用户名: 密码: 验证码:
基于光学检测方法的脉冲电晕放电过程中氮氧化物转化实验与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展和人类生活水平的提高,污染物的排放也随之增加,这些污染物会对环境以及人类的身体健康产生很大的危害。燃煤电厂排放的污染物主要有SO2、NOX、Hg、VOCs和PAHs,随着排放标准的日渐严格,对污染物排放的控制要求也越来越高。NOx是其中一种非常重要且急需得到控制的污染物,所以研究NOx的脱除具有十分重要的意义。
     脉冲电晕放电是一种典型的低温等离子体技术,能够产生OH、O、N、H、 HO2等大量活性自由基,这些自由基物质能够与污染物反应,将其降解成为无害的物质,从而实现多种污染物的协同脱除。在脱除过程中这些自由基和污染物的反应过程十分复杂,研究自由基与污染物的反应机理对于更有效地控制污染物具有指导性的作用。但由于自由基的存在时间非常短,检测也较为困难,而光学测量手段是一种非接触式的测量手段,它不会对整个放电过程产生干扰,且具有较高的精度,是研究污染物与自由基作用过程的理想测量方法。本文以光学测量为主要手段,以NOx为目标污染物,对NOx与自由基的反应机理进行了探讨。
     本文首先对脉冲电晕放电的物理特性进行了研究。研究表明少量惰性气体(Ar)的加入可以有效减小起晕电压,气体成分中O2含量的增加减小了放电电流,提高了击穿电压。在放电区域的气体温度接近于常温,但是在尖端电极附近的温度较高,最高超过600K,且温度梯度很大。同时,进一步研究了脉冲电晕放电过程中OH自由基的演化规律,结果表明放电后OH自由基的淬灭过程可以分为两个阶段:快速淬灭阶段和慢速淬灭阶段。OH自由基的浓度随着O2浓度和湿度的增加而增加,在快速淬灭阶段OH自由基的淬灭速率随着O2浓度的增加而减小,随着湿度的增加而变大。在加入NO后,OH自由基浓度减小,但OH的淬灭速率与NO初始浓度的关系不大。
     反应器结构会对NOx的转化起到较大的影响。本文以NO为目标污染物,研究了反应器结构对NO转化过程的影响。研究表明在针板放电中,针尖电极曲率半径越小,放电时流光强度越强,NO转化效率越高,针尖电极尖端数目越多,流光分布范围越广,NO转化效率也越高;在喷嘴-平板的放电形式下,由于电极气的加入,增加了自由基的产率,提高了NO的转化效率。基于上述研究,提出了一种新型的电极形式——喷气分离式放电电极,它可以有效地改善反应区域电极气和背景气的混合,增加自由基与NO的碰撞几率,提高了NO的转化效率。
     电极气在脉冲电晕放电污染物脱除中关系到自由基产率和污染物脱除效果。电极气成分方面,随着Ar浓度的增加,NO的转化效率提高,OH的产率提高;随着O2浓度的增加,虽然OH的产率降低,但由于O和O3的作用NO的转化效率提高。电极气的雷诺数方面,电极气和背景气存在相互卷吸效应,雷诺数较大时(Re=4138),NO的氧化效率要高于雷诺数较低(Re=1379)的工况;同时我们对不同雷诺数下OH自由基的产率和分布进行了测量,结果也表明OH自由基在雷诺数较大时(Re=4138)的产率要比雷诺数较小时(Re=1379)高,且分布范围也更大。
     在以上实验研究和理论分析基础上,进一步对NOx间的相互转化机理进行了实验和数值模拟研究。结果表明在NO2向NO的转化过程中,N2主要产生N和N2的激发态,从而起到对NO和NO2的还原作用;O2在放电过程中产生的多为氧化性自由基(O、OH、O3), NO主要被氧化成NO2,并且O2含量的提高可以有效地抑制NO2向NO的转化过程;此外NO2的初始浓度越高,在烟气条件下NO2向NO转化的效率越低。另外,我们还通过数值模拟对相应工况下的NOx转化反应进行了反应动力学计算,得到了脉冲电晕放电过程中NOx和各种自由基的演化规律。
The emission of pollutants to the environment is inevitable with the development of economy and society, which results in threats to the environment and health of human being. The pollutants emitted from coal-combustion plants mainly include SO2NOX, Hg, VOCs and PAHs. It is urgent to control the pollutants emission from combustion device as regulation to limit the pollutants emission becoming strict. NOX is an important pollutant and it is urgent to be controlled, so the investigation of NOx conversion process is significant.
     Pulsed corona discharge is a typical non-thermal plasma form. The radicals such as OH, O, N, H, HO2etc. generated by pulsed corona discharge can react with pollutants so as to decompose them. The multi-pollutants simultaneous removal can be achieved by pulsed corona discharge. The reactions between pollutants and radicals are complicated in the discharge process, so investigation of the mechanism between pollutants and radicals are significant to control the pollutants effectively. However, the lifetimea of radicals are very short, and it is difficult to detect them. The optical diagnostics will not disturb the discharge process since they are non-contant measurements. They are suitable for investigation of pollutants removal mechanism because of the high resolution. NOX was chosen as a typical pollutant, and its conversion mechanism was studied by optical mehods in this thesis.
     The physical characteristics in the pulsed corona discharge were studied in the thesis firstly. The results show that a little Ar could obviously reduce the threshold voltage; the increase of O? component decreased the discharge current and increased the break-down voltage. The gas temperature in the discharge zone almost equaled the room temperature, but the temperature near the tip electrode was high (more than600K), and the temperature gradient was large. The OH evolution was investigated. The OH decay after discharge can be divided into two periods:fast decay period and slow decay period. The OH density increased with increase of O2conentration and humidity. The OH decay rate in the fast decay period decreasd with increase of O2concentration, and increased with increase of humidty. The OH density decreased as NO was introduced into the reactor. The OH decay velocity was independent with the initial NO concentration.
