用户名: 密码: 验证码:
大型电站锅炉深度低氮燃烧耦合SNCR和SCR脱硝研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气中的氮氧化合物主要来源于工业污染、生活污染和交通污染。在我国,有65%左右的NOx是由煤粉燃烧所产生的,煤粉锅炉产生的NOx又占煤粉燃烧排放总量的80%左右。从1998年到2007年,我国燃煤电厂NOx排放总量逐年增长,因此,降低燃煤锅炉的NOx排放是十分紧迫的环保任务。
     本文以降低燃煤锅炉NO、的排放为主线,研究了低氮燃烧器改造,炉内空气分级以及烟气后处理技术等各种降低锅炉NOx排放的方法,采用实验和数值模拟的方法研究了各种低NOx方案的特点,脱硝效率,对锅炉蒸汽参数的影响等。
     本文首先实验研究了300MW锅炉采用低NOx燃烧器和炉内空气分级对NOx排放的影响。在炉膛的上部加设了三层SOFA风,将二次风风量的20%由SOFA风喷口喷出,使得主燃烧器区域的处于缺氧状态,燃烧温度较低而且处于还原性气氛,使得NO、排放降低。本次改造可在不降低锅炉效率的情况下,显著的降低NOx排放,NOx排放从850mg/m3降低到425mg/m3,脱硝效率达50%左右。
     其次,研究了不同负荷下的SOFA风摆动对炉内温度、NOx排放和锅炉效率的影响:(1) SOFA的摆动对炉内的温度场影响不大;(2)在300MW负荷时,SOFA风的上摆可使烟气中NO的含量降低20ppm左右。在270MW和240MW时,SOFA平摆时烟气中的NO含量最低。(3)300MW负荷条件下,锅炉效率在SOFA下摆时最大,平摆其次,上摆时最低。而在240MW负荷时,呈现相反的趋势,SOFA风下摆时锅炉效率最低,平摆时居中,上摆时最高。
     然后,介绍了国内首次在300MW几组上安装以尿素为还原剂的SNCR脱硝系统,研究不同喷枪组合和安装位置对NOx排放的影响、不同负荷下的最佳投运喷枪及喷枪的位置、分析脱硝系统对锅炉蒸汽温度和减温水量的影响。根据以上的研究分析,300MW负荷投运上层2支长枪和上层短枪的脱硝效果最好。采用CFD方法模拟计算了炉内的温度分布、各重要组分的分布、尿素的热解过程,重点研究了不同的氨氮比和不同的三次风带粉率对脱硝效率和氨逃逸的影响。(1)随着NSR的增加,NOx的脱除率也会增加,但与此同时也会造成氨逃逸的增加。因此在选择NSR时,并不能一味的只追求NOx脱除率的最大化,还应考虑将氨逃逸控制在一定的范围内。(2)当三次风带粉率低于10%,脱硝效率随着三次风带粉率的增加而降低;三次风带粉率超过10%时,脱硝效率又会有所增加。但是氨逃逸量总是随着三次风带粉率的增加而增加的。(3)尿素从喷射进入炉膛后很快就热解掉了,各工况下的尿素浓度分布都很相似。这主要是因为尿素热解需要的热量相对于烟气所带有的热量而言是很小的,所以尽管不同工况下的炉内温度有所差异,但都能够提供充足的能满足尿素热解所需要的热量。
     最后,采用数值模拟的方法研究了600MW锅炉上SNCR+SCR混合脱硝系统的脱硝效果。SNCR脱硝效率为40.6%,SCR脱硝效率为43%,统合脱硝效率为66%,。经过SNCR+SCR脱硝后,烟气中的NO为83.6mg/Nm3,烟气的氨逃逸为3.2ppm,满足国家对燃煤电站锅炉的NO排放要求。
Nitrogen oxides in the atmosphere primarily come from industrial pollution, domestic pollution and traffic pollution. In China, about65%of NOx is produced by pulverized coal combustion, and the amount of NOx released from pulverized coal boilers accounts for about80%of NOx produced by pulverized coal combustion. From1998to2007, the total NOx emissions of coal-fired power plants in China is growing year by year, therefore, it is a very urgent task to reduce the NOx emissions of coal-fired boilers.
