube spinning is a typical local-loading forming process with the advantages such as material saving, low forming load and simple tooling. Considered as an effective method to manufacture large-diameter, thin-thickness and seamless tubular part the process has been applied widely in aeronautics, aerospace, weapon, shipbuilding and mechanical industries, etc. Until now most attention has been paid on how to fabricate a workpiece without defects and improve the geometrical precision because spinning deformation is very complex and influenced by many factors. However it was rarely considered to control the mechanical property of as spun part. The mechanical property of a single crystal is usually anisotropic. Therefore material mechanical property is strongly influenced and feasibly controlled by crystal texture. Texture evolution could occur in plastic deformation and heat treatment, so the topic of the paper is oriented as texture evolutions in titanium and BT20 alloy tube spinning and heat treatment of as-spun workpiece. Finite element simulation based on crystal plasticity theory, which is an important method to investigate plastic deformation of polycrystalline aggregate, was applied to study spinning texture. Considering the plastic mechanisms of pure titanium are various at low temperature and spinning deformation is very complex, texture evolution only in single-pass spinning of pure titanium at high temperature, in which only slip systems were expected to be activated, was simulated in the paper. Texture evolutions in multi-pass spinning and subsequent heat treatment were investigated by experimental method.
     Initial texture, deformation systems and deformation history in forming process are necessary in deformation texture simulation. Discretized macro-texture was adopted as initial texture, and deformation systems of pure titanium were
slips in basal, prismatic, pyramidal plane, and slips in first-order pyramidal plane{1010}, second-order pyramidal plane{1122} . Polycrystalline model was established and crystal plasticity constitutive equations were coded in material subroutine UMAT of commercial software ABAQUS, then the parameters in the equations were obtained by fitting stress-strain curves and texture evolution of pure titanium simple compression at 750℃. Spinning deformation was represented by deformation gradient, and calculated from FEM simulation of pure titanium tube spinning using isotropic constitutive relationship. In order to realize spinning deformation of polycrystalline model the deformation gradient as a function of time was transferred to the displacements of surface nodes on the model as boundary condition. Therefore the procedure makes it possible to investigate the influences of feed rate, thickness reduction and initial texture on spinning texture. The results show that {0002}-type texture which contains {0002}<1010> -type texture and {0002}-type fiber texture components is evolved in both outer and inner surfaces of pure titanium as-spun workpiece by different feed rates and thickness reductions. In outer surface {0002}<1010> -type texture component is enhanced by spinning with large thickness reduction and small feed rate.
     Texture analyses of multi-pass and large deformed tube spinning show that double peaks, the intensities of which are different, tend to appear on {0002} pole figure around the surface normal of pure titanium as-spun part, and the line through the two peaks deviates the hoop direction of tube. However, just unsteady single or several peaks appear on {0002} pole figure of BT20 alloy as-spun workpiece, and steady single peak would come into being when total thickness reduction reaches a quite large level (84.8% in the paper).
     As-spun workpieces of pure titanium and BT20 alloy after multi passes and large deformation were heat treated, and optical microstructures were observed to determine reasonable temperatures for primary recrystallization annealing and grain growth. Crystal orientations in heat treatment samples were recognized using electron back scattered diffraction technology. Number-based and volume-based pole figures and their difference were calculated to figure out the mechanisms of texture formation, namely oriented nucleation or growth, in primary recrystallization. Texture evolution during grain growth was also studied. The results show that oriented nucleation mechanism plays an important role in the recrystallization texture formation of both as-spun pure titanium and BT20 alloys, and oriented growth tendency in BT20 alloy is larger than that in pure titanium. Textures in the primary recrystallizations of two titanium materials were randomized in grain growth, and now components would occur at near orientations.
引文
1陈适先,贾文铎等.强力旋压工艺及设备.国防工业出版社. 1986: 14-22.
    2 C. C. Wong, T. A. Dean, J. Lin. A review of spinning, shear forming and flow forming processes. International Journal of Machine Tools & Manufacture. 2003, 43: 1419-1435.
    3王铁夫,石连捷,朱鹤荣.旋压药形罩不对称织构分析.弹道学报. 1991, (3): 71-73.
    4石连捷,刘光华,孙强金.旋压药型罩内在质量的X射线检验.华东工学院. 1985, (1): 117-124.