     The structure of reactor affect the NOx conversion process in corona discharge. The results show that the intensity of streamer and the NO conversion rate increased with the decrease of curve radius in needle-to-plate discharge; the streamer distribution zone and NO conversion rate increased with the increase of needle tip numbers; in the nozzle-to-plate discharge form, the OH yield and NO conversion increased because of the addition gas. In order to improve the NO conversion further, we represent a new discharge form:separated radical injection discharge, which can increase the collision probability between radicals and NO, and improve the NO conversion rate.
     The addition gas is an important parameter that affects the NO conversion in pulsed corona discharge. The NO conversion was investigated under different addition gas conditions. First, the effects gas components on NO conversion were studied. The increase of Ar component improved the NO conversion rate and OH yield; the increase of O2component also improved the NO conversion, but decreased the OH yield. Then, the effects of Reynolds numbers on NO conversion were discussed. The NO conversion rate for Re=4138was larger than that for Re=1379. The OH yield and distribution zone also increased with increase of Re number.
     NOX conversion mechanism in the pulsed corona discharge process was investigated based on the results above. In the process of NO2to NO. the effect of N2is reduction. N and the excited N2were produced in the discharge through the reactions between electron and N2, and then reacted with NO2to generate NO or N2; the effect of O2was oxidation. O, O3and OH radical were produced through the reactions between electron and O2, and then reacted with NO2to generate other nitric oxides. In the process of NO to NO2, the effect of N2and O2were also reduction and oxidization, repectively, which led NO convert to N2or NO2. In the process of NOX formation, there was only NO2produced under the condition of N2/O2/Ar, and the NO2concentration increased with the increase of No or O2concentration. The simulation of NOX conversion mechanism has been done under the same conditions of the experiments.
引文
[1]BP. Statistical review of world energy, http://www.bp.com/sectionbodycopy.do? categoryId=7500&contentld=7068481.
    [2]EIA, International energy outlook 2011. http://www.eia.gov/forecasts/ ieo/index.cfm.
    [3]中华人民共和国国家统计局,中国统计年鉴.中国统计出版社.2011.
    [4]宣传教育司.环境保护部通报201 1年上半年全国主要污染物减排情况.2011.http://www.mep.gov.cn/gkml/hbb/qt/201110/t20111011_218176.htm.
    [5]中国国务院. “十二五”节能减排综合性工作方案.2011.http://www.gov.cn/zwgk/2011-09/07/content_1941731.htm.
    [6]岑可法;姚强;骆仲泱;高翔.燃烧理论与污染控制.机械工业出版社,2004.
    [7]陈杭君;赵华,火电厂烟气脱硝技术介绍.热力发电2005(34):15-18.
    [8]朱朕锡;卢虹.烟气脱硫脱硝技术进展情况.环境科技 1996(13):86-90.
    [9]Fridman, A., Plasma Chemistry. Canbrudge University Press.2008.
    [10]菅井秀郎,等离子体电子工程学.科学出版社.2002.
    [11]赵化桥,等离子体化学与工艺.中国科学技术大学出版社,1993.
    [12]Nichipor. H.; Dashouk. E.; Yacko, S.; Chmielewski. A. G.; Zimek. Z.; Sun. Y., Chlorinated hydrocarbons and PAH decomposition in dry and humid air by electron beam irradiation. Radial Phys Chem 2002 (65):423-427.
    [13]邰德荣;韩宾兵,中日合作成都电厂电子束烟气脱硫示范工程.环境保护1998(12):11-14.
    [14]Lin, K. J.; Copper, W. J.; Nickelsen. M. G.; Kurucz. C. N.; Waite. T. D.. Decomposition of aqueous solutions of phenol using high energy electron beam irradiation-A large scale study. Appl Radial Isotopes 1995 (46):1307-1316.
    [15]Person. J. C.; D, O. H., Removal of SO2 and NOx from stack gases by electron beam irradiation. Radial Phys Chem 1988 (31):1-8.
    [16]Kawamura. K.; Aoki, S.;Kimura, H.; Adachi. K.; Kawamura. K.; Taketomo. E.; Katayama. T.; Kaido. C., On the removal of NOx and SOx in exhaust gas from the sintering machine by electron bebam irradiation. Radial Phys Chem 1980 (16): 133-138.
    [17]Kawamura, K.; Hirasawa. A.; Aoki. S.; Kimura. H.; Fujii, T.; Mizutani, S.; Higo. T.; Ishikawa. R.:Adachi, K.:Hosoki, S., Pilot-plant experiment of NOx and SO2 removal from exhaust-gases by electron-beam irradiation. Radial Phys Chem 1979 (13):5-12.
    [18]Evans. D.; Rosocha. L. A.; Anderson. G. K.; Coogan. J. J.; Kushner, M. J.. Plasma remediation of trichloroethylene in silent discharge plasma. J Appl Phys 1993 (74):5378-5386.
    [19]Masuda. S.; Hosokawa. S.; Tu, X. L.; Sakakibara. K.; Kitoh, S.; Sakai. S.. Destruction of gaseous-pollutants by surface-induced plasma chemical process (SPCS). IEEE T Ind Appl 1993 (29):781-786.
    [20]Yamamoto. T.; Chang. J. S.; Berezin. A. A.; Kohno. H.; Shibuya. A., Decomposition of toluene, o-xylene, trichloroethylene. and their mixture using BaTiO3 packed bed reactor. J Adv Oxid. Technol.1996 (1):67-68.
    [21]Ogata. A.; Ho. D.; Mizuno. K.; Kushiyama, S.; Yamamoto. T., Removal of dilute benzene using a zeolite-hybrid plasma reactor. IEEE T Ind Appl 2001 (37):959-964.
    [22]Ogata. A.; Shintani. N.; Mizuno. K.; Kushiyama. S.; Yamamoto, T.. Decomposition of benzene using nonthermal plasma reactor packed with ferroelectric pellets. IEEE T Ind Appl 1999 (35):753-759.
