用户名: 密码: 验证码:
直线感应加速器的关键物理问题及三维数值算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从上世纪60年代开始,直线感应加速器得到了快速发展,数值计算方法广泛应用到直线感应加速器的研究中。由于国内缺乏有效的数值模拟研究工具,采用数值模拟方法对直线感应加速器进行研究尚属空白。为了填补这一研究空白,以及为国内直线感应加速器的研究提供新的方法,本论文将对直线感应加速器关键物理问题及数值模拟算法进行研究,主要内容包括以下几个方面。
     (1)研究了注入器的物理过程,同时研究出了多功能发射模型来代替注入器发射电子束。在研究注入器物理过程时,研究了光发射的物理机制,建立起光发射数值模型。并结合注入器二极管结构,实现了光阴极注入器模拟研究,多项模拟结果与实验测试结果基本一致。同时该模拟研究还获得了低发射度电子束,为未来光阴极在直线感应加速器上的应用提供支持。在研究注入器时还研究并开发了多功能发射模型。该模型能够设置多种电子束参数,这些参数涵盖了研究注入器电子束时关心的参数种类,例如:电子束能量、电子束发射度、能散以及电子束发射方向,等。多功能发射模型为研究其它物理过程提供了简单、方便、准确的宏粒子束;
     (2)研究了螺线管线圈与校正线圈的匹配,为实验调节提供指导。为了研究螺线管线圈磁场与校正线圈磁场的匹配,研究并开发了直线感应加速器专用螺线管线圈磁场模型和校正线圈模型。在研究磁场匹配时,通过设置螺线管线圈模型参数来模拟螺线管线圈磁轴倾斜情况,再使用校正线圈对磁轴倾斜场进行校正。经过多次数值调节校正线圈输入电流,最终校正了螺线管线圈磁场。由此从数值研究中实现了螺线管线圈磁轴倾斜的校正。此外还研究了校正线圈的另一个功能:校正电子束质心。该研究是通过建立模型,利用多功能发射模型来产生电子束偏离轴心情况,再使用校正磁场校正质心。以上研究为实验调试电子束心位置及校正螺线管线圈磁场提供指导;
     (3)研究了电子束在加速间隙处激励起的尾场。为了研究电子束尾场及实现电子束输运过程的研究,建立了两种加速腔模型。两种加速腔模型均能在加速间隙处建立起加速电场。通过对两种间隙模型在开放边界或金属边界情况下激励起的尾场分析,研究发现当前加速场馈入方式下的加速腔模型不能很好模拟电子束尾场。但如果改变加速场的馈入方式和改变当前加速间隙处的边界条件,加速腔就能很好的用于尾场研究。同时该研究证明了弯曲式间隙较直缝式间隙尾场阻抗小;
     (4)研究了电子束在直线感应加速器主加速器的输运过程。为了实现电子束输运过程研究,分析模拟所需数值模型,并设计出了计算流程图。同时,为解决计算大尺度问题,引入了“分区建模”并行算法。研究电子束在主加速器的输运过程中采用多功能发射模型代替了注入器发射,模拟了电子束在18个加速组元中加速场与磁场匹配状况下的输运过程。模拟耗费了6台电脑,历时3天的运算。该模拟结果得到了两个重要的结论:加速后电子束能量为20.2MeV,以及束包络不随时间变化。这两个现象与实验观测结果一致,同时该研究获得了一组特定情况下的匹配磁场;
     (5)研究了电子束在聚焦段的输运及聚焦。为了实现聚焦段的研究,首先研究并开发了磁透镜数值模型。在研究磁透镜时分别采用磁标势和磁矢势两种方法来研究了磁透镜中场的分布情况,并对两种算法的特点进行了分析。然后通过结构参数和磁场参数建立起相应的聚焦段模型,通过对磁场的调节,实现了电子束聚焦过程的模拟研究,得到了3.9mm的焦斑。此外还对四极透镜模型及其聚焦效果进行了探索性研究,为四极透镜在直线感应加速器上的应用做准备。
     随后对本研究在实验调试及研究中能够解决的问题做总结。并调研了下一步的研究方向。
Linear induction accelerators (LIA) are constructed to produce relativistic intenseelectron beams with high energy and high qualities. Researching on linear inductionaccelerator by numerical method has been widely used abroad. However, best PICsoftware is embargo for us. University of Electronic Science and Technology of Chinacooperated with Institute of Fluid Physics, China Academy of Engineering Physics toresearch on linear induction accelerator about key physical issue and numericalsimulation algorithms.