    5漆玄,石连捷,杨于兴.旋压药形罩织构的测定-旋压药形罩旋转补偿机理探讨阶段总结.兵器材料科学与工程. 1980, (1): 80-85.
    6夏琴香,陈依锦,邱宏扬.旋压技术在汽车零件制造成形中的应用.新技术新工艺. 2003, (9): 29-30.
    7夏琴香,李小龙,周思聪,林业海,黄新文.基于电液控制的皮带轮旋压机床主轴位置精度的仿真与优化.机床与液压. 2008, 36(12): 158
    8韩冬,陈辉.温度梯度对TAl旋压圆筒质量的影响.固体火箭技术. 1999, 22(1): 72-74.
    9刘福广.旋压态T-250无钴马氏体时效钢的组织与性能研究.西北工业大学硕士学位论文,2007.
    10赵云豪,魏志强,王振海.镍基合金筒形件变薄旋压组织与性能的研究.锻压技术. 2001,(1): 33-35.
    11毛柏平,汪发春,赵云豪,沈健.钛合金旋压性能的试验研究.稀有金属. 2004, 28(1): 271-273.
    12 D. G. Brandon, P. Ari-Gur, Z. Bratt, et al. Texture inhomogeneity and the strain distribution in shear-spun steel tubes, Materials Science and Engineering. 1980, 44: 185-194.
    13 R. R. Boyer. An overview on the use of titanium in the aerospace industry. Materials Science and Engineering A. 1996, 213: 103-114.
    14 I. V. Gorynin. Titanium alloys for marine application. Materials Science and Engineering A, 1999, 263: 112-116.
    15赵树萍,吕双坤.钛合金在航空航天领域的应用.钛工业进展. 2002, (5): 18-21.
    16 S. Kalpakcioglu. Maximum reduction in power spinning of tubes. Journal of Engineering for Industry, Transactions of the ASME. 1964, 86 (2): 49-54.
    17 T. Rammoham, R. Mishra. Studies on power spinning of tubes. International Journal of Production Research. 1972, 10(4): 351-364.
    18 M. Hayama, H. Kudo. Experimental study of tube spinning. Bulletin of the JSME. 1979, 22 (167): 769-775.
    19 M. Gur, J. Tirosh. Plastic flow instability under compressive loading during shear spinning process. Journal of Engineering for Industry, Transactions of the ASME. 1982, 104: 17-22.
    20 M. J. Roya, R. J. Klassenb, J. T. Woodb. Evolution of plastic strain during a flow forming process. Journal of Materials Processing Technology. 2009, 209: 1018-1025.
    21马泽恩.筒形件强力旋压的变形分析与旋压力计算.第一届全国旋压会议论文集.国防工业出版社. 1980:33-51.
    22陈适先.筒形件强力旋压的塑性流动场及旋压力解析.机械工程学报. 1982, 18(3): 41-50.
    23周照耀.筒形件强旋刚塑性有限元二维模拟及三维初步分析.哈尔滨工业大学博士学位论文. 1994.
    24赵宪明.筒形件强力旋压三维弹塑性有限元分析及实验研究.哈尔滨工业大学博士学位论文. 1994.
    25 Y. Xu, S. H. Zhang, P. Li, et al. 3D rigid–plastic FEM numerical simulation on tube spinning. Journal of Materials Processing Technology. 2001, 113: 710-713.
    26 F. A. Hua, Y. S. Yang, Y. N. Zhang, et al. Three-dimensional finite element analysis of tube spinning. Journal of Materials Processing Technology. 2005, 168: 68-74.
    27 M. Jahazi, G. Ebrahim. The influence of flow-forming parameters and microstructure on the quality of a D6ac steel. Journal of Materials Process Technology, 2000, 103(3): 362-366.
    28 S. C. Chang, C. A. Huang et al. Tube spinnability of AA 2024 and 7075 aluminum alloys. Journal of Materials Process Technology. 1998, 80-81: 676-682.
    29 S. C. Chang, C. A .Huang, et al. Fabrication of 2024 aluminum spun tube using a thermomechanical treatment process. Journal of Materials Process Technology. 2001, 108(3): 294-299.
    30 K. M. Rajan, K. Narasimhan. An investigation of the development of defects during flow forming of high strength thin wall steel tubes. ASM International, Practical Failure Analysis. 2001, 1(5): 69-76.