    [23]Chen. H. L.; Lee. H. M.; Chen. S. H.; Chang. M. B.; Yu, S. J.; Li, S. N., Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems:a review of the performance enhancement mechanisms, current status, and suitable applications. Environ Sci Technol 2009 (43):2216-2227.
    [24]Gal, A.; Kurahashi. M.:Kuzumoto. M., An energy-consumption and byproduct-generation analysis of the discharge nonthermal plasma-chemical NO-reduction process. J Phys D Appl Phys 1999 (32):1163-1168.
    [25]Chen. Z.; Mathur. V. K., Nonthermal plasma for gaseous pollution control. Ind Eng Chem Res 2002 (41):2082-2089.
    [26]Ravi. V.; Mok. Y. S.; Rajanikanth. B. S.; Kang. H. C., Temperature effect on hydrocarbon-enhanced nitric oxide conversion using a dielectric barrier discharge reactor. Fuel Process Technol 2003 (81):187-199.
    [27]Wang. Z. C.; Yeboah. Y. D.; Bai. T. J.:Bota. K. B., Gap space optimization for NO removal in non-thermal plasma discharge. Plasma Chem Plasma P 2004 (24): 405-420.
    [28]Zhu. A. M.; Sun. Q.; Niu. J. H.:Xu. Y.; Song. Z. M., Conversion of NO in NO/N2. NO/O2/N2. NO/C2H4/N2 and NO/C2H4/O2/N2 systems by dielectric barrier discharge plasma. Plasma Chem Plasma P 2005 (25):371-386.
    [29]Saavedra. H. M.:Pacheco. M. P.; Pacheco-Sotelo. J. O.; Reyes. C. E. T.; Gomez, J. A. D., Modeling and experimental study on nitric oxide treatment using dielectric barrier discharge. IEEE T Plasma Sci 2007 (35):1533-1540.
    [30]Cai. Y. X.; Zhuang. F. Z.; Ran. D. L.; Wang. P., Conversion of NO/O2/N2 system by dielectric barrier discharge plasma. Acta Chim Sinica 2009 (67):2315-2318.
    [31]Jogi. I.; Bichevin. V.; Laan. M.; Haljaste. A.; Kaambre. H., NO conversion by dielectric barrier discharge and TiO2 catalyst:effect of oxygen. Plasma Chem Plasma P 2009 (29):205-215.
    [32]Yin, S. E.; Sun. B. M.; Gao, X. D.; Xiao. H. P., The effect of oxygen and water vapor on nitric oxide conversion with a dielectric barrier discharge reactor. Plasma Chem Plasma P 2009 (29):421-431.
    [33]Urashima, K.; Chang. J. S.; Ito. T., Reduction of NOx from combustion flue gases by superimposed barrier discharge plasma reactors. IEEE T Ind Appl 1997 (33): 879-886.
    [34]Tsai. C. H.; Wang. Y. F.; Yang. H. H.; Liao. C. N.. Effects of ethylene on NO conversion and product distributions in an rf discharge reactor. J Hazard Mater 2008 (150):401-407.
    [35]Tsai. C. H.; Yang. H. H.; Jou. C. J. G.; Lee. H. M., Reducing nitric oxide into nitrogen via a radio-frequency discharge. J Hazard Mater 2007 (143):409-414.
    [36]Tsai. C. H.; Hsieh. T. H., New approach for methane conversion using an rf discharge reactor.1. Influences of operating conditions on syngas production. Ind Eng Chem Res 2004 (43):4043-4047.
    [37]Choi. Y. C.; Shin. Y. M.; Lee. Y. H.; Lee. B. S.; Park. G. S.; Choi. W. B.:Lee. N. S.; Kim. J. M.. Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Appl Phys Lett 2000 (76):2367-2369.
    [38]Kim. T.; Song. S.; Kim. J.; Iwasaki, R., Formation of NOx from air and N2/O2 mixtures using a nonthermal microwave plasma system. Jpn J Appl Phys 2010 (49):1262011-1262018.
    [39]Tanaka. R.;Yamamoto. T.;Sasai. R.; Itaya. Y., Direct decomposition of persistent liquid waste by microwave non-thermal plasma. Kagaku Kogaku Ronbun 2010 (36):571-575.
    [40]Diatczyk. J.; Komarzyniec. G.; Stryczewska. H. D., Spectroscopic diagnostic of non-thermal plasma generated in gliding arc discharge plasma reactor. Pr-eglad Elektrotechniczny 2008 (84):309-311.
    [41]Li. X. D.:Zhang. J.; Yan. J. H.; Cen. K. F.:Ryan. S. P.:Gullett. B. K.:Lee, C., Experimental and modeling study of de novo formation of PCDD/PCDF on MSW fly ash. J Environ Sci-China 2007 (19):117-122.
    [42]Fridman. A.; Nester. S.; Kennedy, L. A.; Saveliev, A.; Mutaf-Yardimci, O., Gliding arc gas discharge. Prog Energ Combust 1999 (25):211-231.
    [43]Kalra. C. S.:Gutsol. A. F.; Fridman. A.; Rufael, T. S., Gliding arc in tornado using a reverse vortex flow. Rev Sci Instrum 2005 (76):0251101-0251107.
    [44]Czernichowski. A., Gliding arc-applications to engineering and environment control. Pure Appl Chem 1994 (66):1301-1310.
    [45]Krawczyk. K.; Ulejczyk. B., Influence of water vapor on CCl4 and CHCL3 conversion in gliding discharge. Plasma Chem Plasma P 2004 (24):155-167.
    [46]Ghezzar. M. R.; Abdelmalck. F.; Belhadj, M.; Benderdouche, N.; Addou. A., Gliding arc plasma assisted photocatalytic degradation of anthraquinonic acid green 25 in solution with TiO2.Appl Catal B-Environ 2007(72):304-313.
    [47]Burlica. R.; Kirkpatrick. M. J.; Locke. B. R., Formation of reactive species in gliding arc discharges with liquid water. J Electrostat 2006 (64):35-43.