     1. To research photoemission injector, photoemission module is researched anddeveloped firstly. In the photoemission module, photocathode material and laser sourceare taken into account. A relationship between photocathode and macro particle initialcondition is established. Then a photoemission injector is modeled to simulatephotoemission process. Some of the simulation result is coincident with experiment.The deviation of current density between experiment and simulation is less than7%.And the emittance of photoemission injector beams is smaller than cold emission;Multi-function emission module is researched and developed, which could set beamparameter not only energy, charge, but also emittance, energy spread and beam off-axis;
     2. Steering magnetic field matching with solenoid magnetic field is researched. Toresearch this physical issue, solenoid magnetic field and steering magnetic field moduleare developed firstly. When research solenoid magnetic field, solenoid axis tilt anduniform ring are taken into account. Then researching shows how to adjust and matchthem together. This research could guide researchers how to adjust steering coil currentin experiments. Steering magnetic field has another function, which could adjust beamcentroid. This physical process is researched also. In the research, multi-functionemission module is used for emit tilt beam, and try to adjust steering coil current toadjust beam centroid. The beam centroid adjusted at last;
     3. To research wakefield and beam transmission, two kinds accelerator cell moduleare developed. The difference between two kinds accelerator cell module is the shape ofthe accelerator gap. The accelerator gap is the most important place on researchwakefield, which could excite certain frequency wakefield. The wakefield aroundaccelerator gap are integrated and analyzed. The simulation result shows that the current gap boundary condition isn’t suitable for research wakefield. If the gap boundarycondition set as electric boundary, that would be perfect for research wakefield. In thenext study, the method of input accelerator field must choose other option. Under thissituation, electric boundary condition could be set at accelerator gap;
     4. Beam transmission process in the main accelerator system is researched. Andthis is the very first time researched main accelerator by numerical method in domestic.The main accelerator system is about40meters long. Based on the platform of theMPICH2message passing system, a proper method for parallel computing of moreaccelerate sections is provided and solved LIA's great scale problems. It cost6personalcomputers,3days to simulate beam transmission in main accelerator. The simulationgot two important result are coincident with experiment:1. The waveform of beam atcertain position is fixed, which wouldn’t change vary time;2. After transmission mainaccelerator, beam energy reached20.2MeV. By the way, the simulation got a group ofmatch fields under certain condition;
     5. Beam transmission in downstream is researched also. Magnetic lens areresearched by magnetic scalar and vector method firstly. Each method has its advantageand disadvantage. The algorithm of magnetic scalar method is simpler than vectormethod. That when set parameters, vector method is much more complicate. But ifpermeability of magnetic lens is smaller than4000, vector method is more proper forsimulation magnetic field. When researching beam transmission in downstream,magnetic vector method is applied. Then build downstream module and set magneticfield to simulate and research beam transmission. The beam focused to a3.9mm spot inthe simulation. For future research, quadrupole lens module are researched anddeveloped also.
