用户名: 密码: 验证码:
基于数字图像处理技术的锅炉火焰检测与污染物排放特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电站锅炉燃烧的基本要求在于建立和保持稳定的燃烧火焰,安全可靠的燃烧诊断技术成为电厂安全性的重要条件和基本要求。利用CCD摄像机和图像处理技术对燃烧火焰进行参数测量和燃烧诊断,是一项随计算机技术、光学技术和数学方法的进展而发展起来的新兴技术。本文以可视化温度场测量与污染物排放分析为主要研究内容,具体内容如下:
     (1)利用火焰监测系统对现场运行锅炉的火焰温度场进行了测量。火焰监测系统由光学传递系统、CCD摄像器件、图像采集卡等部件组成。在各种不同工况下,结合火焰温度场的测量,对锅炉污染物排放特性进行了研究。通过实验研究,主要考察各种运行参数及其煤种的变化对污染物排放的影响规律。
     (2)利用Fluent软件对西柏坡3号炉两种不同运行工况进行了燃烧与污染物排放数值模拟,将计算结果与CCD等试验测量结果进行了对比。两者之间的数据具有较强的相关性,这为燃烧诊断系统将来与燃烧控制系统的结合初步建立了基础。
     (3)利用支持向量机的方法对污染物排放量进行了预测,并同神经网络的计算结果进行了对比。准确、快速地预报锅炉在不同工况下的排放特性,可为电站锅炉通过燃烧调整降低污染物排放和提高锅炉效率提供有效手段。利用灰色理论关联度分析对污染物排放的各影响因素进行了分析。参照关联分析的结果可以对运行进行调节,从而为降低污染物排放的措施提供参考。
     (4)利用基于模糊免疫网络算法,对火焰数字图像的分类应用进行了研究。根据火焰监测设备在现场获得的火焰图像,运用数字图像处理技术提取其特征量,然后对其进行分类研究,根据火焰图像类别是否属于连续的同一类别来判断燃烧状态发生变化。通过试验证明了该方法在数字图像火焰监测应用中的有效性。
For large coal-fired boilers, establishing and maintaining steady combustion is essential to ensure the safety and efficiency. Diagnosis techniques as a main and basic method for safety of plant are needed. An optical method using CCD camera and image processing system for combustion diagnosis is the new technique that is being developed along with the advance of computer science, optics technology and mathematical techniques. In this paper, the main content including the monitoring temperature field visualization and NO_x emission is as follows:
     (1) Flame temperature is measured in running boilers on varied operating conditions by a combustion monitoring system. The combustion monitoring system includes an optics delivering system, a CCD camera, and an image collecting system. Research on the characteristics of NO_x emission was also carried out. The purpose of this research is to found the influence of varying operating conditions and coal types on the NO_x emission.
     (2) Numerical simulations were conducted for two different operating cases of combustion and NO_x emission, for the number 3 coal- fired furnace at XIBAIPO power plant. The comparison between the dates from computer simulation and the real-time measurement at the power plant showed good coincidence and correlation. It is the preliminary foundation to combing diagnosis system and control system.
     (3) The characteristics of NO_x emission were analyzed by SVM. The results obtained by SVM have been compared with that of ANN. The effective means that??? the characteristics of NO_x emission was forecasting by SVM could reduce NO_x emission and increase boiler efficiency by adjusting combustion conditions. What's more, the influencial factors on NO_x emission were studied by means of grey relational analysis, the results can be a reference for the adjustment of combustion conditions for reducing NO_X emission
     (4) The digital images of flame can be classified better by the method based on fassy immune network algorithm. The eigenvectors of flame images obtained from plant trials are extracted by digital image technology and classified. Recognizing the image classification to judge whether the combustion status of flame changing or not. The results of the experiment show that the said method has very high recognition accuracy to judge changes of combustion status.