    [48]Yan. J. H.; Liu. Y. N.; Bo. Z.; Li. X. D.:Cen. K. F., Degradatopm pf gas-liquid gliding arc discharge on Acid Orange Ⅱ. J Hazard Mater 2008 (157):441-447.
    [49]Chun. Y. N.:Song, H. O., Syngas production using gliding arc plasma. Energ Source Part A 2008 (30):1202-1212.
    [50]Sreethawong. T.; Thakonpatthanakun. P.; Chavadej. S., Partial oxidation of methane with air for synthesis gas production in a multistage gliding arc discharge system. Int J Hydrogen Energ 2007 (32):1067-1079.
    [51]Richard. F.; Cormier, J. M.; Pellerin, S.; Dalaine. V.:Chapelle. J., NO production in a gliding arc discharge.4th International Thermal Plasma Processes Conference. 1997:343-351.
    [52]Benstaali. B.; Boubert, P.; Cheron. G. G.; Addou. A.; Brisset. J. L., Density and rotational temperature measurements of OH degrees and NO degrees radicals produced by a gliding arc in humid air. Plasma Chem Plasma P 2002 (22):553-571.
    [53]徐学基;储定昌.气体放电物理.复旦大学出版社,1996.
    [54]Peek. F. W., Dielectric phenomena in high-voltage engineering. 3rd-ed, McGraw-Hill.1929.
    [55]White, H. J., Industrial electrostatics precipitation. Addison-Wesley Publishing Company, Inc.1963.
    [56]罗思著;吴坚强.工业等离子体工程(第Ⅰ卷)-基本原理.利学出版社,1998.
    [57]Lowke. J. J.; Morrow. R., Theoretical analysis of removal of oxides of sulphur and nitrogen in pulsed operation of electrostatic precipitators. IEEE T Plasma Sci 1995 (23):661-671.
    [58]Eichwald, O.; Yousfi. M.; Hennad. A.; Benabdessadok, M. D.. Coupling of chemical kinetics, gas dynamics, and charged particle kinetics models for analysis of NO reduction from flue gas. J Appl Phys 1997 (82):4781-4794.
    [59]Gentile. A. C. Reaction chemistry and optimization of plasma remediation of NxOy from gas streams, J Appl Phys 1995 (78):2074-2085.
    [60]Orlandini. O.:Riedel, U., Chemical kinetics of NO removal by pulsed corona discharges. J Phys D Appl Phys 2000 (33):2467-2474.
    [61]Eichwald. O.;Guntoro. N. A.:Yousfi. M.; Benhenni. M.. Chemical kinetics with electrical and gas dynamics modelization for NOx removal in an air corona discharge. J Phys D Appl Phys 2002 (35):439-450.
    [62]Sathiamoorthy. G.; Kalyana. S.; Finney. W. C:Clark. R. J.; Locke. B. R.. Chemical reaction kinetics and reactor modeling of NOx removal in a pulsed streamer corona discharge reactor, Ind Eng Chem Res 1999(38):1844-1855.
    [63]Ohkubo. T.:Kanazawa. S.; Nomoto. Y.; Chang, J. S.; Adachi. T.. Time dependence of NOx removal rate by a corona radical shower system. IEEE T Ind Appl 1996(32):1058-1062.
    [64]Tang. J. W.; Zhang. T.; Liang. D. B.; Sun. X. Y.; Lin. L. W., Conversion of NO to N2 in Continuous Microwave Discharge. Chem Lett 2000 (29):916-917.
    [65]Yang. C. L.; Chen. L. K., Oxidation of nitric oxide in a two-stage chemical scrubber using dc corona discharge. J Hazard Mater 2000 (80):135-146.
    [66]Mok. Y. S.; Kim. J. H.; Nam. I. S.:Ham. S. W.. Removal of NO and formation of byproducts in a positive-pulsed corona discharge reactor. Ind Eng Chem Res 2000 (39):3938-3944.
    [67]Mok. Y. S.; Lee. H. W.; Hyum. Y. J.; Ham. S. W.; Nam, I. S., Determination of decomposition rate constants of volatile organic compounds and nitric oxide in a pulsed corona discharge reactor. Korean J Chem Eng 2001 (18): 711-718.
    [68]Stefanovic, I.; Bibinov. N. K.; Deryugin. A. A.; Vinogradov, I. P.; Napartovich, A. P.; Wiesemann. K., Kinetics of ozone and nitric oxides in dielectric barrier discharges in O2/NOx and N2/O2/NOx mixtures. Plasma Sources Sci T 2001 (10): 406-416.
    [69]Yan. K. P.:Yamamoto. T.; Kanazawa. S.:Ohkubo. T.; Nomoto. Y.; Chang. J. S., NO removal characteristics of a corona radical shower system under DC and AC/DC superimposed operations. IEEE T Ind Appl 2001 (37):1499-1504.
    [70]Masuda, S.; Nakao. H.. Control of NOx by positive and negative pulsed corona discharges. IEEE T Ind Appl 1990 (26):374-383.
    [71]Hegeler. F.; Akiyama. H.. Ozone generation by positive and negative wire-to-plate streamer discharges. Jpn J Appl Phys 1997 (36):5335-5339.
    [72]Ono, R.; Oda. T.. Measurement of hydroxyl radicals in pulsed corona discharge. J Electrostat 2002 (55):333-342.
    [73]Chang, J. S.; Lawless. P. A.:Yamamoto. T., Corona discharge process. IEEE T Plasma Sci 1991 (19):1152-1166.
    [74]Bradbury. N. E., Formation of negative ions in gases by electron attachment Part I. NH3, NO, HC1 and Cl2 J Chem Phys 1934 (2):827-834.
    [75]Lakdawala, V. K.:Moruzzi. J. L., Attachment, detachment and ion-molecule reactions in SO2 and SO2-O2 mixture.J Phys D Appl Phys 1981 (14):2015-2026.