     This article,whose theme is to reduce the NOx emissions of coal-fired boilers, investigates the low-NOx reform of pulverized coal burner, the split-air arrangement in furnace and the flue gas treatment technology. Experimental and numerical methods are conducted to study the features these low NOx projects, denitrification efficiency and the impacets on steam parameters.
     Fistly, experiments were conducted on a300MW boiler to investigate the effects of using low NOx burners and the split-air technology on NOx emissions. Three layers of SOFA wind were arranged in the upper part of the furnace, and the amount of SOFA wind accounted for about20%of the amount of secondary ai. As a result, the main combustion region in the furnace was in an oxygen lacking condition and the combustion temperature was lower, making the NOx was reduced. This transformation project could significantly reduce NOx emissions without reducing the boiler efficiency. NOx emissions were reduced from850mg/Nm3to425mg/Nm3,and the denitrification efficiency was up to50%.
     Secondly, the effects of the SOFA wind swing on the furnace temperature, NOx emissions and boiler efficiency were studied under different boiler loads:(1) the swing of the SOFA winds had little effect on the furnace temperature field.(2) when the boiler load was300MW, the up swing of the SOFA winds could reduce the concentration of NOx in flue gas by20ppm or so. Howerer when boiler load was 270MW or240MW, the lowest NO content in the flue gas was detected when SOFA wind had no swing.(3) under the condition of300MW, the boiler efficiency reached the top value when the SOFA wind swinged down, and the efficiency increased as the SOFA wind swinged up. On the contrary, the efficiency of240MW increased as the SOFA wind swinged up.
     Thirdly, it is introduced that the SNCR denitrification system was first installed on the300MW unit. Using urea as a reducing agent, the effects of different gun combinations and installation locations of guns on the NOx emissions were investigated.The optimal spray gun combinations and optimal spray gun positions were found under different loads. According to above research and analysis, the denitrification efficiency of the300MW reached the highest when the upper two long guns and the upper short guns were put into operation. CFD simulation were conducted to calculate the distributions of temperature, important components and urea pyrolysis process, and especially the effects of different NSRs and different pulverized coal concentrations of the third wind on denitrification efficiency and ammonia escape.(1) With the increase of the NSR, the NOx removal rate increase meanwhile, but at the same time the ammonia slip would also increase. Consenquently, to chose a proper NSR not only the NOx removal rate but also the ammonia slip should be considered.(2) When the powder rate in tertiary air was less than10%, denitrification efficiency decreased with the increase of the powder rate in tertiary air. When the powder rate in tertiary air was more than10%, denitrification efficiency would be increased. But the amount of ammonia slip would also increased with the increase of the powder rate in tertiary air.(3) urea was pyrolysised completely soon after injection into the furnace, which was a common phenomenon in different conditions, for that the heat of urea pyrolysis was very small compared to the amount of heat contained in flue gas. So despite the different temperature distributions in the furnace of different conditions, the flue could provide sufficient energy to ensure that urea be completely pyrolysised.
     Finally, numerical simulation methods were conducted on a600MW boiler to study the denitrification effect of SNCR+SCR hybrid denitrification system. Results revealed that SNCR denitrification efficiency was40.6%, SCR denitration efficiency was43%, and the integration denitrification efficiency was66%. After the SNCR+SCR denitration, the NOx concentration in the flue gas is83.6mg/Nm3and the ammonia slip is about3.2ppm, which meeted the requirements of the national coal-fired power plant boiler NO emission.
引文
[1]国家统计局能源统计司,国家能源局综合司.中国能源统计年鉴,2008.
    [2]杨宗鑫,王兵,林孟雄,胥锋.大气污染过程中氮氧化物对大气的危害及防治.内蒙古石油化工,2008;21:24-26.