引文
1.吕伟业,中国电力工业发展及其产业结构调整,中国电力,2002,35(1):1-7
    2.岑可法,洁净煤技术的研究和发展,动力工程,1997,17(5):15-20
    3.何佩敖,我国燃煤电厂NOx控制和清洁燃煤技术,电站系统工程,1993,11(1):36-48
    4.曾汉才,燃烧与污染,华中理工大学出版社,1992
    5.张秀彬,热工测量原理及其现代技术,上海交通大学出版社,1995
    6.徐益谦,现代锅炉火焰检测技术的新进展,北京科学技术出版社,2000
    7.蔡小舒,罗武德,采用发射光谱法检测煤粉锅炉火焰的技术研究,动力工程,Vol.20 No.6 Dec 2000:955-983.
    8.李麦亮等,基于光谱测量的燃烧诊断技术,装备指挥技术学院学报,Vol.13 No.4 August 2002.:32-36.
    9.周怀春,韩才元,煤粉燃烧火焰颜色定量分析试验研究,中国电机工程学报,1993,13(1):44-49
    10.肖隽等,基于炉膛微压信号的锅炉燃烧诊断试验研究,锅炉技术,Vol.33 No.7,July,2002:11-15
    11.胡志云等,燃烧场参数的激光诊断技术研究,强激光与粒子束,Vol.14,No.5 Sep,2002:702-706
    12.李麦亮等,测量火焰中氢氧基分布的激光诱导荧光技术,国防科技大学学报,Vol.25 No.3 2003:10-13,23.
    13.关小伟等,利用平面激光诱导荧光技术测量燃烧场内NO的浓度分布,强激光与粒子束,Vol.15,No.7 Jul.,2003:629-631.
    14.周怀春等,用于煤粉燃烧诊断的火焰颜色计测方法,光谱学与光谱分析,1994,14(2),31-34
    15.周怀春,韩才元,应用火焰探测诊断煤粉燃烧的试验研究,动力工程,1993,13(4),32-36
    16. Woon Bo Baek, Sung Jin Lee, Seung Yeob Baeg, Chang Ho Cho. Flame image processing&analysis for optimal coal firing of thermal power plant. ISIE 2001, Pusan, KOREA, 928-931.
    17.陈焕生,温度测试技术及仪表,水利电力出版社,1987
    18.岑可法,锅炉燃烧试验研究方法及测量技术,水利电力出版社,1987
    19.张平,燃烧诊断学,兵器工业出版社,1988
    20.李均宜等,炉温仪表与热控制,机械工业出版社,1981
    21. A.I.Dahl and E.F.Fiock, Shielded Thermocouples for Gas Turbines, Transactions of The ASME, 1949, 153~161
    22. P.E. Best, P. L. Chien, R.M. Carangelo and P.R. Solomon, Tomographic Reconstruction of FT-IR Emission and Transmission Spectra in Sooting Laminar Diffusion Flames, Combustion and Flames, 1991, 86: 333~346
    23.肖旭东,是度芳,一种新颖的温度测量方法——光学层析法,锅炉技术,1992
    24.孟令军,用计算机数字图像处理技术检测电站锅炉燃烧火焰,化工自动化仪表,2001,28(2):43~45
    25. M.Y.Choi, A.Hamins et al., Simultaneous Optical Measurement of Soot Volume Fraction and Temperature in Premixed Flames, Combustion and Flame, 1994, 99:174~186
    26. Jorge S. Marques, Pedro M.Jorge, Visual inspection of a combustion process in a thermoelectric plant, Signal Processing, 2000, 80:1577~1589
    27. Lee, M. P., McMillin, B. K. and Hanson, R. K., Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO, Applied Optics, 1993, 32(27): 5379~5397
    28. Ball, D., Steve, H., Driver, T., Hutcheon, R. J., Lockett, R. D., and Robertson, G. N., Coherent anti-Stokes Raman spectroscopy temperature measurements in an internal combustion, Optical Engineering, 1994, 33(9): 2870~2874
    29. S Lonow, A dreialer, J Janicka and E P Hassel, Measurement of temperature and concentration in oxy-fuel flame by Ramam/Rayleigh spectroscopy, Measurement Science and Technology, 2002, 13: 1952~1961
