用户名: 密码: 验证码:
超导磁通量子比特电路的电子束蒸发制备及其参数设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以量子计算机和长程量子通信为研究目标的量子信息科学是目前信息科学的研究前沿,在传统计算机遭遇摩尔定律带来的技术瓶颈和物理极限的现状下,量子计算这个新型的计算体系让我们看到了新的希望。能够满足量子计算条件的物理载体中,超导约瑟夫森结系统是最有发展潜力的量子比特系统之一,它基于超导宏观量子相干效应。本论文对超导量子比特的电子束蒸发制备工艺、磁通量子比特电路的结构和参数设计进行深入细致的研究工作。主要的研究内容工作及成果有:
     1.电子束蒸发制备工艺
     针对新设计制做的多源电子束蒸发设备系统,进行仪器的操作与调试,整理和归纳了仪器调试和试蒸发数据,确定了蒸发最佳条件,工艺参数的范围,并针对蒸发过程中出现的几个主要的问题:Al材料爬壁溢出问题和坩埚散热不佳问题等,分析了它们发生的原因,并提出了解决办法。
     2.超导磁通量子比特电路的结构设计
     阐述了组成超导磁通量子比特电路的核心部件:RF-SQUID.DC-SQUID.偏置电路三个部分的原理。分析了它们的功能和影响其量子状态的参数,以及各部分之间的互相作用和影响,使系统能够满足量子计算的要求。
     3.超导磁通量子比特电路的参数设计
     引出了影响RF-SQUID势能函数的两个重要参数外磁通Φx和βL,并根据RF-SQUID系统势阱中的能级数目与相对势垒高度之间的关系,对能级数与参数Φx、和βL的关系进行了Matlab仿真,由此得出了βL与RF-SQUID环路电感的对应数值关系,将其用于超导磁通量子比特电路的光刻掩膜版图设计中。最后完成了超导磁通量子比特电路的光刻掩膜版图设计。
     电子束蒸发制备工艺以及超导磁通量子比特电路的设计为超导量子比特电路的制备提供了坚实的实验基础,对于超导量子比特技术的发展具有重要的意义。
Quantum information science based on Quantum computers and long-distance quantum communication is a research frontier for information science. Moore's Law has almost put traditional computer industry to dead end. As a new type of computing system, Quantum computing is the future. Superconducting Josephson junction system is one of the most potential qubit systems. It is based on superconducting macroscopic quantum coherence effects. This thesis made detailed works on manufacture process of superconducting qubits by electron beam evaporation and design on flux qubit circuit structure and parameters.
     The main research work and achievements are:
     1) Manufacture process by electron beam evaporation
     For a newly designed system of Multi-source electron beam evaporation equipment, we made instrument operation and commissioning, collated and summarized the instrument commissioning and trial evaporation data, scoped the best evaporation conditions and parameters, analyzed several major issues such as the overflow of Al materials and poor heat Dissipation of Crucible etc. and proposed solutions.
     2) Design on flux qubit circuit structure
     We expounded the principle of the core components of the superconducting flux qubit circuit: RF-SQUID, DC-SQUID and bias circuits, found the parameters that affect its quantum state and the interaction between components.
     3) Design on flux qubit circuit parameters
     Focused on two important parameters of the RF-SQUID potential energy function:Φx and βL, made Matlab simulation to the relationship between the number of energy levels and this two parameters according to the relationship between the number of energy levels and the relative potential barrier height of RF-SQUID. Made Finalization of the superconducting flux qubit circuit lithography mask layout.
     Superconductor flux qubit manufacture process by electron beam evaporation and circuit design provided a solid experimental basis for the development of superconducting qubits.
引文
[I]Nielsen MA, Chuang IL. Quantum Computation and Quantum Information. Ed. 1. Cambridge:Cambridge Univ. Press,2000
    [2]张镇九,量子计算机原理,高等函授学报(自然科学版),2000,第4期
    [3]P. W. Shor, in Proeedeeings of the 35th Annual Symposium of Foundation of Computer Science. (IEEE Computer Society, Los Alamitos, CA)1994,124.