    [3]李芳芳.电厂600MW锅炉SNCR过程的数值模拟.哈尔滨工业大学硕士论文,2008:1-2.
    [4]胡琦.SCR与SNCR混合脱硝技术在燃煤电厂的应用.华北电力大学硕士学位论文,2009:2-3.
    [5]Khalil E E.燃烧室与工业炉的模拟.北京科学出版社.1987.
    [6]R. K. Hanson and S. Salimian. Survey of Rate Constants in H/N/O Systems. Combustion Chemistry,1984:261.
    [7]J. A. Miller and G. A. Fisk. Chemical and Engineering News,1987.31.
    [8]毛健雄,毛健全.煤的清洁燃烧,2000.
    [9]L.D. Smoot and P.J. Smith. NOx Pollutant Formation in a Turbulent Coal System. In Coal Combustion and Gasification,1985:373.
    [10]F. C. Lockwood and C. A. Romo-Millanes. Mathematical Modelling of Fuel-NO Emissions From PF Burners,1992,65:144-152.
    [11]C. P. Fenimore. Formation of Nitric Oxide in Premixed Hydrocarbon Flames. In 13th Symp. (Int'l.) on Combustion,1971:373.
    [12]章玲,潘卫国,吴江,胡深亚.燃煤电站锅炉多种污染物联合脱除技术的比较与分析.上海电力学院学报,2010,26(4):322-326.
    [13]董利,李瑞扬.炉内空气分级低NOx燃烧技术.电站系统工程,2003,19(6):47-49.
    [14]毕玉森.低NOx同轴燃烧系统在我国的应用.中国电力,1994;10:30-34.
    [15]Zhou H, Cen KF. Experimental investigations on performance of collision-block-type fuel-rich/lean burner:Influence of solid concentration. Energy & Fuels,2007;21(2):718-727.
    [16]张海,吕俊复,岳光溪,徐秀清.若干煤粉燃烧的设计思想分析.锅炉技术,2007:38(6):36-41.
    [17]徐旭常,王云山,金茂庐,赵平.关于煤粉火焰稳定性和煤粉预燃室及火焰稳定船的作用.工程热物理学报,1988,9(4):384-389.
    [18]赵伶玲.花瓣燃烧器的稳燃性能与应用研究.学位论文,2005.
    [19]周俊虎,赵琛杰,许建华,周志军,黄镇宇,刘建忠,岑可法.电站锅炉空气分级低NOx燃烧技术的应用.中国电机工程学报,2010:30(23):19-22.
    [20]王春昌.低NOx燃料分级燃烧技术应用探讨.热力发电,2009;38(5):10-13.
    [21]高正阳。煤粉再燃还原NOx的实验研究与机理分析.学位论文,2003.
    [22]张利琴,宋蔷,吴宁,姚强,李水清.煤烟气再循环富氧燃烧污染物排放特性研究.中国电机工程学报,2009;29(29):35-40.
    [23]胡满银,乔欢.杜欣,张丽丽.烟气再循环对炉内氮氧化物生成影响的数值模拟.华北电力大学学报.2007,34(6):77-81.
    [24]李雪飞,张文辉,杜铭华.干法烟气脱硝综述.洁净煤技术,2006;12(3):43-46.
    [25]印建朴,熊源泉.湿法烟气脱除NOx的研究进展.资源与环境,2008;4:6-9.
    [26]张虎,佟会玲,陈昌和.燃煤烟气同时脱硫脱硝机理概述.环境科学与技术,2006;29(7):103-105.
    [27]周国民,唐建成,胡振广,赵海军,龚家猷.燃煤锅炉SNCR脱硝技术应用研究.电站系统工程,2010;26(1):18-21.
    [28]Muzio L.J., Quartucy. Implementing NOx control:research to application. Progress in Energy and Combustion Science,1997,23:233-266.
    [29]Lyon R.K. Method for the reduction of the concentration of NO in combustion effluents using NH3.US. Patent 3900554,1975.