    30. S. Kampman, A. Leipertz, Two-dimensional temperature measurements in a technical combustor eith laser Rayleigh scattering, Applied Optics, 1993, 32(30): 6167~6172
    31.邓建平,王国林,黄沛然.用于高温测量的红外热成像技术,流体力学实验与测量,2001,15(1):43~47
    32.苏红雨,杨华元等,电站锅炉炉膛温度分布测量仪的研究,计量学报,2000,21(2):134~140
    33.蒋剑良,王尚勇,刘小华.燃烧过程光辐射度测温研究—理论、数值仿真和试验,内燃机学报,2001,19(4):337~341
    34. Sonnik Clausen, Jimmy bak, FTIR Transmission-emission Spectroscopy of Gases at High Temperatures: Experimental Set-up and Analytical Procedures, Radiat Transfer, 1999, 61(2): 131~141
    35. Kaoru Yamashita, Tetsuya Nagashima, Wavelength-differential imaging for extraction of characteristic spectra, Sensors and Actuators A, 2002, 97-98: 179~183
    36. D.Sbarbaro, O.Farias, A.Zawadsky, Real-time monitoring and characterization of flames by principal-component analysis, Combustion and Flame, 2003, 132: 591~595
    37.吕震中,沈炯,电站锅炉火焰检测及燃烧诊断技术,锅炉技术,1997,(5):8~13
    38.张秀彬,热工测量原理及其现代技术,上海交通大学出版社,1995
    39. Choi M Y, et al., Simultaneous optical measurement of soot volume fraction and temperature in premixed flames, [J]Combustion and Flame, 1994, 99(3): 174~196
    40. Kurihara et al., A combustion diagnosis method for pulverized coal boilers using flame recognition technology, IEEE Trans. On Energy Conversion, 1986, 1(2):99~103
    41.刘维,HIACS-3000系统技术的最新进展,中国电力
    42. M.Shimoda et al., Prediction method of unbumt carbon for coal fired utility boiler using image processing technology of combustion flame, IEEE Trans. On Energy Conversion, 1990, 15(4): 640~645
    43. S.Collins, Advanced flame monitors take on combustion control, Power, 1993(10):75~77
    44.舒子恺,三菱新型火焰监测装置OPTIS简介,热工自动化信息,1993
    45. Mitsubishi Heavy Industries, LTD., Specification of Flame Detector, 1997
    46. Y.Yan, G. Lu, M.Colechin, Monitoring and characterization of pulverized coal flames using digital imaging techniques, Fuel, 2002, 81:647~656
    47. Gang Lu, Yong Yan, Gerry Riley et al., Concurrent Measurement of Temperature and Soot Concentration of Pulverized Coal Flames, IEEE Trans on Instrumentation and Measurement, 2002, 51 (5): 990~995
    48. H C Bheemul, G Lu and Y Yan, Three-dimensional visualization and quantitative characterization of gaseous flames, Measurement Science and Technology, 2002, 13:1643~1650
    49. Lu, Y Yan and D D Ward, Advanced monitoring, characterization and evaluation of gas-fired flames in a utility boiler, Journal of the Institute of Energy, 2000, 73:43~49
    50.王补宣等,图像处理技术用于发光火焰温度分布测量的研究,工程热物理学报,1989,10(4):446~448
    51.徐雁等,非对称火焰三维温度分布测量的重构算法,清华大学学报(自然科学版),1996,36(10):30~34
