用户名: 密码: 验证码:
重频模块化感应电压叠加器及其相关技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国防和工业应用的需求促进脉冲功率技术向高平均功率、高重频、固态化和紧凑化方向发展。基于感应电压叠加器(Induction Voltage Adder, IVA)技术的固态化脉冲电子束加速器是符合这一发展方向的重要方案之一。本文在对固态化脉冲电子束加速器方案中采用的IVA技术进行了深入细致的理论分析、电路模拟和实验验证的基础上,设计了一台500kV的10级IVA装置。同时,根据固态化技术方案,研制了一台输出阻抗约3?,脉冲宽度约230ns的卷绕型带状脉冲形成线,利用该形成线对前4级感应单元进行了初步的单次脉冲和重频实验研究。本文的研究结果为固态化脉冲电子束加速器的研制奠定了基础。
     论文的研究内容主要包括以下几个方面:
     1.提出了一种改进型固态化脉冲电子束加速器的设计方案,该方案具有高平均功率、长脉冲、固态化以及长寿命等优点。加速器由初级能源、脉冲变压器、磁压缩系统、带状脉冲形成线、IVA等组成。本文重点介绍了IVA的研制,并对加速器的其它子系统进行了设计和模拟研究。
     2.对IVA技术进行了深入细致的理论研究。针对不同的应用条件,分别建立了集中参数等效电路模型和分布参数等效电路模型。在集中参数等效电路中,对于馈入脉冲的不同阶段,包括上升前沿、平顶和下降沿,分别利用Laplace变换求解了纯阻性负载上的电压表达式,尤其是我们比较关心的脉冲前沿部分,分别针对零前沿和有限长的上升前沿进行了求解。通过分析,总结出IVA在设计中应遵循的一些原则。在分布参数等效电路中,介绍了源匹配型和负载匹配型两种类型的IVA电路模型,根据传输线理论和波的反射、透射理论对其中的波的过程进行了分析。最后进行了缩比验证实验。
     3.根据理论分析,结合拟研制的IVA脉冲功率系统的特点,设计了一台500kV的10级IVA,其直径约0.58m,长度2.2m。该IVA的10级感应单元均采用单路馈电的方式,感应腔内采用角向传输线实现电流的均匀分布;磁芯采用了开放式封装的铁基非晶磁环,每个单元中的磁芯伏秒值大于10mV·s。利用时域有限差分的方法对感应腔内的瞬态场分布进行了分析,并建立了单个感应单元和10级IVA的等效电路模型进行了模拟研究。设计制作了与装置相配套的测量系统,包括电阻分压器、电容分压器和Rokowski线圈等。
     4.对卷绕型带状脉冲形成线进行了理论分析、电场模拟和实验研究。采用不同绕制方法设计制作了两台输出阻抗为1.5?、脉宽200ns的卷绕型带状脉冲形成线,分析了其内部的电场分布,并通过实验对两台带状线的输出电压波形进行了对比。研究结果表明,在铜带等宽度的情况下,采用两种不同方法绕制的带状线都可以产生前沿在20ns左右的脉冲,区别在于脉冲平顶部分。采用三层铜带加三层绝缘层的方法绕制的带状线,其输出脉冲更为理想,平顶振荡较小。另外,为了研究10级IVA单个感应单元的响应特性,研制了一台输出阻抗约3?,脉宽约230ns的Blumlein型卷绕型带状脉冲形成线。
     5.利用3?、230ns卷绕型带状脉冲形成线作为馈源对IVA进行了初步的实验研究。分别对单个感应单元,两级IVA和4级IVA进行了单次脉冲实验研究。实验结果表明,单个感应单元对馈入的脉冲信号响应较好,波形基本没有畸变。4级IVA在输入电压约30kV的情况下,在50?的水负载上得到了电压幅值约120kV、脉冲宽度约230ns的电脉冲输出,实现了4倍升压,电流效率约80%。最后对4级IVA进行了初步的重频实验研究。在重复频率为3Hz,充电电压约25kV的情况下装置运行稳定,脉冲序列间具有较好的重复性。
Military and industrial applications have stimulated intense interests in the area of pulsed power technology towards the systems with high average power, high repetition rate, solid-state characteristics, and compact structure. The solid-state pulsed electron beam accelerator based on the technology of induction voltage adder (IVA) investigated in this dissertation is an important candidate in this area. In this dissertation, a 10-stage, repetitive, modularized IVA with an output voltage of 500kV is investigated based on the detailed theoretical analysis, circuit simulations, and experiments. A rolled strip pulse forming line with an impedance of 3? and pulse duration of 230ns is fabricated as the voltage drive source to study the response characteristics of the induction cell. Preliminary experimental investigations are carried out on both the single pulse mode and the repetitive pulse mode. These efforts are instructive for the further developments on the solid-state pulsed electron beam accelerator. The detailed contents and innovative work are as follows.