    [76]Mok. Y. S.; Ham. S. W., Conversion of NO to NO2 in air by pulsed corona discharge process. Chem Eng Sci 1998 (53):1667-1678.
    [77]Mok, Y, S.; Ham, S. W.:Nam. I. S.. Mathematical analysis of positive pulsed corona discharge process employed for removal of nitrogen oxides, IEEE T Plasma Sci 1998(26):1566-1574.
    [78]Mok. Y. S.; Lee. H. W.; Hyun. Y. J.; Ham. S. W.; Kim. J. H.; Nam.I. S., Removal of NO and SO2 by pulsed corona discharge process. Korean J Chem Eng 2001 (18):308-316.
    [79]Kurakane, H.; Aramki, M.; Sasaki, K., Temporal variations in distributions of NO and NO2 densities in streamer corona discharges. Jpn J Appl Phys 2006 (45): 8264-8269.
    [80]Tochikubo, F.; Uchida, S.; Yasui. H.; Sato. K., Numerical simulation of NO oxidation in dielectric barrier discharge with microdischarge formation. Jpn J Appl Phys 2009 (48):0765071-0765079.
    [81]Obradovic. B. M.; Sretenovic, G. B.; Kuraica. M. M., A dual-use of DBD plasma for simultaneous NOx and SO2 removal from coal-combustion flue gas. J Hazard Mater 2011 (185):1280-1286.
    [82]Yin, S. E.; Sun, B. M.; Gao, X. D.; Xiao, H, P., The effect of oxygen and water vapor on nitric oxide conversion with a dielectric barrier discharge reactor. Plasma Chem Plasma P 2009 (29):421-431.
    [83]Mok, Y. S.; Nam. I. S., Positive pulsed corona discharge process for simultaneous removal of SO2 and NOx from iron-ore sintering flue gas. IEEE T Plasma Sci 1999 (27):1188-1196.
    [84]Zhu, A. M.;Sun. Q.; Niu, J. H.;Xu. Y.;Song, Z. M., Conversion of NO in NO/N2, NO/O2/N2, NO/C2H4/N2 and NO/C2H4/O2/N2 systems by dielectric barrier discharge plasmas. Plasma Chem Plasma P 2004 (25):371-386.
    [85]Fresnet, F.; Baravian, G.; Magne, L.; Pasquiers, S.; Postel, C.; Puech, V., Kinetic of the NO removal by nonthermal plasma in N2/NO/C2H4 mixtures. Appl Phys Lett 2000 (77):4118-4120.
    [86]Lin, H.; Guan, B.; Cheng, Q.; Huang, Z., An Investigation on the principal paths to plasma oxidation of propylene and NO. Energ Fuel 2010 (24):5418-5425.
    [87]Lee, Y. H.; Jung, W. S.; Choi, Y. R.; OH, J. S.; Jang, S. D.;Son. Y. G.; Cho, M. H.; Namkung, A, W., Application of pulsed corona induced plasma chemical process to an industrial incinerator. Environ Sci Technol 2003 (37):2563-2567.
    [88]Mishra, S. K.; Dahiya, R. P.; Veefkind, A., Plasma chemical investigations for NO and SO2 removal streamer corona discharge in water. IEEE T Plasma Sci 1993 (21):346-348.
    [89]Liu, X.; Li, R., Main fundamental gas reactions in denitrification and desulfurization from flue gas by non-thermal plasmas. Chem Eng Sci 2000 (55): 2491-2506.
    [90]Mod, Y. S.; Nam, I. S., Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide. Chem Eng J 2002 (85):87-97.
    [91]Bartula, R. J.; Ghandhi, J. B.; Sanders, S. T.; Mierkiewicz, E. J.; Roesler, F. L. Harlander, J. M., OH absorption spectroscopy in a flame using spatial heterodyne spectroscopy. Appl Optics 2007 (46):8635-8640.
    [92]董凤忠;阚瑞峰;刘文清:刘建国:张玉钧;高山虎:王铁栋;王敏;陈东;魏庆农,可调谐二极管激光吸收光谱技术及其在大气质量监测中的应用.量子电子学报 2005(22):315-325.
    [93]Merota, S. S.; Vaglieco, B. M.; Mancaruso, E., Multiwavelength ultraviolet absorption spectroscopy of NO and OH radical concentration applied to a high-swirl diesel-like system. Exp Therm Fluid Sci 2004 (28):355-367.
    [94]聂劲松:张为俊;杨勇;秦敏,激光光技术在环境监测中的应用专题系列(Ⅳ)激光光谱学方法测量大气中OH自由基.物理2002(31):31-35.
    [95]赵宏太;柳晓军;詹明生,光腔衰荡技术与高灵敏吸收探测.物理2001(30):217-219.
    [96]聂劲松;张为俊:杨颙;王沛:胡欢陵.衰荡光谱法测量OH自由基的理论研究.原子与分子物理学报2000(17):471-476.
    [97]Barry. H. R.; Bakowski, B.; Corner. L.; Freegarde. T.; Hawkins. O. T. W. Hancock. G.; Jacobs. R. M. J.; Peverall. R.:Ritchie. G. A. D., OH detection by absorption of frequency-doubled diode laser radiation at 308 nm. Chem Phys Lett 2000(319):125-130.
    [98]Aizawa. T.; Kamimoto. T.; Tamaru. T., Measuremnets of temperature and OH radical concentration in combustion gases by absorption spectroscopy with a diode laser. Lasers and Electro-Optics. CLEO/Pacific Rim'99.1999:567-658.
    [99]Gaurand. I.; Hibert. C.; Motret. O.; Pouvesle, J. M.. [OH(X)] measurements by resonant absorption spectroscopy in a pulsed dielectric barrier discharge. J Appl Phys 1999 (85):7070-7075.
    [100]张锐;黄碧霞;何友昭.原子光谱分析.中国科学技术出版社,1991.
    [101]Falkensteina, Z., The influence of ultraviolet illumination on OH formation in dielectric barrier discharges of Ar/O2/H2O:The Joshi effect. J Appl Phys 1997 (81): 7158-7162.