    52.徐伟勇等,数字图像处理技术在火焰检测上的应用,中国电力,1994,10:41~44
    53. J.Sun et al., Application of digital image processing in the detection of flame, Symposium. On International Conference on Power Engineering, 1995, 956~960
    54.余岳峰,赵铁城,徐伟勇,煤粉燃烧火焰的三色法温度测量,上海交通大学学报,2000,34(9):1257~1260
    55.周怀春,娄新生,肖教芳等,炉膛火焰温度场图像处理试验研究,中国电机工程学报,1995,15(5):295~300
    56.周怀春,韩才元等,煤粉燃烧火焰颜色定量分析试验研究,中国电机工程学报,1993,13(1):44~49
    57.周怀春,娄新生,尹鹤龄等,单色火焰图像处理技术在锅炉燃烧监控中的 应用研究,电力系统自动化,1996,20(10):18~22
    58.周怀春等,基于辐射图像处理的炉膛燃烧三维温度分布检测原理及分析,中国电机工程学报,1997,17(1):1~4
    59.韩署东,周怀春等,基于具有明显测量误差的辐射图像的二维炉膛温度分布重建和快速特征识别研究,中国电机工程学报,2000,20(9):67~72
    60. Huai-Chun Zhou, Shu-Dong Han, et al., Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images: numerical studies, Journal of Quantitative Spectroscopy & Radiative Transfer, 2002, 72:361~383
    61.薛飞,李晓东等,基于面阵CCD的火焰温度场测量方法研究,中国电机工程学报,1999,1:1~8
    62.王飞,马增益等,根据火焰图像测量煤粉炉截面温度场的研究,中国电机工程学报,2000,20(7):40~43
    63.卫成业,王飞等,运用彩色CCD测量火焰温度场的校正算法,中国电机工程学报,2000,20(1):70~73
    64.卫成业,严建华等,利用面阵CCD进行火焰温度分布测量二维投影温度场的测量,热能动力工程,2002,97(17):58~62
    65.白为东,严建华等,PCA和SVM在火焰监测中的应用研究,中国电机工程学报,2004,24(2):87-91
    66.王式民等,图像处理技术在全炉膛检测中的应用,动力工程,1996,16(6):68~72
    67.王式民,赵延军,汪风林,光学分层热成像法重建火焰三维温度场分布的研究,工程热物理学报,2002,23(增刊):233~236
    68.许柯夫,数字图像处理技术在电厂锅炉检测中的应用,电力系统自动化,1995,12(3)
    69.朱全利等,不同煤种NO_x生成机理的研究[A],中国工程热物理学会燃烧学学术会议论文集,北京,1997.5:63-8.
    70.姜秀民等,超细化煤粉低温燃烧的NO_x、SO_2生成特性研究,环境科学学报,Vol.20 No.4 July.,2000:431-434.
    71. Tullin C.J.Sarofim A.F.and Beer J.M. Formation of NO and N20 in coalcombustion:The relative importance of volatile and char nitrogen. Int. Conf. on FBC, 599-609, 1993.
    72. Fenimore C.P. Reactions of fuel nitrogen in rich flame gases. Combustion and Flame, V26, 249-260, 1976.
    73. Drake M.C.and Blint R.J.Caculation of NOx formation pathways in propagatimg laminar, high pressure CH4/air flames. combust. Sci. and Tech. V75, 261-285, 1991.
    74.朱法华等,全国火电厂烟气连续监测系统运行状况调研及分析,中国环境监测,Vol.1b No.S Oct.2000:7-11.
    75.王志轩,我国火电厂烟气排放连续监测系统装设及应用的若干问题,中国电力,2002,Vol.35(11):74-78。
    76.王源景等,烟气排放在线监测系统结构设计的改进,中国电力,Vol.35 No.1 Nov.,2002:15—18.
    77.田倩等,在线式烟气连续排放监控系统简介,华东电力,2002.64-65.
    78.GB 13223-1996,火电厂大气污染物排放标准[S]
    79. N.Kurihara, M. Nishikawa et al, A combustion diagnosis method for pulverized coal boilers using flame image recognition technology. IEEE Transactions energy conversion, Vol. EC—1, No. 2, June 1986.
    80. F. Ito, K. Fujimoto et al, A combustion monitoring and evaluation system for large utility boilers, IEEE Transactions on power apparatus and systems, Vol. PAS—103, No. S, May., 1984.