    31邝卫华,夏琴香,阮锋.铝合金薄壁管缩径旋压成形缺陷及工艺分析.轻合金加工技术. 2006, 34(4): 25-28.
    32江树勇,薛克敏,李春峰,张军.基于神经元网络的薄壁筒滚珠旋压成形缺陷诊断.锻压技术. 2006, 3: 79-83.
    33 C. N. Reid. Deformation geometry for material scientist. Oxford: Pergamon Press. 1973, p103.
    34毛卫民,张新民.晶体材料织构定量分析.冶金工业出版社. 1993,第1版.
    35П·N·波卢欣等著,黄克琴等译.塑性变形的物理基础.冶金工业出版社. 1989,第1版. p244.
    36毛卫民.金属材料的晶体学织构与各向异性.科学出版社. 2002,第1版. p21-26.
    37陈冷,毛卫民,冯惠平,余永宁.无间隙原子钢冷轧板织构的快速检测.北京科技大学学报. 2003, 25(2): 156-159.
    38李眉娟,勾成,张百生,陈东风.材料织构的中子衍射测量.原子能科学技术. 2004, 38(增刊): 97-99.
    39徐平光,友田阳.原位中子衍射材料表征技术的进展.金属学报. 2006, 42(7): 681-688.
    40 D. Breuer, P. Klimanek. Investigation of texture and dislocation density in rolledβ-brass by X-ray and neutron diffraction. Materials Science and Engineering A. 1997, 234-236: 818-821.
    41 Y. X. Xie. Quantitative texture analysis using time-of-flight neutron diffraction and electron back scatter diffraction. (A dissertation for Ph.D.) University of California, Berkeley. 2002.
    42 L. Saiyi, Irene J. Beyerlein, David J. Alexander, Sven C. Vogel. Texture evolution during multi-pass equal channel angular extrusion of copper Neutron diffraction characterization and polycrystal modeling. Acta Materialia. 2005, 53: 2111-2125.
    43 H. R. Wenk, P. Van Houtte. Texture changes in the hcp→bcc→hcp transformation of zirconium studied in situ by neutron diffraction. Acta Materialia. 2004, 52: 1899-1907.
    44 P. M. B. Rodrigues, H. Bichel, P. Furrer. Texture in aluminum sheet and foilproducts. In: Merchant HD, Morris JG.. Textures in non-ferrous metals and alloys, USA, Metallurgical Society, 1985, 45-59.
    45李赛毅,张新明.深冲用板材的制耳现象及其控制途径.铝加工. 1996, 19(2): 36-38.
    46 J. C. Blade. The cube texture in aluminum and its roles in the control of earing. Australian Institute of Metals, 1967, 12(1): 55-63.
    47 Z. Zhao, W. Mao, F. Roters, D. Raabe. A texture optimization study for minimum earing in aluminium by use of a texture component crystal finite element method. Acta Materialia. 2004, 52: 1003-1012.
    48 D. Raabe, Y. Wang , F. Roters. Crystal plasticity simulation study on the influence of texture on earing in steel. Computational Materials Science. 2005, 34: 221-234.
    49 M. Grujicic, S. Batchu. Crystal plasticity analysis of earing in deep-drawn OFHC copper cups. Journal of Materials Science. 2002, 37: 753-764.
    50 Olaf Engler, Stefan Kalz. Simulation of earing profiles from texture data by means of a visco-plastic self-consistent polycrystal plasticity approach. Materials Science and Engineering A. 2004, 373: 350-362.
    51吕庆功,陈光南等.深冲钢板的主要织构对塑性应变比的影响.钢铁研究. 2000, 5(Sum116): 40-43.
    52 W. B. Hutchinson, Development and control of annealing textures in low-carbon steel. International Metals Reviews. 1984, 29(1): 25-33.
    53王超群.织构强化.冶金工业部有色金属研究院. 1994-2007, China Academic Journal Electronic Publishing House, http: // www. cnki. net.
    54尤世武,蒙良. Zr-4板材的织构强化.上海有色金属. 1995, 16(4): 199-202.
    55常亚喆,刘楚明,詹从堃,李慧中,陈志永.高应变率下纯钛动态压缩力学性能各向异性.湖南有色金属. 2008, 24(4): 33-36.
    56张小明.纯钛板的塑性变形与冲压成形性.金属学快报. 2006, 25(9): 43-44.