    [102]Czerwiec. T.; Ricard, A.:Belmonte. T.; Bockel. S.; Michel. H.. Detection by emission spectroscopy of active species in plasma-surface processes. Thin Solid Films 1999(341):1-8.
    [103]Shin. D. N.; Park. C. W.; Hahn. J. W., Detection of OH(A(2)Sigma(+)) and O(D-1) emission spectrum generated in a pulsed corona plasma. Bulletin of the Korean Chemical Society 2000 (21):228-232.
    [104]Wu, Y.; Sun. M.:Li, J.; Wang. N. H.; Wu. J.; Shang. K. F.; Zhang. J. L. Diagnosis of OH radical by optical emission spectroscopy in atmospheric pressure unsaturated humid air corona discharge and its implication to desulphurization of flue gas. Plasma Chem Plasma P 2005 (25):31-40.
    [105]Oda. T.:Shimizu. K.. Emission spectrometry for discharge plasma diagnosis. Sci Technol Adv Mat 2001 (2):577-585.
    [106]Shimizu. K.; Saeki. S.; Yamada. G.; Oda, T., Emission Spectrometry of NO or activated nitrogen species in non-thermal plasma. IEEE Industry Application Society Annual Meeting.2002:1802-1809.
    [107]Liu. F.:Wang, W.;Zheng. W.; Wang. Y., Optical study of radicals (OH. O. H. N) in a needle-plate bi-directional pulsed corona discharge. Eur Phys J D 2006 (38): 515-522.
    [108]Wang. W. C.; Liu, F.; Wang, W.; Zhang. W.:Wang. Y. N., Diagnosis of OH radical by optical emission spectroscopy in a wire-plate bi-directional pulsed corona discharge. J Electrostat 2007 (65):445-451.
    [109]Wang. W. C.; Wang, S.; Liu. F.; Zheng, W.; Wang. D. Z., Optical study of OH radical in a wire-plate pulsed corona discharge. Spectrochim Acta A 2006 (63): 477-482.
    [110]Zhang. J. L.; Wang. W. C.; Liu. F.; Liu. Y.; Wang, Y. N., Study on density distribution of high-energy electrons in pulsed corona discharge. Vacuum 2004 (73): 333-339.
    [111]Liu. F.; Wang. W. C.; Zhang, J. L.; Wang. Y. N., Density distribution of high energy electrons in pulsed corona discharge of NO+N2 mixture. Spectrochim Acta A 2003 (59):3267-3272.
    [112]Ono. R.:Oda. T., Nitrogen oxide γ-band emission from primary and secondary streamers in pulsed positive corona discharge. J Appl Phys 2005 (97): 0133021-0133024.
    [113]Zhu. Z. L.:Chan. G. C. Y.; Ray. S. J.; Zhang. X. R.; Hieftje, G. M., Microplasma Source Based on a Dielectric Barrier Discharge for the Determination of Mercury by Atomic Emission Spectrometry. Anal Chem 2008 (80):8622-8627.
    [114]Srivastava. N.; Wang. C.; Dibble. T. S.. A study of OH radicals in an atmospheric AC discharge plasma using near infrared diode laser cavity ringdown spectroscopy combined with optical emission spectroscopy. Eur Phys J D 2009 (54): 77-86.
    [115]Liu. F.; Wang. W. C.:Wang. S.:Ren. C. S.:Wang. Y. N., The study of active atoms in high-voltage pulsed coronal discharge by optical diagnostics. Plasma Sci Technol 2005 (7):2851-2855.
    [116]Kychakoff. G.; Howe. R. D.; Hanson. P. K.:Mcdaniel. J. C.. Quantitative visualization of hydrogen transverse jet in supersonic cross-flow. Appl Optics 1982 (21):3225-3227.
    [117]Sankaranarayanan, R.; Pashaie. B.:Dhali. S. K., Laser-induced fluorescence of OH radicals in a dielectric barrier discharge. Appl Phys Lett 2000 (77):2970-2972.
    [118]Ono. R.; Oda. T.. OH radical measurement in a pulsed arc discharge plasma observed by a L1F method. IEEE T Ind Appl 2001 (37):709-714.
    [119]Ono. R.; Oda, T.. Dynamics and denstiy estimation of hydroxyl radicals in a pulsed corona discharge. J Phys D Appl Phys 2002 (35):2133-2138.
    [120]Ono. R.; Oda, T., Measurement of hydroxyl radicals in an atmospheric pressure discharge plasma by using laser-induced fluorescence. IEEE T Ind Appl 2000 (36): 82-86.
    [121]Ono. R.; Oda. T.. Dynamics of ozone and OH radicals generated by pulsed corona discharge in humid-air flow reactor measured by laser spectroscopy. J Appl Phys 2003 (93):5876-5882.
    [122]Dileccce. G.; Ambrico. P. F.; Benedictis. S. D., An ambient air RF low-pressure pulsed discharge as an OH source for LIF calibration. Plasma Sources Sci T 2004 (13): 237-244.
    [123]Kocik, M.; Mizeraczyk,J.; Kanazawa, S.;Kajiwara. A.:Kumagai. J.; Ohkubo. T.; Nomoto. Y.; Chang. J. S., Observation of ground-state OH by LIF technique in DC nozzle-to-plate positive streamer coronas.2004 IEEE Industry applications conference.2004:244-249.
    [124]Kanazawa, S.; Tanaka. H.; Kajiwara. A.:Ohkubo. T.; Nomoto. Y.; Kocik. M.: Mizeraczyk, J.; Chang. J. S., LIF imaging of OH radicals in DC positive streamer coronas. Thin Solid Films 2007 (515):4266-4271.
    [125]Yuji. T.; Kawano. H.; Kanazawa. S.; Ohkubo. T.; Akatsuka, H., Laser-induced fluorescence image of OH radicals for atmospheric-pressure nonequilibrium dry air gas DC pulsed plasma jet. IEEE T Plasma Sci 2008 (36):976-977.