引文
[1] L.R. Evans. The large hadron collider-present status and prospects[J]. Applied Superconductivity,2000,10:44-48
    [2] G.A. Loew, et. al. The Stanford two mile accelerator[M]. San Francisco: Stanford Publication,1968,98-99
    [3] C.A. Kapetanakos, P. Sprangle. Ultra-high-current electron induction accelerators[J]. Phys. Today,1985,38:58-58
    [4] M.H. Foss. A conceptual design for an accelerator system for a very high-intensity pulsedneutron source using a linear induction accelerator[J]. Nuclear Science,1981,28:3181-3183
    [5] R.E. Hester, D.G. Bubp, J.C. Clark, et al. The experimental test accelerator (ETA)[J]. NuclearScience,1979,26:4180-4182
    [6] W.E. Nexsen, D.P. Atkinson, D.M. Barrett, et al. The ETA-II induction linac as a high averagepower FEL driver[C]. Free Electron Laser Conference, Naples,1989,54-61
    [7] M. Ong, C. Avalle, R. Richardson, et al. LLNL flash X-ray radiography machine (FXR)double-pulse upgrade diagnostics[C]. Pulsed Power Conference, Maryland,1997,430-435
    [8] A.I. Pavlovskii, V.S. Bossamykin, A.I. Gerasimov, et al.6MJ capacitor bank for magnetic fieldproduction in LIU-30[C]. Pulsed Power Conference, Albuquerque,1993,916-917
    [9] C. Bonnafond, D. Villate. Alignment techniques for the high current AIRIX accelerator[C].Particle Accelerator Conference, New York,1999,1381-1383
    [10] J. de Mascureau, P. Anthouard, J. Bardy, et al. Design and progress of the AIRIX inductionaccelerator[C]. Particle Accelerator Conference, Las Vegas,1993,697-699
    [11] P. Eyharts, P. Anthouard, J. Bardy, et al. Status of the AIRIX induction accelerator[C]. ParticleAccelerator Conference, Dallas,1995,1210-1212
    [12] A. Tokuchi, N. Ninomiya, K. Yatsui, et al. Development of high energy induction accelerator[C].High-Power Particle Beams, Haifa,1998,175-178
    [13] K. Yatsui, W. Jiang, G. Imada. Flue gas treatment of nitrogen oxides by pulsed relativisticelectron beam[C]. Pulsed Power Plasma Science, Las Vegas,2001,318-319
    [14] W. Bauer, E. Stein, B. Schrempp, et al. Stationary particle-in-cell simulations on electron andion diodes[C]. High-Power Particle Beams, Haifa,1998,513-516
    [15] P. Hoppe, W. Bauer, H. Bluhm, et al. The KALIF-HELIA accelerator: description, program andstatus[C]. High-Power Particle Beams, Haifa,1998,218-221
    [16]刘承俊,石金水,邓建军,等.10MeVLIA强流电子束的聚焦[J].强激光与粒子束,1996:58-63
    [17] Zhang Kaizhi, Deng Jianjun, Zhang Linwen, et al. Installation and initial results of the“Dragon-1” induction LINAC [C]. Proceedings of APAC2004,Gyeongju,2004,253-255
    [18]邓建军,丁伯南,王华,等.“神龙一号”直线感应电子加速器[J].高能物理与核物理,2005:604-610
    [19] D.M.R. Anastasio. Testimony of Dr. Michael R. Anastasio Laboratory Director Los AlamosNational Laboratory[R]. July15,2010
    [20] S. Yu. Review of new developments in the field of induction accelerators (electrons and ions)[J].Proceedings of the XVIII International Linear Accelerator Conference,1996:597-601