    81.王新军等,用于电站燃煤锅炉排放监测的神经网络试验研究,动力工程,2002,22(5)
    82.吴占松,发光火焰的图像处理及其在燃烧检测中的应用,清华大学,博士学位论文
    83. P.J.Jensen, P.R.Ereaut, S.Clausen and O.Rathman, Local measurements of velocity, temperature and gas composition in a pulverized-coal flame, Journal of the Institute of Energy, 1994, 67:37~46
    84.周怀春,娄新生,肖教芳等,炉膛火焰温度场图像处理试验研究,中国电机工程学报,1995,15(5):295~300
    85.周怀春,娄新生,尹鹤龄等,单色火焰图像处理技术在锅炉燃烧监控中的应用研究,电力系统自动化,1996,20(10):18~22
    86. S.Slausen and L.H.Sorensen, Measurement of single moving particle temperature with an FT-IR spectrometer, Applied Spectroscopy, 1996, 50(9): 1103~1111 A.M.K.P.Taylor and J.H.Whitelaw, Measurements of velocities, temperatures, emissions and particle sizes in model furnaces, Applied Optical Measurements, Springer, 1999:347~38
    87. Shimoda et al, Prediction Method of Unburnt Carbon for Coal Fired Utility Boiler Using Image Processing Technique of Combustion Flame, IEEE Trans Energy Convers 1990, 12, 5(4):640-645
    88.张晓舟,郭烨波,郑克哲,面阵CCD用于目标亮度测量,应用光学,1995,Vol.16(2),45
    89.李晓彤,几何光学和光学设计,浙江大学出版社,1997
    90.薛飞,基于辐射图像的火焰温度场,浙江大学博士学位论文,1999
    91.李志宏,可视化火焰测量系统的开发与应用,中国科学院工程热物理所博士论文,2005
    92.毛健雄等,煤的清洁燃烧,科学出版社,1997
    93.郑楚光,洁净煤技术,华中理工大学出版社,1996
    94.赵惠富,污染气体氮氧化物的形成与控制,科学出版社,1993
    95.新井纪男,燃烧生成物的发生与控制,科学出版社,2001
    96.庄永茂等,燃烧与污染控制,同济大学出版社,1998
    97.郭东明,硫氮污染控制防治工程技术及其应用,化学工业出版社,2001
    98.白为东,电站锅炉煤粉火焰安全监测及燃烧诊断方法研究,浙江大学博士论文,2004
    99.陶文铨.数值传热学.西安:西安交通大学出版社,1988
    100.S.V.Patankar著,张政译.传热与流体流动的数值计算,北京:科学出版社,1984
    101.赵坚行.燃烧的数值模拟.北京:科学出版社,2002
    102. S. Jakirlic, J. Volkert, H. Pascal, et al. DNS, Experimental and Modelling Study of Axially Compressed In-cylinder Swirling Flow. Int. J. Heat and Fluid Flow, 2000, 21:627~639
    103. M. Manhart, R. Friedrich. DNS of a Turbulent Boundary Layer with Separation. Int. J. Heat and Fluid Flow, 2002, 23: 572~581
    104. B.J. Boersma, T. Gerz and U. Schumann. Large-Eddy Simulation of Turbulence Flow in a Cured Pipe. ASME. J. Fluids Engineering, 1996, 118: 248~253
    105. D.B. Spalding. Mathematical Models of Continuous Combustion and Emissions from Continuous Combustion System. Plenum Press, 1972
    106. D.B. Spalding. Basic Two-phase Flow Modeling in Reactor Safety and Performance. ERRI Workshop Proceedings, 1980 (2)
    107. D. B. Spalding. Numerical Computation of Multiphase Fluid Flow. Workshop Lecture Notes, Purdue University, 1972