    57张德荣.织构强化计算及在钛制压力容器设计中的应用.压力容器.1990, 7(5): 28-33.
    58李冈陵,石玉峰.各向异性钛制压力容器的强化效应研究.压力容器.1989, 6(3): 27-30.
    59 Y. N. Wang, J. C. Huang. Texture analysis in hexagonal materials. Materials Chemistry and Physics. 2003,81: 11-26.
    60 M. R. Bache, W. J. Evans. Impact of texture on mechanical properties in anadvanced titanium alloy. Materials Science and Engineering A. 2001, 319-321: 409-414.
    61郑宝龙,朱为昌,徐言东.辊模拉拔与固定模拉拔钢丝的组织性能研究.钢铁研究. 1996, 3: 21-24.
    62刘沿东,蒋奇武,赵骧,左良,梁志德.拉拔过程中珠光体钢丝帘线的织构分析与模拟.金属学报. 2002, 38(11): 1215-1218.
    63张晓丹, A. Godfrey,刘伟,刘庆.钢帘线单丝在拉拔过程中铁索体{110}<110>周向织构演变的EBSD.第二届全国电子背散射衍射技术及其应用会议. 2007, 123-126.
    64 B. Carlsson, P. Huml. Determination of the material properties of an anisotropic metal wire. Annals of the CIPP. 1996, 45(1): 231-233.
    65 M. Zelin. Microstructure evolution in pearlitic steels during wire draw. Acta Materialia. 2002, 50: 4431-4447.
    66蔡金山.热处理对高纯铝箔织构影响.新疆有色金属. 2003, 52-53.
    67马英晓,杨平等.高纯电子铝箔立方织构形成的微观过程.北京科技大学学报. 2003, 25(2): 147-151.
    68毛卫民,杨平.经济型取向电工钢的定位与发展.世界科技研究与发展. 2006, 28(6): 23-26.
    69 B. Sc., C. J. B. Clews,E. A. Calnan. Deformation textures in face-centered cubic metals. Philosophical Magazine. 1950, 41: 1085-1100.
    70 E. A. Calnan, C. J. B. Clews. The development of deformation textures in metals—partⅡ: body-centered cubic meals. Philosophical Magazine. 1951, 42: 616-635.
    71 E. A. Calnan, B. Sc., C. J. B. Clews. The development of deformation textures in metals.—partⅢ: hexagonal structures. Philosophical Magazine. 1951, 42: 919-931.
    72 D. N. Williams, D. S. Eppelsheimer. Theoretical investigation of the deformation textures of titanium. Journal of the Institute of Metals. 1953, 81: 553-562.
    73 V. P. Houtte, S. Li, M. Seefeldt, L. Delannay. Deformation texture prediction from the Taylor model to the advanced Lamel model. International Journal of Plasticity, 2005, 21: 589-624.
    74 G. I. Taylor. Plastic strain in metals. Journal of the Institute of Metals, 1938, 62: 307-324.
    75 J. F. W. Bishop, R. Hill. A theory of the plastic distortion of a polycrystalline aggregate under combined stresses. Philosophical Magazine. 1951, 42: 414-427.
    76王自强.理性力学基础,科学出版社. 2007.7第一版.
    77刘海军,方刚,曾攀.基于晶体塑性理论的大变形数值模拟技术.塑性工程学报. 2006, 13(2): 1-8.
    78张光,张克实,冯露.有限变形下多晶晶体塑性模型算法及应用.应用力学学报. 2004, 21(1): 96-100.
    79 S. Balasubramanian, L. Anand. Plasticity of initially textured hexagonal polycrystals at high homologous temperatures application to titanium. Acta Materialia. 2002, 50: 133-148.
    80 P. Van Houtte, L. Delannay, S. R. Kalidindi. Comparison of two grain interatction models for polycrystal plasticity and deformation texture prediction. International Journal of Plasticity. 2002, 18: 359-377.
    81 P. Van Houtte, A. K. Kanjarla, A. Van Bael, M. Seefeldt, L. Delannay. The application of multiscale modelling for the prediction of plastic anisotropy and deformation textures. Materials Science Forum. 2005, 495-497: 31-41.
    82 F. Larson, A. Zarkades. Properties of textured titanium alloys. Columbus, Ohio: Metals and Ceramics Information Center. 1974.