     1. A novel solid-state pulsed electron beam accelerator based on the technology of IVA with the advantages of high average power, high repetition rate, solid-state, and long lifetime is proposed. It comprises primary energy system, pulse transformer, pulse magnetic compression, rolled strip pulse forming line, and IVA. The design of the IVA is introduced in detail. The parameters design and circuit simulations on the other sub-systems are also carried out.
     2. The technology of the IVA is investigated theoretically in detail. The lumped element model and distribution element model are given respectively according to the electrical transit time of the IVA. When the electrical transit time of the IVA is comparable to, or even longer than the pulse duration, the distribution element model can be useful. Otherwise, the specific model will be simplified to a lumped element model. In the lumped element model, the analysis is split into three parts, namely the responses to the leading edge, the flat top, and the trailing edge of the pulse. In order to analyse the response of the induction cell to a rectangular pulse, the method of Laplace Transform is employed. Some principles in the design of the induction cell are given referred to the analysis. In the distribution element model, the transmission line theory is used to the analysis on both the driver-matched and load-matched IVA. At last, a two-stage IVA is fabricated and experiemental investigations are carried out to verify the theoretical analysis.
     3. Based on the results of the theoretical analysis and the characteristics of the pulsed power source of the IVA, a 10-stage IVA with the output voltage of 500kV is designed. The dimension of the IVA isΦ0.58 m×2.2 m. The induction cell is drived by a single feed port and contains an azimuthal transmission line in order to equally magnetize the metglas cores. In the outer region and central transmission line of the cell, the insulation medium is transform oil. In the cores, the insulation medium is a combination of oil and solid films. The volt-second product of the cores in each cell is about 10mV·s. The distributions of the transient electric fields are calculated with the method of finite-difference time domain. The equivalent circuit models of the single induction cell and 10-stage IVA are developed via the PSpice software and detailed simulations are performed based on the model. The measurement system is also fabricated, including the resistor divider, the capatitive divider, and the Rogowski coils.
     4. The theoretical analysis, electric field simulation, and experimental investigation are carried out on the rolled strip line. Two rolled strip lines with an ouput impedance of 1.5? and pulse duration of 200ns are fabricated with different methods. The distributions of the electric fields and the output voltage waveforms of the two strip lines are compared. The results show that the output voltage waveform of the strip line rolled with 3 copper strips and 3 insulation layers is relatively better with fast leading edge and smooth flat top. In addition, to study the response characteristics of the induction cell, a rolled strip pulse forming line with an impedance of 3? and pulse duration of 230ns is fabricated as the voltage drive source.