    [4]S. Lloyd, Science,273(1996),1073
    [5]P. W. Shor, Phys. Rev. A,52(1995),2493
    [6]W. K. Wootters, W. H. Zurek, Nature,299(1982),802
    [7]Martinis JM, Devoret MH, Clarke J. Energy-Level Quantization in the zero-voltage state of a current-biased Josephson junction. Phys Rev Lett,1985,55: 1543-1547
    [8]Voss RF, Webb RA. Macroscopic quantum tunneling in 1-μ m Nb Josephson junctions. Phys Rev Lett,1981,47:265-268
    [9]Martinis JM,Devoret MH, Clarke J. Experimental test s for the quantum behavior of a macroscopic degree of freedom:The phase difference across a Josephson junction. Phys Rev B,1987,35:4682-4698
    [10]Rouse R ,Han S, Lukens J E. Observation of resonant tunneling between macroscopically distinct quantum levels. Phys Rev Lett,1995,75:1614-1617
    [11]Makhlin Y, Schon G, Shnirman A. Quantum-state engineering with Josephson-junction devices. Rev Mod Phys,2001,73:357-400
    [12]Friedman J R, Patel V, Chen W, et al. Quantum superposition of distinct macroscopic states. Nature,2000,406:43-46
    [13]林良真.超导技术电力应用研究的进展与前景.科技导报,1995(9):20
    [14]Han S. Development on superconductivity in China, IEEE Transactions on Magnetic.1981.17(5):1831-1834
    [15]YanLG, LinLZ. Recent progress of applied superconductivity in China. Cryogenics 1995.35(12):843-851
    [16]沈致远,高温超导微波电路,国防工业出版社
    [17]W C Steward, CURRENT-VOLTAGE CHARACTERISTICS OF JOSEPHSON JUNCTION[J], Appl.Phys.Lett,1968,12:277-279
    [18]D E Mccumber. Effect of ac Impedance on dC Voltage-Current Characteristics of Superconductor Weak-Link Junctions[J],J.Appl.Phys,1968.39:3113-3118
    [19]宋金璠,Josephson结的理论模型和特性分析,商丘师范学院学报,第16卷第4期(2000),p30-32
    [20]H Risker and H D Voltner. Brownian Motionin Periodic Potentials, Nonlinear Response to an External Force[J]. z PhysikB,1979,33:p297-305
    [21]张裕恒,超导物理(第3版),中国科学技术大学出版社
    [22]Josephson. B,D, "Probable new effects in superconductive tunneling", Phys.Lett. Vol.1,1962, p251-253
    [23]Anderson, P, W, and J. M. Rowell, "Probable observation of the Josephson superconducting tunneling effect", Phys. Lett. Vol.10,1963, p230-232
    [24]Bardeen, J, N, L. Cooper, and J R. Schneffer. "Theory of superconductivity", Phys. Rev, Vol.108.1957, p1175-1204
    [25]Feynman. R P, R.B.Leighton, and M. Sands, The Feynman Lectures on Physics, Quantum Mechances. Addison-Wesley Publishing Company,1965, p21-41
    [26]Van Duzer, T and C.W. Tuener, Principles of superconductive devices and circuits, New York, Elsevier North Holland, Inc,1981, p145-148
    [27]Hasuo, S and T. Imamura, "Digital logic circuits", IEEE Proc. Vol.77,1989,p 1177-1193
    [28]Shapiro, S,"Josephson currents in superconducting tunneling:the effect of microwaves and other observations", Phys. Rev. Lett. Vol.11,1963, p80-82
    [29]Grimes C.C. and S Shapiro, "Millimeter wave mixing with Josephson junctions", Phys. Rev.1968, p397-406
    [30]Hinken. J.H, Superconductor Electronics, Fundamentals and Microwave Applications, Berlin Heidelberg Springer. Verlag,1989, p69-70
    [31]R.Ascazubi, C.Shneider,Ingrid Wilke,Robinson Pino and P.Dutta, Enhanced terahertz emission from impurity compensated GaSb.Phys.Rev. B,2005, (72):045328