    108.李力,周力行,李荣先,等.用双流体轨道模型模拟四角喷燃模型炉内三维湍流两相流动和煤粉燃烧.空气动力学学报,2001,1:30~38
    109.范卫东.百叶窗浓缩器性能及流动特性的研究.哈尔滨工业大学博士论文,1999
    110.刘林华.炉膛传热计算方法的发展状况.动力工程,2000,1:523~527
    111.李力,李荣先,周力行,等.三维湍流回流气相和煤粉燃烧辐射传热离散坐标模型和热流模型比较.燃烧科学与技术,2000,1:19~23
    112.张宇.旋流煤粉燃烧NO生成的数值模拟和两相流动的实验研究.清华大学博士论文,2003
    113.傅维标,卫景彬.燃烧物理学基础.北京:机械工业出版社,1981
    114.向银花.煤焦的燃烧特性和动力学研究.煤炭转化,2000,1:10~15
    115.李争起,吴少华,孙锐,等.配风方式对旋流煤粉燃烧器NOx的排放及煤粉燃尽的影响.动力工程,1997,17(2):27~31
    116.孙锐,李争起,孙绍增,等.径向浓淡旋流煤粉燃烧器直流二次风对流 场及NO_x排放的影响.环境科学学报,1999,19(4):368~373
    117.张颉,孙锐,吴少华,等.200MW旋流燃烧方式煤粉炉炉内燃烧试验和数值研究.中国电机工程学报,2003,23(7):34~40
    118.田倩等,在线式烟气连续排放监控系统简介,华东电力,2002,1:64-65
    119.GB13223-1996,火电厂大气污染物排放标准[S]
    120.周昊,朱洪波,茅建波.大型四角切圆燃烧锅炉NOx排放特性的神经网络模型.中国电机工程学报,2002,22(1):33-37.
    121.许昌,吕剑虹等,最小资源分配网络及其在电站锅炉中的应用,中国电机工程学报,2004,11:228-232
    122. Vapnik V Levin E Le Cun Y Measurig the VC-dimension of alearng machine Neural Computation, 1994, 6:851-876
    123. Cherkassky V, Mulier F Learning from Data:Concepts, Theoryand Methods. NY:John Viley sone, 1997
    124.张学工,统计学习理论的本质,清华大学出版社,2000
    125.李元诚,方延健,于尔铿,.短期负荷预测的支持向量机方法研究.r中国电机工程学报 2003 23(6):55-59.
    126. Shevade S K.Keerthi S S,Bhattacharyy C,et al. Improvements to SMO algorithm for SVM regression Trans. On Neural Network, 2000, 11(5): 1188-1193.
    127.惠玲 设备故障诊断专家系统原理与实践.北京:机械工业版社,2000.
    128.傅立.灰色系统理论及其应用[M].北京:科学技术文献出版社,1992.
    129.刘思峰.灰色系统理论及其应用(第2版)[M].北京:科学出版社,1999.
    130.卫成业,煤粉锅炉炉膛火焰温度场和浓度场测量及燃烧诊断,浙江大学博士学位论文
    131.薛飞,基于辐射图像的火焰温度场测量研究,浙江大学博士学位论文,1999
    132.黄席樾等,现代智能算法理论及应用,科学出版社,2005
    133. J Timmia, M Neal, J Hunl. Data Analysis with Artificial Immune Systems and Cluster Analysis and Kohonen Network;Some Comparisons [C]. In: Proceedings 1999 International Conference on System, Manal and Cybernetics, Tokyo, Japan, 1999(5):922-927.
    134. J Timmia, M Neal, J Hunt. An Artificial Immune System for Data Analysis[J]. Bio Systema, 2000, 55 (1): 143-150.
    135.王磊,潘进,焦李成 电子学报,2000,28(7):74-78.2000,28(7):74-78.
    136.朱红霞等,一种新的动态聚类算法及其在热工过程模糊建模中的应用.中国电机工程学报 2005,25(7),34-40.
    137.陈水利,李敬功,王向公。模糊集理论及其应用[M]。科学出版社。北京,2005
    138.李弼程,彭天强,彭波。智能图像处理技术[M]。电子工业出版社,北京,2004
    139.霍宏涛等,数字图像处理,北京理工大学出版社,2002
    140.王晓丹等,基于MATLAB的系统分析与设计,西安电子科技大学出版社,2000
    141.李弼成等,智能图像处理技术,电子工业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700