    [126]Niemi. K.; der Gathen. V. S.; Dobele. H. F.. Absolute calibration of atomic density measurements by laser-induced fluorescence spectroscopy with two-photon excitation. J Phys D Appl Phys 2001 (34):2330-2335.
    [127]Niemi. K.; der Gathen. V. S.; Dobele. H. F., Absolute atomic oxygen density measurements by two-photon absorption laser-induced fluorescence spectroscopy in an RF-excited atmospheric pressure plasma jet. Plasma Sources Sci T 2005 (14): 375-386.
    [128]Takezawa. K.; Ono. R.; Oda. T.. Atomic oxygen radical observation in an atmospheric pressure pulsed discharge by TALIF.2005 IEEE Industry applications conference.2005:2914-2917.
    [129]Ono. R.; Yamashita, Y.:Takezawa. K.; Oda. T.. Behaviour of atomic oxygen in a pulsed dielectric barrier discharge measured by laser-induced fluorescence. J Phys D Appl Phys 2005 (38):2812-2816.
    [130]Ono. R.:Takezawa. K.; Oda, T.. Two-photon absorption laser-induced fluorescence of atomic oxygen in the afterglow of pulsed positive corona discharge. J Appl Phys 2009 (106):0433021-0433025.
    [131]Ono. R.; Teramoto, Y.:Oda. T.. Measurement of atomic nitrogen in No pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. J J Appl Phys 2009 (48):1223021-1223024.
    [132]Eichwald. O.:Ducasse. O.; Dubois, D.; Abahazem. A.; Merbahi, N.; Benhenni, M.; Yousfi. M., Experimental analysis and modelling of positive streamer in air: towards an estimation of O and N radical production. J Phys D Appl Phys 2008 (41): 234002-1-11.
    [133]Roth. G. J.; Gundersen, M. A., Laser-induced fluorescence images of NO distribution after needle-plane pulsed negative corona discharge. IEEE T Plasma Sci 1999 (27):28-29.
    [134]Fresnet. F.; Baravian. G.; Pasquiers. S.; Postel. C.; Puech. V.; Rousseau, A. Rozoy. Time-resolved laser-induced fluorescence study of NO removal plasma technology in N2/NO mixtures. J Phys D Appl Phys 2000 (33):1315-1322.
    [135]Fresnet. F.;Baravian. G.; Magne. L.; Pasquiers. S.; Postel. C.; Puech. V. Rousseau, A., Influence of water on NO removal by pulsed discharge in N2/H2O/NO mixture. Plasma Sources Sci T 2002 (11):152-160.
    [136]Kanazawa. S.; Ito. T.; Shuto. Y.; Ohkubo. T.; Nomoto, Y.; Mizeraczyk. J., Two-dimensional distribution of ground-state NO density by LIF technique in DC needle-to-plate positive streamer coronas during NO removal processing. IEEE T Ind Appl 2001 (37):1663-1667.
    [137]Kanazawa. S.; Shuto. Y.; Sato. N.; Ohkubo. T.; Nomoto. Y.; Mlzeraczyk. J.: Chang. J. S., Two-dimensional image of NO density during NOx removal by LIF technique in a corona radical shower reactor.2001 IEEE Industry applications conference.2001:1082-1086.
    [138]Mizeraczyk. J.; Ohkubo. T.:Kanazawa. S.; Kocik. M.. Application of LIF technique for space-and time-resolved monitoring of pollutants gas decomposition in non-thermal plasma reactors. Laser Tehcnology VII:Applications of Lasers.2002: 28-36.
    [139]Kanazawa, S.; Sumi. T.; Shimamoto, S.:Ohkubo. T.; Nomoto. Y.; Kocik. M.; Mizeraczyk. J.; Chang. J. S., Diagnostics of NO oxidation process in a nonthermal plasma reactor:features of DC streamer-corona discharge and NO LIF profile. IEEE T Plasma Sci 2004 (32):25-31.
    [140]Hazama, H.; Fujiwara, M.; Tanimoto. M.. Removal processed of nitric oxide along positive streamers observed by laser-induced fluorescence imaging spectroscopy. Chem Phys Lett 2000 (323):542-548.
    [141]Miyazaki. K.; Matsumoto. J.; Kato, S.; Kajii. Y., Development of atmospheric NO analyzer by using a laser-induced fluorescence NO2 detetor. Atmos Environ 2008 (42):7812-7820.
    [142]Dari-Salisburgo. C; Carlo, P. D.; Giammaria. F.; Kajii, Y.; D'Altorio. A.. Laser induced fluorescence instrument for NO2 measurements:observations at a central Italy background site. Atmospheric Environment 2009 (43):970-977.
    [143]Wang. Z. H.; Li. B.; Ehn. A.; Sun, Z. W.:Li. Z. S.; Bood. J.:Alden. M.:Cen, K. F., Investigation of flue=gas treatment with O3 injection using NO and NO2 planar laser-induced fluorescence. Fuel 2010 (89):2346-2352.
    [144]Matsumoto. J.:Hirokawa. J.; Akimoto. H.; Kajii. Y.. Direct measurement of NO2 in the marine atmosphere by laser-induced fluorescence technique. Atmos Environ 2001 (35):2803-2814.
    [145]Naidis. G.. Simulation of streamer-induced pulsed discharges in atmospheric-pressure air. Eur Phys J-Appl Phys 2009 (47):22803-1-6.
    [146]Briels. T.:van Veldhuizen. E.:Ebert. U., Positive streamers in air and nitrogen of varying density experiments on similarity laws. J Phys D Appl Phys 2008 (41): 234008-1-16.
    [147]Kanazawa. S.; Sumi. T.; Shimamoto. S.; Ohkubo. T.; Nomoto. Y.; Kocik. M.: Mizeraczyk, J.; Chang. J.. Diagnostics of NO oxidation process in a nonthermal plasma reactor:features of DC streamer-corona discharge and NO LIF profile. IEEE T Plasma Sci 2004 (32):25-31.