     5. Preliminary experimental research is carried out on the induction voltage adder drived by the rolled strip pulse forming line. Experimental investigations on the single induction cell, 2-stage IVA, and 4-stage IVA have been carried out. The experimental results show that the induction cell can transfer the input pulse with few distortions, and the 4-stage IVA realize the voltage addition with a current efficiency of about 80%. When the charged voltage of the 4-stage IVA is about 30kV, the pulse with duration of 230ns is abtained on the 50? load. Repetitive experiments are also carried out on the 4-stage IVA with the charging voltage of about 25kV. The sequence of 20 pulses at the frequency of about 3Hz are obtained, which is well repeatable
引文
[1]曾正中.实用脉冲功率技术引论[M].西安:陕西科学技术出版社,2003.
    [2]刘锡三.高功率脉冲技术.北京:国防工业出版社,2005.
    [3]王淦昌.高功率粒子束及其应用[J].强激光与粒子束, 1989, 1(1): 1-21.
    [4]江伟华,张弛.脉冲功率系统的原理与应用[M].北京:清华大学出版社, 2008.
    [5]王莹.高功率脉冲电源[M].北京:原子能出版社, 1991.
    [6] [苏]ΓA米夏兹著.大功率微秒脉冲的产生。邱贵荣译.北京:原子能出版社, 1974.
    [7] Pai S. T. and Zhang Q., Introduction to high power pulse technology, Singapore: World Scientific Publishing Co. Pre. Ltd., 1995.
    [8]李传胪,脉冲功率技术及其应用,国防科技大学学报增刊, 1995, 17: 1-8.
    [9] Gubanov V P, Korovin S D, Pegel I V, et al. Compact 1000 pps high voltage nanosecond pulse generator [J]. IEEE Transactions on Plasma Science, 1977, 25(2): 258-265.
    [10] Korovin S D, Gubanov V P, Gunin A V, et al. Repetitive nanosecond high voltage generator based on spiral forming line [C]. Pulsed Power Plasma Science, 2001. Digest of Technical Papes, 2: 1249-1251.
    [11] Mesyats G A, Korovin S D, Gunin A V, et al. Repetitively pulsed high current accelerators with transformer charging of forming lines [J]. Laser and Particle Beams, 2003, 21: 197-209.
    [12] Eltchaninov A S, Shpak V G, Urike Y Y, et al. RADAN-150 and RADAn-220—a compact pulsed X-ray apparatus [J]. Defectoscopy, 1984, (12):68-70.
    [13] Mesyats G A, Korovin S D, Rostov V V, shpak V G, and Yalandin M I, The RADAN series of compact pulsed power generators and their applications, Proceedings of the IEEE, 2004, 92(7): 1166-1178.
    [14] Ian D Smith. Induction voltage adders and the induction accelerator family. Physical Review Special Topics- Accelerators and Beams, volume 7, 064801 (2004).
    [15]杨实.基于磁开关和带状线的长脉冲、超低阻抗脉冲发生器及其相关技术研究[D].博士学位论文.国防科技大学研究生院, 2010.
    [16] Juan J Ramires, Kenneth R Preswitch, Ian D Smith. High power, short-pulse generators based on induction voltage adders [J]. Proceedings of the IEEE, 80, 6 (1992):946-957.
    [17] John Maenchen, Gerald Cooperstein, John O’Malley, and Ian Smith. Advances in pulsed power- Driver radiography systems. Proceeding of the IEEE, 92,7(2004).
    [18] R C Pate, J C Patterson, et al. Self-magnetically insulated transmission line (MITL) system design for the 20-stage Hermes-Ⅲaccelerator [C].Proceeding of 6th international pulsed power conference, 1987: 478-481.
    [19] Ramirez J J, et al. The HERMES-ⅢProgram. Pro, 6th Pulsed Power Conference, Arlington, VA, June 29-July 1, 1987: 294-299.
    [20] Ramirez J J, et al. The HERMES-Ⅲ-A 16TW, Short Pulse Gamma Ray Simulator. Proc, 7th International Conference on High power Particle Beams, Karlscruhe, Germany, July 4-8, 1998, 1070.
    [21] Pate R C, et al. Self- Magnetically Insulated Transmission Line (MITL) System Design for the 20- Stage Hermes-ⅢAccelerator. Proc. of 6th Pulsed Power Conference, 1987: 481-487.