    [30]M Tayyeb Javed, Naseem Irfan, BM Gibbs. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. Journal of Enveronmental Management,2007; 83:251-289.
    [31]Lyon R.K. Thermal DeNOx:controlling NOx emission by noncatalytic process. Environmental Science and Technology,1987;21(3):231-236.
    [32]Salimian S and Hanson R.K. Kinetic study of NO removal from combustion gases by NHi-containing compound. Combustion Science and Technology, 1980;23:225-230.
    [33]Fenimore C.P.. Destruction of NO by NH3 in lean burnt gases. Combustion and Flame,1980:37:245-250.
    [34]Miller J.A. and Branch M.C., A chemical kinetic model for reduction of nitric oxide by ammonia. Combustion and Flame,1981;44:81-89.
    [35]Miller J.A. and Bowman C.T.. Mechanism and modelling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science,1989;15:287-338.
    [36]Dean A.M. and Hardy J.E. Kinetics and mechanism of NH3 oxidation. In 19th Symposium on Combustion,1982:97-105.
    [37]Lyon P.K.. The NH3-NO-O2 reaction. International Journal of Chemical Kinetics, 1976;8:315-318.
    [38]Muzio L.J. and Arand J.K.. Gas phase decomposition of nitric oxide in combustion products. In 16th Symposium on combustion,1976;33-266.
    [39]Robin M.A.I, and Price H.J.. Tailoring NH3 based SNCR for installation on power plants boilers. Joint EPA/EPRI Symposium on Stationary Combustion NOx Control.1991;Sprigfield, VA, Section 5A:99-118.
    [40]Wenli D. Dan-Johansen, Ostergaard. Widening the temperature range of the thermal DeNOx process, an experimental investigation. In 23th Symposium on Combustion,1990;297-303.
    [41]Azuhata S and Akimoto H, Hishinuma Y. Effect of H2O2 on homogenous gas phase NO reduction reaction with NH3. AlChE Journal,1982:28:7-11.
    [42]Muris S, Hemberger R, Wolfrum P J. An experimental and modeling study of selective non-catalytic reduction of NO by ammonia in presence of hydrocarbon. In 25th Symposium on Combustion,1994.
    [43]Banna SM, Branch MC. Mixing and reaction of NH3 with NO in combustion products. Combustion and Flame,1981;42:173-181.
    [44]Westbrook CK, Dryer FL. Chemical kinetic modeling of hydrocarbon combustion. Progress in Energy and Combustion Science,1984;10:1-57.
    [45]Wenli D, Dam-Johansen K, Ostergaard K. The influence of additives on selective non-catalytic reduction of nitric oxide with NH3. ACHEMASIA,1989.
    [46]Hurst BE. Thermal DeNOx technology update. Joint Symposium on stationary NOx Control,1985:39:1-20.
    [47]Shengli Niu, Kuihua Han, Chunmei Lu. An enperimental study on the effect of operating parameters and sodium addivtive on the NOXOUT Process. Process Safety and Environmental Protection,2011;89:121-126.
    [48]Lee H M, Chang MB, Yang SC. Plasma-assisted process for removing NO/NOx from gas streams with C2H4 as additives. Journal of Environmental Engineering, 2003;129:800-810.
    [49]Lucas D and Brown NJ. Characterisation of the Selective Reduction of NO by NH3. Combustion and Flame,1982;47:219-234.
    [50]Sowa WA, Dill JW, Pohl JH. Thermal DeNOx:process definition and enhancement. Spring Meeting of the Western States Section of the Combustion Institute,1992:1-26.
    [51]Mansour MN, Nahas SN. Quartucy GC. Full scale evaluation of urea injection for NO Removal. EPA/EPRI Joint Symposium on Stationary Combustion NOx Control 1987;43:1-23.
    [52]Epperly WR. Broderick RG. Control of nitrogen oxides emission from stationary sources. In 50th Annual Meeting of the American Power Conference.1988:911-915.
    [53]Comparato JR and Boyle JM. Commercial SNCR/SCR hybrid applications on large utility boilers. Clear Water Conference,1999.