    [148]Kanazawa. S.; Ito. T.:Shuto. Y.; Ohkubo. T.; Nomoto. Y.:Mizeraczyk. J.. Characteristics of laser-induced streamer corona discharge in a needle-to-plate electrode system. J Electrostal 2002 (55):343-350.
    [149]Motret, O.; Hibert. C.; Pellerin. S.; J. P.. Rotational temperature measurements in atmospheric pulsed dielectric barrier discharge gas-temperature and molecular fraction effects. J Phys D Appl Phys 2000 (33):1493-1498.
    [150]Kanazawa. S.; Ito. T.; Shuto. Y.:Ohkubo. T.; Nomoto, Y.; Mizeraczyk. J., Characteristics of laser-induced streamer corona discharge in a needle-to-plate electrode system. J Electrostal 2002 (55):343-350.
    [151]Briels. T. M. P.:van Veldhuizen. E. M.:Ebert. U., Positive streamers in air and nitrogen of varying density experiments on similarity laws. J Phys D:Appld Phys 2008(41):234008-1-16.
    [152]Li. J.; Li. G. F.; Wu, Y.; Wang. N. H.; Huang, Q. N., OH radicals generated by DC corona discharge for improving the pulsed discharge desulfuration efficiency. J Environ Sci Heal A 2004 (16):145-148.
    [153]Takiyama. K.:Namba. S.:Yamasaki. T.; Shoji. A.; Kwon. J. H.; Park. R. E.: Nojima. H.. Observation of OH radical reactions with atomic hydrogen in He/H2O plasma by laser-induced fluorescence spectroscopy. Jpn J Appl Phys 2006 (45): 8260-8263.
    [154]Zheng, W.; Liu. F.; Wang, W.:Wang. D.. Optical study of OH radical in a needle-plate DC discharge. Eur Phys J Appl Phys 2007 (38):153-159.
    [155]Ono. R.; Oda, T., Measurement of gas temperature and OH density in the afterglow of pulsed positive corona discharge. J Phys D Appl Phys 2008 (41): 03520401-03520411.
    [156]Zheng. S.; Zhang. L.; Liu. Y.; Wang. W. C.; Wang. X. G., Modeling of the production of OH and O radicals in a positive pulsed corona discharge plasma. Vacuum 2009 (83):238-243.
    [157]Ono. R.:Oda. T.. Measurement of gas temperature and OH density in the afterglow of pulsed positive corona discharge. J Phys D Appl Phys 2008 (41): 035204-1-11.
    [158]Tamura, M.; Rege. P. A.; Harrington. J. E.; Luque. J.; Jeffries. J. B.:Smith. G. P.; Crosley. D. R., Collisional quenching of CH (A). OH (A), and NO (A) in low pressure hydrocarbon flames. Combust Flame 1998 (114):502-514.
    [159]Spyrou. N.; Held. B.; Peyrous. R.; Manassis, C.; Pignolet. P., Gas temperature in a secondary streamer discharge:an approach to the electric wind. J Phys D Appl Phys 1992 (25):211-216.
    [160]Ono, R.; Oda. T.. Measurement of gas temperature and OH density in the afterglow of pulsed positive corona discharge. J Phys D Appl Phys 2008 (41): 035204-1-11.
    [161]Benesch, W.; Vanderslice. J. T.; Tilford. S. G.; G, W. P., Potential curves for the observed states of N2 below 11 eV. Astrophys J 1965 (142):1227-1240.
    [162]Phillips. D. M.. Determination of gas temperature from unresolved bands in the spectrum from a nitrogen discharge. J Phys D Appl Phys 1975 (8):507-521.
    [163]Atkinson. R.; Baulch. D. L.; Cox. R. A.:Crowley, J. N.; Hampson. R. F.:Hynes. R. G.; Jenkin. M. E.; Rossi. M. J.:Troe. J., Evaluated kinetic and photochemical data for atmospheric chemistry:Volume I-gas phase reaction of Ox. HOx. NOx and SOx species. Atmos Chem Phys 2004 (4):1461-1738.
    [164]Wu. Z.; Gao. X.:Luo. Z.; Wei. E.:Zhang, Y.; Zhang,J.; Ni. M.; Cen, K., NOx treatment by DC corona radical shower with different geometric nozzle electrodes. Energ Fuel 2005 (19):2279-2286.
    [165]Bendaoud. A.; Tilmatine. A.; Medles. K.; Youners. M.:Blejan. O.:Dascalescu, L., Experimental study of corona discharge generated in a modified wire-plate electrode configuration for electrostatic process application. IEEE T Ind Appl 2010 (46):666-671.
    [166]Ono. R.; Oda. T.. OH radical measurement in a pulsed arc discharge plasma observed by a LIF method. IEEE T Ind Appl 2001 (37):709-714.
    [167]Su. P.; Zhu. Y.; Yang. S.. Using OES to measure distribution of energetic electron in multi-needle-to-plate corona discharge. J Electrostal 2008 (66):193-196.
    [168]Shang. K.; Wu. Y.; Li, J.; Li. G.; Duan. L., Enhancement of NOx abatement by advancing initiation of C3H6 oxidation chemistry with a corona raical shower radical shower. Plasma Chem Plasma P 2007 (16):104-109.
    [169]Pavlish. J. H.; Sondreal. E. A.; Mann. M. D.; Olson, E. S.; Galbreath, K. C. Laudal. D. L.; Benson. S. A., Status review of mercury control options for coal-fired power plants. Fuel Process Technol 2003 (83):89-165.
    [170]Chung. S. J.; Pillai, K. C.; Moon, I. S., A sustainable environmentally friendly NOx removal process using Ag(Ⅱ)/Ag(Ⅰ)-mediated electrochemical oxidation. Sep Purif Technol 2009 (65):156-163.
    [171]Breene. R. G., Cross section for the exchange of charge between neutral and positive nitrogen. J Chem Phys 1965 (42):3052-3053.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700