    [21]杨震华,吴尚清,田世洪,等.曙光一号自由电子激光实验的理论分析[J].强激光与粒子束,1994,3:391-399
    [22] T. Houck, F. Deadrick, G. Giordano, et al. Prototype microwave source for a relativistic klystrontwo-beam accelerator[J]. IEEE Trans. Plasma Sci.,1996,24:938-946
    [23] W. Barletta, A. Faltens, E. Henestroza, et al. High current induction linacs[C]. AIP Conf. Proc.,New York,1995,219-228
    [24]龙继东,石金水. LIA加速器技术在正电子领域的应用探索[C].第十届全国正电子湮没谱学会议论文集,北京,2009,143-145
    [25]张开志.直线感应加速器技术的最新应用[C].四川省电子学会高能电子学专业委员会第四届学术交流会,四川省,2005,379-382
    [26] LSP Suite Particle-in-Cell (PIC) code for Large Scale Plasma Simulations [EB/LO].http://www.mrcwdc.com/LSP/index.html
    [27] D. Short, G. Cooper, I. Crotch, et al. Initial LSP simulations of electron beam transport in gasfilled drift cells and comparison with experiments performed on the eta II linear inductionacceleration at LLNL[C]. High Power Particle Beams, Xi’an,2008,1-4
    [28] C. Yu Jiuan, D.T. Blackfield, G.J. Caporaso, et al. Scaled accelerator test for the DARHT-IIdownstream transport system[C].15th IEEE International Pulsed Power Conference, Montery,2005,789-792
    [29] M. Schulze, E.O. Abeyta, P. Aragon, et al. Commissioning the DARHT-II scaled acceleratordownstream transport[C]. Particle Accelerator Conference, Albuquerque,2007,2627-2629
    [30] K.L. ROTHACKER. A computer program for designing charged particle beam transportsystems[R]. Los Alamose: Los Alamose National Lab,1983
    [31] C. Thoma, T.P. Hughes. A beam-slice algorithm for transport of the DARHT-2accelerator[C].Particle Accelerator Conference, Albuquerque,2007,3411-3413
    [32] B.R.P.Y.-J. Chen. Particle simulations of DARHT-II transport system[C]. Particle AcceleratorConference, Chicago,2001,3299-3301
    [33] P.D. Humphries. Improved emittance calculations in TRAK[EB/LO]. http://www.fieldp.com-/documents/fp-lanl-2010-02.pdf, April2010
    [34] C. Ekdahl, E.O. Abeyta, H. Bender, et al. Initial electron-beam results from the DARHT-IIlinear induction accelerator[J]. Plasma Science, IEEE Transactions on,2005,33:892-900
    [35] T.P. Hughes, D.C. Moir, P.W. Allison. Beam injector and transport calculations for ITS[C].Particle Accelerator Conference,1995,1207-1209
    [36] E.P.L.a.R.K. Cooper. General envelope equation for cylindrically symmetric charged-particlebeams[C]. Part. Acc.,1976,83-95
    [37] C.A. Ekdahl. Tuning the DARHT-II linear induction accelerator focusing[R], Los Alamose: LosAlamose National Lab,2012
    [38] T.C. Genoni, T.P. Hughes, C.H. Thoma. Improved envelope and centroid equations for highcurrent beams[C]. High-Power Particle Beams, Albuquerque,2002,463-466
    [39] J.T. Weir, J.K. Boyd, Y.J. Chen, et al. Improved ETA-II accelerator performance[C]. ParticleAccelerator Conference, Chicago,1999,3513-3515
    [40] C. Yu-Jiuan, W.M. Fawley. BBU and corkscrew growth predictions for the DARHT second axisaccelerator[C]. Particle Accelerator Conference, Chicago,2001,3490-3492