    [22] G J Denison, J A Alexander, J P Corley, et al. Performance of the Hermes-Ⅲlaser- triggered gas switches. Proc. 7th IEEE Pulsed Power Conf., Monterey, CA, June 11-14, 1989, pp. 579-582.
    [23] D L Johnson, J A Alexander, J J Ranirex, et al. Hermes-Ⅲpositive polarity experiment. Proc. 7th IEEE Pulsed Power Conf., Monterey, CA, June 11-14, 1989, pp. 32-35.
    [24] Ian D. Smith, Vernon L. Bailey, Jr., J. Fockler, et al. Design of a radiographic integrated test stand (RITS) based on a voltage adder, to drive a diode immersed in a high magnetic field [J]. IEEE Transactions on Plasma Science, 2000, 28, 5 (2000): 1653-1659.
    [25] D L Johnson, et al. Advances in pulsed power modeling and experimentation on the RITS accelerator, in Proceedings of the 14th IEEE international pulsed power conference, 2003: 379-382.
    [26] D L Johnson, et al. Power flow in the RITS-6 acceleratoe[C]. Presentation on beams 2006.
    [27] D Weidenheimer, et al. Design of a driver for the Cygnus X-ray source. Proc. 13th IEEE Int. Pulsed Power Conf., pp. 591-595, 2001.
    [28] Corley J P, Alexander J A, et al. SABRE, A 10MV Linear Induction Accelerator. Proc, 8th Pulsed Power Conference, July 4-8, 1991: 920-923.
    [29] M E Cuneo, J W Poukey, C W Mendel, et al. Observation of reflected waves on the SABRE positive polarity inductive adder MITL[C]. 9th IEEE International Pulsed Power Conference, Albuquerque, New Mexico, 1993, pp. 423-426.
    [30] S G Clough, et al. PIM—A Blumlein Driven IVA Machine. Proc. 14th IEEE Int. Pulsed Power Conference, pp. 387-390, 2003.
    [31] K J Thomas, M C Williamson, S G Clough, M J Phillips. Prototype IVA Module. IEEE Transactions on Plasma Science, Vol. 30, 1642-1646, 2002.
    [32] David V. Rose, Dale R. Welch, Bryan V. Oliver, John E. Maenchen, et al. Numerical Analysis of a Pulsed Compact LTD System for Electron Beam-Driven Radiography. IEEE Transactions on Plasma Science vol. 34, NO. 5, 2006, 8.
    [33] Joshua J. Leckbee, John E. Maenchen, David L. Johnson, et al. Design, Simulation, and Fault Analysis of a 6.5-MV LTD for Flash X-Ray Radiography. IEEE Transactions on Plasma Science vol. 34, NO 5, 2006, 8.
    [34] Kim A A, Kovalchuk B M, Kumpjak E V, et al. 0.75MA, 400ns rise time LTD stage[C].Proc of the 12th IEEE International Pulsed Power Conference, 1999: 955-958.
    [35] Kim A A, Kovalchuk B M, Bastrikov A N,et al. 100ns current rise time LTD stage[C]. Proc of the 13th IEEE International Pulsed Power Conference, 2001: 1491-1494.
    [36] Kim A A, Bastrikov A N, Volkov S N, et al. Development of the ultra-fast LTD stage[C]. Proc of Beams 2002: 14th International conference on High-power Particle Beams, 2002: 81-84.
    [37] Rose D V, Welch D R, Oliver B V, et al. Power flow in a 7-cavity fast-rise LTD system[C]. Proc of the 14th IEEE International Pulsed Power Conference, 2003: 845-848.
    [38] Rogowski S t, Fowler W E, Mazarakis M G , et al.Operation and performance of the first high current LTD at Sandia National Laboratories[C]. Proc of the 15th IEEE International Pulsed Power Conference, 2005:155-157.