    83 D. N. Williams, D. S. Eppelsheimer. Origin of the deformation textures of titanium. Nature. 1952, 170: 146-147.
    84 D. N. Williams, D. S. Eppelsheimer. The cold rolled texture of titanium. AIME Transitions. 1953, 197:1378-1382.
    85 H. P. Lee, C. Esling, H. J. Bunge. Development of the rolling texture in titanium. Textures and Microstructures. 1988, 7(4): 317-337.
    86 H. Inagaki. Development of cold-rolling textures in pure Ti. Zeitschrift für Metallkunde.1991, 82: 779-789.
    87 A. K. Singh, R. A. Schwarzer. Texture and anisotropy of mechanical properties in titanium and Its Alloys. Zeitschrift für Metallkunde. 2000, 91(9): 702-716.
    88 A. T. Churchman. The slip modes of titanium and the effect of purity on their occurrence during tensile deformation of single crystals. Proceedings of the Royal Society A. 1954, 226: 216-226.
    89 H. Conrad. Effect of interstitial solutes on the strength and ductility of titanium. Progress in Materials Science. 1981, 26: 123-403.
    90 H. Inagaki. Hot rolling textures in Ti. Zeitschrift für Metallkunde. 1990, 81: 282-292.
    91 S. R. Agnew, M. H. Yoo, C. N. Tome. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Materialia. 2001, 49: 4277-4289.
    92 H. Inagaki. Evolution of textures and microstructures in thermalmechanical processing of Ti-6Al-4V. Zeitschrift für Metallkunde. 1990, 81: 433-445.
    93 H. Inagaki. Hot rolling textures in high-strength Ti alloys. Zeitschrift für Metallkunde. 1990, 81: 540-555.
    94聂耀庄. Ti-3Al-2.5V合金管织构研究.中南工业大学硕士学位论文. 1999.
    95 R. D. Doherty. Recrystallization and texture. Progress in Materials Science. 1997, 42: 39-58.
    96 I. Samajdar, B. Verlinden, L. Rabet, P. Van Houtte. Recrystallization texture in a cold rolled commercial purity aluminum on the plausible macro- and micro-mechanisms. Materials Science and Engineering A. 1999, 266: 146-154.
    97 F. Gerspach, N. Bozzolo, F. Wagner. About texture stability during primary recrystallization of cold-rolled low alloyed zirconium. Scripta Materialia. 2009, 60: 203-206.
    98朱知寿,颜鸣皋,顾家琳,陈南平.钛的相变织构及其影响因素研究.航空材料学报. 1996, 16(1): 19- 25.
    99朱知寿,顾家琳,陈南平.冷轧形变量对钛板材再结晶织构形成的影响.材料科学与工艺. 1995, 3(2): 49-52.
    100朱知寿,顾家琳,陈南平.钛的织构控制方法与力学性能各向异性的研究.机械工程材料. 1994, 18(6): 8-10.
    101 N. Bozzolo, N. Dewobroto, T. Grosdidie, F. Wagner. Texture evolution during grain growth in recrystallized commercially pure titanium. Materials Science and Engineering A. 2005, 397: 346-355.
    102 P. Van Houtte. A method of orientation distribution function analysis from incomplete pole figures normalized by an iterative method. Materials Science and Engineering. 1980, 43: 7-11.
    103 U.F. Kocks, J.S. Kallend, A.C. Biondo, Accurate representations of general textures by a set of weighted grains. Textures and Microstructures. 1991, 14-18: 199-204.
    104 S. László, Tóth, P. V. Houtte. Discretization techniques for orientationdistribution functions. Textures and Microstructures, 1992, 19: 229-244.
    105 K. Helming, R. Tamm, B. Fels. An automated component method. Materials Science Forum. 1998, 273-275: 119-124.
    106 Thomas Bohlke, Utz-Uwe Haus, Volker Schulze. Crystallographic texture approximation by quadratic programming. Acta Materialia. 2006, 54: 1359-1368.
    107 J. Tarasiuk, K. Wierzbanowski, B. Bacroix. Texture decomposition into Gauss-shaped functions classical and genetic algorithm methods. Computational Materials Science. 2004, 29: 179-186.
    108 M. A. Melchior, L. Delannay. A texture discretization technique adapted to polycrystalline aggregates with non-uniform grain size. Computational Materials Science. 2006, 37: 557-564.