    [54]Jodal M, Neilsen C, Hulgaard T. A comparative study of NH3 and urea as reductants in selective noncatalytic reduction of nitric oxide. ACHEMASIA,1989.
    [55]Michels WF, Gnaeding G. Comparato JR. The applications of computational fluid dynamics in NOxOUT process for reducing NOx emissions from stationary combustion sources. In American Flame Research Committee 1990 Fall International Symposium,1990.
    [56]Rasmussen MSS, Christensen OH, Ostberg M. Postprocessing of detailed chemical kinetic mechasisms onto CFD simulations. Computers and Chemical Engineering,2004;28:2351-2361.
    [57]Heggemann M, Wintergerste T. Combination of CFD and chemical reactions for process engineering. Chemical Engineering and Technology,2004;27:982-987.
    [58]Cremer MA, Montgomery CJ. Development and implementation of reduced chemistry for computational fluid dynamics modeling of selective non-catalytic reduction. In Proceedings of the Combustion Institute,2000;28:2427-2434.
    [59]Chen JY. Development of reduced mechanisms for numerical simulations of turbulent combustion. In Workshop on Numerical Aspects of Reduced in Chemical Kinetics. CERMICS-ENPC,1997.
    [60]Bockelie M, Tang Q, Denison M, Wang D. A Newton-Krylov based solver for CFD models using finite rate NOx chemistry. Workshop on Solution Methods for Large Scale Non-Linear Problems.2003.
    [61]Krigmont HV, Chien PL, Pollock WH, Williams BJ. Full scale demonstration of Wahlco staged NOx reduction system. In 1993 Joint Symposium on Stationary Combustion NOx Control,1993.
    [62]Urbas J, Boyle JM. Design, optimization and economic analysis of SNCR/SCR hybrid on a utility boiler in the ozone transport region. In 1998 American/Japanese Flame Research Committees International Symposium.1998.
    [63]Wendt JOL. Mechanism governing the formation and destruction of NO and other nitrogenous species in low NO coal combustion systems. Combustion Science and Technology,1995;108:323-344.
    [64]Thanh DB Nguyen, Young-Ⅱ Lim, Won-Hyeon Eom, Seong-Joon Kim. Experiment and CFD simulation of hybrid SNCR-SCR using urea solution in a pilot-scale reactor. Compuers and Chemical Engineering,2010;34:1580-1589.
    [65]中华人民共和国国家标准.火电厂大气污染物排放标准,GB 13223-2011.
    [66]周礼嘉,王吉光.300MW机组锅炉摆动式燃烧器的设计与试验.工程热物理学报,1987.
    [67]李争起,邵鸣.万志欣,孙锐.孙绍增,秦裕琨.二次风水平摆动对670t/h锅炉切圆的影响,哈尔滨工业大学学报,2003;35(1).
    [68]周光宇,胡安,谭云松.燃烧器摆角对锅炉安全经济运行的影响.电站系统工程,2011;27(5):65-66.
    [69]周向阳,郑楚光,马毓义.大型炉膛燃烧过程的数值模拟.华中理工大学学报,1994;22(3):11-15.
    [70]Annual Energy Review 1997. DOE/EIA-0384(97), US Department of Energy, Energy Information Agency, Washington, DC,1998.
    [71]B.E. Launder and D.B. Spalding. Lectures in Mathematical Models of Turbulence. Academic Press, London, England,1972.
    [72]T.-H. Shih, W. W. Liou, A.Shabbir, Z.Yang, and J. Zhu. A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation. Computers Fluids,24(3):227-238,1995.
    [73]S. A. Morsi and A. J. Alexander. An Investigation of Particle Trajectories in Two-Phase Flow Systems. J. Fluid Mech,1972;55(2):193-208.
    [74]A. Haider and O. Levenspiel. Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles. Powder Technology,1989;58:63-70.
    [75]降文萍.煤热解动力学及其挥发分析出规律的研究.学位论文,2004.