    [39] David V. Rose, Dale R. Welch, Bryan V. Oliver, et al. Numerical Analysis of a Pulsed Compact LTD System for Electron Beam-Driven Radiography[J]. IEEE Transactions on Plasma Science vol. 34, NO. 5, 2006: 1879-1886.
    [40] Leckbee J J, Maenchen J E, Johnson D L, et al. Design, Simulation, and Fault Analysis of a 6.5-MV LTD for Flash X-Ray Radiography[J]. IEEE Transactions on Plasma Science vol. 34, NO 5, 2006: 1888-1898
    [41] Kim A A, Bastrikov A N, Volkov S N, et al. 100GW fast LTD stage[C]. Proc. 13th Int. Symp. High Current Electron. IHCE, Tomsk, Russia, 2004: 141-144.
    [42] J R Woodworth, K Hahn, J A Alexander, et al. Gas switch studies for linear transformer driver[C]. 2007 IEEE Pulsed Power Conference, pp: 250-253.
    [43] A Kim, V. Sinebryukhov, B Kovalchuk, et al. Design and first tests of five LTD cavities driving an e-beam diode load[C]. 2007 IEEE Pulsed Power Conference, pp: 144-147.
    [44] M G Mazarakis, W E Fowler, D H McDaniel, et al. High current linear transformer Driver experiment[C]. 2007 IEEE Pulsed Power Conference, pp: 222-225.
    [45]丁伯南,张开志,文龙等.神龙一号注入器研制[J].高能物理与核物理, 2005, 29(3): 219-223.
    [46]邓建军等“.神龙一号”直线感应加速器物理设计.强激光与粒子束,2004,15(5).
    [47]李劲,戴光森,刘小平等.3.5MeV注入器脉冲功率系统.强激光与粒子束,2005,17(2): 263-267.
    [48]丁伯南,邓建军,王华岑等.“神龙一号”直线感应电子加速器.高能物理与核物理,2005, 29(6): 604-610.
    [49] Zhang K Z. 3.5MeV injector for an induction linac[C]. International Linear Accelerator Conference. 2002: M0402.
    [50] Kaizhi Zhang, et al. Design of the 3.5MeV injector for an induction linac, Proc. of Linac 2002, Gyeongju, Korea, Aug. 19-23, 2002.
    [51] Zhang Kaizhi, Wen Long, Li Hong, et al. Dragon-Ιinjector based on the induction voltage adder technique. Physical Review Special Topics- Accelerators and Beams 9, 080401 (2006).
    [52]丛培天,张国伟,吴撼宇,等. 3MV感应电压叠加器的磁感应腔研制[J].强激光与粒子束,2011, 23(2): 563-568.
    [53]蒯斌,邱爱慈,王亮平等.提高“强光一号”驱动Z箍缩负载电流的研究.科学技术与工程[J]. 2006, 6(8): 939-941.
    [54]孙凤举.模块化高功率亚微秒脉冲直线型变压器驱动源[D].西安:西安交通大学, 2001.
    [55]孙凤举,邱爱慈,曾正中,等.快Z箍缩短脉冲大电流驱动源技术的发展[J].强激光与粒子束,2006, 18(3): 513-520.
    [56]梁天学,孙凤举,邱爱慈.百ns直线型脉冲变压器模块仿真及初步试验[J].高电压技术, 2007, 33(7): 18-21.
    [57]孙凤举,邱爱慈,曾江涛,等.直线型变压器储存能量与磁芯和电路参数的关系.强激光与粒子束.2003, 15(2): 191-194
    [58]周良骥,邓建军,陈林,等.快脉冲直线变压器驱动源模块的原理及实验[J].强激光与粒子束, 2006, 18(10): 1749-1752.
    [59]邹文康,周良骥,陈林,等.100GW直线变压器驱动源的物理设计与模拟[J].强激光与粒子束. 2008, 20(2): 327-330.