    [41] T.P. Hughes, D.P. Prono, W.M. Tuzel, et al. Design of beam cleanup zone for DARHT-II[C].Particle Accelerator Conference, Chicago,2001,3311-3313
    [42] W.B. Herrmannsfeldt. EGUN-An electron optics and gun design program[R], Stanford:Stanford Linear Accelerator Center,1988
    [43] S.E. E. Henestroza, S. Yu. The DARHT-II electron injector[C].2000International LinacConference, Monterey, California,2000,434-436
    [44] D.L. Lager, H.R. Brand, W.J. Maurer, et al. Artificial intelligence techniques for tuning linearinduction accelerators[C]. Particle Accelerator Conference, San Francisco,1991,3082-3084
    [45] W.C. Turner. Control of energy sweep and transverse beam motion in induction linacs[C].Particle Accelerator Conference, San Francsico,1991,581-585
    [46]雷翔.强流相对论性电子束加速及传输的研究[D].成都:电子科技大学,2007,20-40
    [47]狄隽.电磁粒子模拟软件场算法及强流直线感应加速器束物理的粒子模拟[D].成都:电子科技大学,2005,10-35
    [48] Meng Lin, Yang Ziqiang, Li Tianming, et al. Research activities on HPM at UESTC[C]. HighPower Particle Beams, Xi’an,2008:36-39
    [49] Zhou Jun, Liu Dagang, Liao Chen, et al. CHIPIC: An efficient code for electromagnetic PICmodeling and simulation[J]. IEEE Trans. Plasma Sci.,2009,37:2002-2011
    [50]丁建军,邓建军,王华岑,等.神龙一号"直线感应加速器物理设计[J].强激光与粒子束,2003,15:502-504
    [51]张开志,丁伯南,文龙,等.“神龙一号”注入器研制[J].高能物理与核物理,2005,17:219-223
    [52]王华岑,文龙,章文卫,等.直线感应加速器加速腔物理设计与研究[J].强激光与粒子束,1996,08:313-319
    [53] M. Burns, K. Chellis, C. Mockler, et al. Magnet design for the DARHT linear inductionaccelerators[J]. Particles Accelerator Conference, San Francisco,1991:2110-2112
    [54] I.G.B. B. Feinberg, K. Halback, et al. A method for improving the quality of the magnetic fieldin a solenoid[J]. Nuc. Inst. and Meth.,1982,203:81-85
    [55]邓建军.直线感应加速器[M].北京:国防工业出版社,2006
    [56] R.R. Bartsch, C. Ekdahl, S. Eylon, et al. Beam emittance diagnostic for the DARHT second axisinjector[C]. International Conference on Plasma Science and13th IEEE International PulsedPower Conference, Las Vegas,2001,523-523
    [57] T.P. Hughes, R.E. Clark, S.S. Yu. Three-dimensional calculations for a4kA,3.5MV,2microsecond injector with asymmetric power feed[J]. Physical Review Special Topics-Accelerators and Beams,1999,2:110-118
    [58] J. Rosenzweig, L. Serafini. Design of a high brightness RF photoinjector for the SLAC LinacCoherent Light Source[C]. Particle Accelerator Conference, Washionton D. C.,1993,3024-3025
    [59] T.J. Kauppila, L.A. Builta, R.L. Carlson, et al. Pulsed4-MeV electron injector with an excimerlaser driven photocathode[C]. Particle Accelerator Conference, Chicago,1989,322-324
    [60]张篁,陈德彪,江孝国,等.直线感应加速器用光阴极实验研究[J].强激光与粒子束,2010,24:583-586
    [61]杨长鸿,蒙林,张开志,等.光发射模块的实现及直线感应加速器注入器的模拟(英文)[J].计算物理,2012,18:383-388
    [62] H.W.v.d. Hart. When does photoemission begin[J]. Science, June2010,328:1645-1646
    [63] Magic Manual Document[EB/OL]. www.mrcwdc.com/magic/FormsPDF/MagicManual.pdf,2011