    [32]Q.Wu, M. I itz, and X. C. Zhang. Broadband detection capability of Zn T electrooptic field detectors. Appl. Phys. Lett.,1996(68):2924
    [33]P. Han, G. Cho, and X. C. Zhang. Broad band mid-infra-red THz pulse: measurement technique and applications. J. Nonlinear Opt. Phys. Mater,1999(8): 89
    [34]M. Kress, T. I offler, S. Eden, M. Thomson, and H. Roskos, Terahertz—pulse generation by phOtoionization of air with laser pulses com posed of both fundamental and second harmonic waves. Opt. Lett.2004(29):1120
    [35]G. Carr, M. Martin, W. McKinney, K. Jordan, G. Neil and G. W. lliams. H igh-power terahertz radiation from relativistic electrons. Nature,2002,420,153
    [36]G. Ramian. The new UCSB free electron lasers. Nucl. Instrum. M ethods Phys. Res. A,1992,318,225
    [37]A. Dobroiu, M. Yamashita, Y. Ohshima, Y. Morita, C. Otani, and K. Kawase. Terahertz imaging system based on a backward wave oscillator. Appl. Opt., 2004(43):5637
    [38]M. Ghom anneviss, M. Kashani. A. Hogabri. A. Kohiyan and A. Anvari. Design and modification of the FIR HCN laser. PFOC. SPIE, 1998(85):3465
    [39]E. Gornik, K. Unterrainer and C. Kremser. Tunable far infrared solid state lasers based on hot holes in Germanium. Optical and Quantum Electronics,1991(23):267
    [40]S. Kono, M. Tani, and S. Sakai. Ultrabroadband photo conductive detection: Comparison with free space electro-optic sampling. Appl. Phys. Lett.,2001(79): 898
    [41]QWu, and X. C. Zhang. Free space electro optic sampling of terahertz beams. Appl. Phys. Lett.,1995(67):3523
    [42]J. Riordan, F. Sun, Z. Lu, and X. C. Zhang. Free space transient magnet optic sampling. Appl. Phys. Lett.,1997(71):1452
    [43]S. M ican and X. C. Zhang. Tray sensing and imaging. International Journal of High Speed Electronics and Systems,2003(13):601
    [44]A. Semenov et, a Superconducting hot electron bolometer mixer for terahertz heterodyne receivers. IEEE Tvans. App1. Superconduct.,2003(13):168
    [45]M.Golay. A Pneumatic Infra-Red Detector. Rev. Sci. Instrum.,1947(18): 357)
    [46]倪小静杨超云,超导量子干涉器(SQUID)原理及应用,物理与工程,Vol.17No.6(2007),p28-30,37
    [47]邸英浩曹晓明,真空镀膜技术的现状及进展,金属材料的开发与应用,第123期(2004),p45-48
    [48]张存君,镀膜技术在陶瓷上的应用?江苏陶瓷,1997,30(2)
    [49]杨烈宁,关文锋,顾卓明,材料表面薄膜技术[M]北京:人民交通出版社出版,1991.5
    [50]J. M. Martinis, S. Nam, J. Aumentado C. Urbina, Rabi oscillations in a large Josephson-junction qubit, Phys. Rev. Lett.,89(2002), p117901
    [51]J. E. Mooij T.P.Orlando L. Levitov L. Tian, C. H. vander Wal et al, Josephson Persistent-Current Qubit, Science,285(1999),p1036
    [52]Y. Nakamura Y. A. Pashkin J. S. Tsai, Coherent control of macroscopic quantum states in a single-Cooper-pair box, Nature,398(1999), p786-788
    [53]张桂樯,李之其等,RF-SQUID超导量子效应,物理实验,第18卷第6期,p13-15
    [54]曹俊宇,孙国柱,王轶文,低通、带通电路在超导磁通量子比特测量中的应用,稀有金属材料与工程,第37卷增刊4(2008),p453-456
    [55]丛山桦,孙国柱,王轶文,曹俊宇,陈健,于杨等,超导磁通量子比特中的共振隧穿现象,稀有金属材料与工程,第37卷增刊4(2008),p489-492
    [56]Qin Zhang, Abraham G. Kofman, John M. Martinis, and Alexander N. Korotkov, Analysis of measurement errors for a superconducting phase qubit, PHYSICAL REVIEW B 74, (2006), p214518-1-14
    [57]沈丹丹,常俊杰等,超导量子比特铝隧道结的制备与特性,科学通报,第56卷第34期(2011),p2923-2927
    [58]陆殷华等,利用倾斜角度蒸发法制备超导隧道结,低温物理学报,第32卷第3期(2010),p175-177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700