    [60]邹文康.直线变压器驱动源磁绝缘感应电压叠加器的设计与模拟[D].硕士学位论文.中国工程物理研究院研究生部, 2007.
    [61]周良骥,邓建军,陈林,等.国际快脉冲直线变压器驱动源技术研究进展[J].强激光与粒子束,2008, 20(12): 1947-1953.
    [62] S Ashby, D Drury, G James, et al. CLIA, a compact linear induction acceleratorsystem [C]. 8th IEEE International Pulsed Power Conference, San Diego, California, 1991, pp: 940-942.
    [63] I D Smith. Lee Schlitt’s contribution to pulsed power[C]. 2005 IEEE Pulsed power Conference. Monterey, CA: IEEE, pp: 16- 21.
    [64] D L Johnson, K W Reed, H C Harjes, et al. Results of initial testing of the four stage RHEPP accelerator [C]. 9th IEEE International Pulsed Power Conference, Albuquerque, New Mexico, 1993, pp. 437-440.
    [65] Harjes H, Reed K, Buttram M, et al. The Repetitive High Energy Pulsed Power Module [C], 19th International Power Modulator Symposium, 1990.
    [66] J A Watson, et al. Control system for the LLNL kicker pulse generator. International Power Modulator Conference, Hollywood, CA, June 30-July 3, 2002.
    [67] E G Cook, et al. Solid-state kicker pulser for DARHT-2. IEEE International Pulsed Power and Plasma Science Conference 2001, Las Vegas, NV, June 17-22, 2001.
    [68] Carl Ekdahl, P Aragon, E O Abeyta, et al. Beam stability experiments on DARHT-Ⅱ[C]. 2005 IEEE Pulsed power Conference. Monterey, CA: IEEE, (2005): 783- 788.
    [69]王庆峰,高国强,张政权,等.紧凑型可重复运行的高功率纳秒脉冲源[J].强激光与粒子束,2009,21(6): 956-960.
    [70]徐玉存,王相綦,冯德仁,等.基于MOSFET的6×10单元快速固态调制器[J].强激光与粒子束,2008,20(6): 1043-1047.
    [71] Linwen Zhang, Jin Li, Liang Zhang. Study on solid state modulator based on power MOSFET devices[C]. 2007 IEEE Pulsed Power Conference, pp: 136-139.
    [72] J J Ramirez, D E Hasti, J P Corley, et al. The four stage HELIA experiment[C]. Proc. 5th IEEE Pulsed Power Conf, Arlington, VA, June 10-12, 1985, pp. 143-146.
    [73] J P Corley, C E Heath, D L Johnson, et al. Postive polarity voltage adder MITL experiments on HELIA [C]. 7th IEEE International Pulsed Power Conference, Monterey, California, 1989, pp. 571-574.
    [74] J Fockler, K Nielsen, H Nishimoto, et al. Design of a 6MV, 2TW positive ion driver using an induction adder [C]. 9th IEEE International Pulsed Power Conference, Albuquerque, New Mexico, 1993, pp: 431-436.
    [75]邓建军.直线感应电子加速器[M].北京:国防工业出版社,2006.
    [76] P Corcoran, V Carboni, I Smith, et al. Design of an induction voltage adder Based on gas-switched pulse forming lines[C]. 11th IEEE International Pulsed Power Conference, 1997: 642-650.
    [77] K J Thomas. Pulsed power drivers for new flash x-ray sources at AWE [C].Proceedings of beams 2006.
    [78] R J Allen, C L Jerry, R J Commisso, et al. Initialization and operation of Mercury, a 6-MV MIVA [C]. 2005 IEEE Pulsed Power Conference. Monterey, CA: IEEE, (2005): 318-321.
    [79] R J Commisso, et al. status of the Mercury pulsed power generator, a 6MV, 360kA, magnetically- insulated inductive voltage adder [C]. Proceeding of the 14th IEEE international pulsed power conference, 2003: 383-386.