    109 J. G. Tang , X. M. Zhang, Y. L. Deng, et al. Texture decomposition with particle swarm optimization method. Computational Materials Science. 2006, 38: 395-399.
    110 H. J. Bunge. Texture analysis in materials science, first ed. Butterworths, London, 1982.
    111 T. Baudin, R. Penelle. Determination of the total texture function from individual orientations modelled by a Lorentzian distribution. Journal of Applied Crystallography. 1993, 26: 207-213.
    112 T. M. Ivanova, D. I. Nikolayev. New standard function for quantitative texture analysis. Physica Status Solidi B, 2001, 228(3): 825-836.
    113 S. Matthies. Standard function in texture analysis. Physica Status Solidi B, 1980, 101: K111-K115.
    114 TH. Eschner. Texture analysis of by means model functions. Textures and Microstructures. 1993, 21: 139-146.
    115 R. Hill, J. R. Rice. Constitutive analysis of elastoplastic crystals at arbitrary strain. Journal of the Mechanics and Physics of Solids. 1972, 20: 401-413.
    116杨丽娜,张国英,罗志成,戚可振.钛合金中合金元素与位错交互作用与高温强化.沈阳师范大学学报(自然科学版).2009, 27(1): 46-49.
    117黄涛.异步轧制高纯铝箔织构控制的研究.东北大学博士论文. 2006
    118贺彤,刘沿东,蒋奇武,左良.异步轧制对IF钢冷轧及再结晶织构的影响.东北大学学报(自然科学版). 2008, 29(4): 512-516.
    119 E. Quigley, J. Monaghan. Enhanced finite element models of metal spinning.Journal of Materials Processing Technology. 2002, 121: 43-49.
    120 R. Sedlacek, J. Kratochvil, and W. Blum. Deformation induced misorientations: initial stage of subgrain formation as a plastic instability. Physica Status Solidi A. 2001, 186(1): 1-16.
    121 Z. Zhao, W. Mao, F. Roters, D. Raabe. A texture optimization study for minimum earing in aluminium by use of a texture component crystal finite element method. Acta Materialia 2004, 52: 1003-1012.
    122张克实.多晶体变形、应力的不均匀性及宏观响应.力学学报. 2004, 36(6): 715-723.
    123 S. Li, I. J. Beyerlein, D. J. Alexander, S. C. Vogel. Texture evolution during equal channel angular extrusion: Effect of initial texture from experiment and simulation. Scripta Materialia. 2005, 52: 1099-1104.
    124 K. K. Mathur, P. R. Dawson. On modeling the development of crystallographic texture in bulk forming processes. International Journal of Plasticity, 1989, 5: 67-94.
    125 S. R. Kalidindi, L. Anand. An approximate procedure for predicting the evolution of crystallographic texture in bulk deformation processing of FCC metals. International Journal of Mechanical Sciences (UK), 1992, 34(4): 309-329.
    126 N. E. Paton, W. A. Backoften. Plastic deformation of titanium at elevated temperatures. Metallurgical Transactions. 1970, 1: 2839-2847.
    127 J. K. Mackenzie, M. J. Thomson. Some statistics associated with the random disorientation of cubes. Biometrika. 1957, 44(1-2): 205-210.
    128肖纳敏,岳珠峰,兰勇军,佟铭明,李殿忠.介观尺度上热变形奥氏体储存能演化的计算机模拟.金属学报. 2005, 41(5): 496-502.
    129 B. Bacroix, A. Miroux, O. Castelnau. Simulation of the orientation dependence of stored energy during rolling deformation of low carbon steels. Modelling and Simulation in Materials Science and Engineering. 1999, 7: 851-864.
    130 S. H. Choi. Simulation of stored energy and orientation gradients in cold-rolled interstitial free steels. Acta Materialia. 2003, 51: 1775-1788.
    131 S. F.Castro, J. Gallego, F. J. G. Landgraf, H. J. Kestenbach. Orientation dependence of stored energy of cold work in semi-processed electrical steels after temper rolling. Materials Science and Engineering A. 2006, 427: 301-305.
    132 K. Wierzbanowski, J. Tarasiuk, B. Bacroix, K. Sztwiertnia, P. Gerber.Recrystallization textures-two types of modelling. Metals and Materials Internaltional. 2003, 9(1): 9-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700