    [76]陈彩霞,孙学信,马毓义.煤粉热解的挥发份析出模型.自然科学进—国家重点实验室通讯,1995;5(1):83-90.
    [77]S.B. Pope. Pdf methods for turbulent reactive flows. Progress Energy Combustion Science,1985;11:119.
    [78]I. W. Smith. The Combustion Rates of Coal Chars:A Review. In 19th Symp. (Int'l) on Combustion,1982; 1045-1065.
    [79]胡琦.SCR与SNCR混合脱硝技术在燃煤电厂的应用.学位论文,2009.
    [80]郑日韦SNCR脱硝过程反应机理初步研究.学位论文,2007.
    [81]李芳芳.电厂600MW锅炉SNCR过程的数值模拟.学位论文,2008.
    [82]Yu Lv. Zhihua Wang, Junhu Zhou, and Defa Cen. Full-Scale Numerical Investigation of a Selective Noncatalytic Reduction System in a 100MW Utility Boiler with Complex Chemistry and Decoupling Approach. Energy & Fuels, 2010:24:5432-5440.
    [83]Thanh DB Nguyen, Tae-Ho Kang. Young-Ⅱ Lim, Won-Hyeon Eom, Seong-Joon Kim. Kyung-Seun Yoo. Application of urea-base SNCR to a municipal incinerator: On-site test and CFD simulation. Chemical Engineering Journal,2009;152:36-43.
    [84]Renato Rota, Dorota Antos, Enerton F. Zanoelo. Massimo Morbidelli. Experimental and modeling analysis of the NOXOUT process. Chemical Engineering Science,2002:57:27-38.
    [85]周礼学.浅析锅炉SNCR+SCR联合脱硝方式.工程技术,2011,31,95-96.
    [86]韩作斌.浅谈燃煤锅炉烟气脱硝技术.2011北京供热节能与清洁能源高层论坛论文集,71-75.
    [87]王钟,王颖.火电厂烟气脱硝技术探讨.吉林电力,2005,6,1-6.
    [88]杨宏军,朱礼想,李胜利,王建中.火电厂降低NOx排放的技术研究.电力科技与环保.27(6),2011.
    [89]李晓芸,蔡小峰.混合SNCR-SCR烟气脱硝工艺及其应用.华电科技.30(3),2008,23-28.
    [90]马跟,赵毅.SNCR/SCR脱硝工艺技术经济特性.火电厂烟气脱硫脱硝计算研讨会论文集.2005.
    [91]周国民,赵海军等.SNCR/SCR联合脱硝技术在410t/h锅炉上的应用.发电技术论坛,2011.
    [92]龚家猷,李厌.燃煤电厂SNCR与SCR联合脱硝工艺在国内的首次应用.华北电力技术,2,2011.
    [93]龚家猷,李厌.国内首台燃煤电厂SNCR/SCR联合脱硝工艺的应用.2010年中国电机工程学会年会.
    [94]项昆.3种烟气脱硝工艺技术经济比较分析.热力发电,40,2011.
    [95]李璋.SNCR/SCR联合脱硝技术在410t/h电站锅炉上的应用研究.华北电力大学硕士论文,2010.
    [96]吴碧君,王述刚,方志星,盛永校.烟气脱硝工艺及其化学反应原理分析.热力发电,2006,11.
    [97]蔡昕,唐建成,曹红加.联合脱硝技术在燃煤锅炉脱硝改造中的应用.华北电力技术,2010,12.
    [98]白亚楠.烟气NOx污染控制技术及国产化建议.安全与环境工程,2006,2.
    [99]胡琦.SCR与SNCR混合脱硝技术在燃煤电厂的应用.华北电力大学硕士学位论文,2009.
    [100]Thanh DB.Nguyena, Young-I1 Lima, Won-Hyeon Eomb et al. Experiment and CFD simulation of hybrid SNCR-SCR using urea solution in a pilot-scale reactor. Computers and Chemical Engineering,2010; 34:1580-1589.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700