    [80] P F Ottinger, J W Schumer, R J Allen, and R J Commisso, Modeling magnetically insulated power flow in Mercury[C]. Proceeding of the 14th IEEE international pulsed power conference, 2003: 849-852.
    [81] M G Mazarakis, J W Poukey, S L Shope, et al. SMILE, a self magnetically insulated transmission line adder for the 8-stage RADLAC-Ⅱaccelerator. Proc. 8th IEEE Pulsed Power Conf., San Diego, CA, June 17-19, 1991, pp. 86-89.
    [82] D L Smith, P Ingwersen, L F Bennett, et al. The COBRA accelerator pulsed power driver for Cornell/Sandia ICF research[C]. 10th IEEE International Pulsed Power Conference, Albuquerque, New Mexico, 1995, pp. 1449-1454.
    [83] D M Barrett, B D Cockreham, A J Dragt, et al. A pulse power modulator system for commercial high power ion beam surface treatment applications[C]. 12th IEEE International Pulsed Power Conference, 1999, pp.173-176.
    [84]张自成.紧凑重频Tesla变压器型吉瓦脉冲发生器[D].博士学位论文.国防科技大学研究生院,2008.
    [85]孟志鹏,杨汉武,张自成,李达,钱宝良.紧凑高重复频率加速器的初级能源.强激光与粒子束,2008, 20(10): 1757-1760.
    [86]苏建仓,王利民,丁永忠等.串联谐振充电电源分析及设计.强激光与粒子束,2004, 16(12):1611-1614.
    [87]李立.现代电力电子技术基础.高等教育出版社. 1999.
    [88]王兆安,黄俊.电力电子技术[M],北京:机械工业出版社,2000:100-108.
    [89]李士忠.高功率带绕式脉冲变压器的研究[D].硕士学位论文.国防科技大学研究生院,2005.
    [90]刘金亮,张建德,李永忠等.一种给脉冲形成线充电的带绕式高压脉冲变压器[J].强激光与粒子束,2003,15(4):394-396.
    [91]杨汉武.脉冲功率及其诊断技术讲义[M].长沙:国防科技大学,2003.
    [92] Shi Yang, Hui-Huang Zhong, Bao-Liang Qian, et al. An all solid-state, rolled strip pulse forming line with low impedance and compact structure. REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81(4):043303.
    [93]王瑞华.脉冲变压器设计[M].北京:科学出版社, 1987.
    [94] Melville W S. The use of saturable reactors as discharge device for pulsegenerators [J], Proc. Institution of Electrical Engineers, 1951.98(3):185-207.
    [95]甘孔银.磁开关及在脱硫脱硝脉冲电源中的应用[D].硕士学位论文.中国工程物理研究院研究生部,1998.
    [96] D M Barrett. Parameters which influence the performance of practical magnetic switches [J]. Proc of 10th IEEE Int. Pulsed Power Conf. 1995:1154-1159.
    [97] M Nehmadi, Z Gramer, Y Ifrah, et al. Magnetic pulse compression for a copper vapor laser [J]. J. Phys. D: Appl. Phys, 1989(22):29-34.
    [98] D L Birx, E J Lauer, L L Reginato, et al. Basic Principles Governing the Design of Magnetic Switch [R]. UCID-18831. Lawrence Livermore National Laboratory, 1980.
    [99] Houxiu Xiao, Kefu Liu, Jin Li, et al. Modeling a 3.5MeV induction voltage adder (IVA) [C]. Proceeding of 1st EAPPC, 2006, Chengdu: 127-130.
    [100]张篁,夏连胜,李劲.感应叠加过程行波分析和模拟[J].强激光与粒子束,2007,19(3):495-499.
    [101] C W Mendel, Jr., et al. J. Appl. Phys., 71,3731(1992)
    [102] J M Creedon, Appl. Phys., 48, 1070(1992)
    [103] S E Rosenthal. 1992 IEEE Conf. Plasma Sci.