    [64] Zhang Kaizhi, Wen Long, Li Hong, et al.3.5MeV injector for an induction linac[C]. LinearAccelerator Conference,Gyeongju,2002,37-39
    [65]代志勇,胡熙静.注入器二极管区约束磁场的匹配设计研究[J].爆轰波与冲击波,2001,13:69-72
    [66]代志勇,国智文,章林文. LIA注入器发射度增长机理研究及其抑制措施[J].高能物理与核物理,2004:1002-1006
    [67]章冠人.直线感应加速器加速间隙对发射度的影响[J].强激光与粒子束,1992:53-58
    [68]代志勇.轴对称直流带电粒子束的边发射度与RMS发射度[J].爆轰波与冲击波,2004,4:143-146
    [69]代志勇.直线感应加速器束流发射度增长与抑制研究[D].北京:中国科学院高能物理研究所,2004
    [70] R.J. Briggs, D.L. Birx, G.J. Caporaso, et al. Beam dynamics in the ETA and ATA10kA linearinduction accelerators: Observations and Issues[J]. Nuclear Science, IEEE Transactionson,1981,28:3360-3364
    [71] P.D. Stanley Humphries. Supplementary simulations of DARHT acceleration cavities[R].March2008
    [72]杨长鸿,蒙林,张开志,等.直线感应加速器输运过程模拟[J].强激光与粒子束,2010,24:913-917
    [73]张开志,代志勇,文龙,等.“神龙一号”直线感应加速器多功能腔设计[J].强激光与粒子束,2004,16:1334-1336
    [74]代志勇,刘承俊.低横向磁场分量的螺线管线圈的设计[J].中国核科技报告,1999,18:321-328
    [75]荆晓兵,陈楠,李勤.宽平顶低横向场分量螺线管线圈设计[J].强激光与粒子束,2010,24:591-594
    [76]杨长鸿,蒙林,张开志,等.直线感应加速器中聚束磁场的数值计算方法[J].强激光与粒子束,2010:1331-1334
    [77]雷银照.轴对称线圈磁场计算[M].北京:中国计量出版社,1991:56-64
    [78] Hengjun Liu, Wenjun Zhu, Kaizhi Zhang,et al. Printed board dipole trim magnet design for a20MeV LIA [C]. Proceeding of Beams, Albuquerque,1996,1014-1016
    [79] Zhang Kaizhi, Wen Long, Li Hong, et al. Dragon-I injector based on the induction voltageadder technique[J]. Physical Review Special Topics-Accelerators and Beams,2006,9:395-401
    [80]李献文,施将君.10MeV LIA传输聚焦系统元件磁场的数值计算[J].爆轰波与冲击波,1994,4:9-15
    [81] J.K. Lim, P. Frigola, G. Travish, et al. Adjustable, short focal length permanent-magnetquadrupole based electron beam final focus system[J]. Physical Review Special Topics-Accelerators and Beams,2005,8:72-81
    [82] P.D. Stanley Humphries. Three-dimensional field calculations for a DARHT beam-conditioningquadrupole lens[EB/OL]. http://www.fieldp.com/documents/fp-lanl-2012-02.pdf,2012
    [83] K.L. Brown, Rotheacher. Transport a computer program for designing charged particle beamtransport systems [R].1983
    [84]应根裕.电子光学[M].北京:清华大学出版社,1984
    [85]郁庆长.强流离子光学原理[M].北京:原子能出版社,1982
    [86]赵国骏.电子光学[M].北京:国防工业出版社,1985
    [87]廖臣.三维电磁粒子模拟并行算法及其应用研究[D].成都:电子科技大学,2010,34-65
    [88]陈银宝.直线感应加速器间隙中的径向聚焦[J].原子能科学技术,1991,15:19-28
    [89]章文卫,张开志,王雷,等.强流直线感应加速腔微波特性[J].强激光与粒子束,2008,22:2073-2077
    [90] Yang Changhong, Meng Lin, Liu DaGang, et al.3D PIC method for modeling and simulatingthe beam transport system of a linear induction accelerator[J]. Journal of the Korean PhysicalSociety,2011,59:3442-3447
    [91]谢宇彤. LIA强流束聚焦过程数值模拟与透镜设计[D].绵阳:中国工程物理研究院,2004,31-42
    [92]刘大刚.带电粒子与场互作用中粒子模拟方法研究[D].成都:电子科技大学,2008,24-29
    [93]徐旭光,蒙林,杨长鸿,等.直线感应加速器聚焦段的模拟[J].现代电子技术,2010,12:193-195
    [94]蒋薇,章文卫,陈楠,等.强流直线感应加速器束心轨迹调谐技术探索[J].高能量密度物理,2006,18:166-169
    [95]章文卫,蒋薇,张开志,等.强流直线感应加速器束流智能调谐系统设计[J].强激光与粒子束,2004,16:1493-1496

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700