    [104] [苏]ΓA米夏兹著,李国政译.真空放电物理和高功率脉冲技术[M].北京:国防工业出版社,2006.
    [105] Paul W Smith. Transient Electronics [M]. Chichester: John Wiley & Sons Ltd. 2002.
    [106]华中理工大学数学系.复变函数与积分变换.高等教育出版社&施普林格出版社, 2002.
    [107]孟志鹏,杨实,杨汉武等.感应电压叠加器模块对方波脉冲的响应[J].强激光与粒子束, 2010, 22(8): 1949-1953.
    [108]孟志鹏,钱宝良,杨汉武,杨实,余小辉.直线型脉冲变压器模块的响应特性.强激光与粒子束,2009,21(10): 1566-1570.
    [109]孟志鹏,杨汉武,钱宝良,苏春.单级长脉冲LTD模块的设计及分析.高电压技术,2009,35(1):69-74.
    [110]张世远,路权,薛荣华,都有为.磁性材料基础[M].科学出版社, 1988.
    [111]张瑜.基于闭合磁环脉冲变压器的紧凑型高压纳秒脉冲发生器[D].硕士学位论文.国防科技大学研究生院,2009.
    [112]王发厚,石金水,陈思富,等.快脉冲大尺寸非晶态磁芯研究进展[J].强激光与粒子束, 2010, 22(4): 829-833.
    [113] V A Vizir, A D Maksimenko, V I Manylov, et at. Sub- microsecond pulsed high-power transformer magnetic cores[C]. 13th int. symposium on high currentelectronics conf. (2004): 198-200.
    [114]赵林.高功率相对论磁控管的研究[D].硕士学位论文.国防科技大学研究生院, 2007.
    [115]王淦平,谭杰,向飞等.激磁电感对直线变压器输出波形顶降的影响[J].强激光与粒子束.2010, 22(12): 3062-3066.
    [116] Humphries Stanley, Jr., Principles of Charged Particle Acceleration, A Wiley Interscience Publication, John Wiley & Sons, New York, 1986.
    [117] D M Barrett. Core reset considerations in magnetic pulse compression networks [C]. Proc of 10th IEEE Int. Pulsed Power Conf. 1995:1160-1165.
    [118]黄子平,李欣,高峰.磁芯材料脉冲间叠加复位研究[J].强激光与粒子束.2006, 18(7):1173-1177.
    [119]高景明.陡化前沿Marx发生器及其应用研究[D].博士学位论文.国防科技大学研究生院, 2009.
    [120]张瑜,刘金亮,文建春等.Rogowski线圈信号电阻对纳秒级脉冲大电流的响应[J].强激光与粒子束,2009,21(10): 1583-1588.
    [121] Ray W L and Hewson C R. High performance Rogowski current transducers[C]. IEEE LAS Conference Proceedings, Rome, October 2000.
    [122]陈景亮,姚学玲,孙伟.两种典型Rogowski线圈的研制[J].高电压技术, 2004, 30(7): 14-16.
    [123]张明明,张艳,李红斌,等. Rogowski电流互感器的积分器技术[J].高电压技术, 2004, 30(9): 13-16.
    [124]欧阳佳.折叠型平板Blumlein线及其应用研究[D].博士学位论文.国防科技大学研究生院,2007.
    [125]欧阳佳,刘永贵,刘金亮等.折叠型平板Blumlein线的理论与实验研究[J].强激光与粒子束,2007,21(6): 1044-1048.
    [126]侯锐.层叠脉冲功率发生器初步研究[D].硕士学位论文.国防科技大学研究生院, 2009.
    [127]电工绝缘手册编审委员会.电工绝缘手册[M].北京:机械工业出版社, 1990.
    [128]张积之.固态电介质的击穿[M].杭州:杭州大学出版社, 1994.
    [129]张一尘.高电压技术[M].北京:中国电力出版社, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700