用户名: 密码: 验证码:
PCF型除尘脱硫洗涤器的实验和数值模拟理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究中国大气污染的现状得知,工业燃煤锅炉排放的颗粒物和SO2是影响我国城市空气质量的主要污染物。随着空气污染控制标准的日益严格,对空气净化设备也提出了更高的要求,研究和开发适合中国国情的、拥有自主知识产权的除尘脱硫技术与装置成为当前一种迫切的需求。本文在查阅大量文献的基础上研究开发出一种新型的除尘脱硫装置—PCF型除尘脱硫洗涤器,并结合实验研究、数值理论和CFD模拟的方法对该新型装置进行了研究。主要研究内容及结果如下:
     PCF型除尘脱硫洗涤器性能的实验研究和分析。首先,对实验用粉煤灰和石灰石粉的物理化学性质进行了测试和分析;然后,在此基础上研究了装置的阻力性能、除尘性能、脱硫性能和脱水性能;同时,根据实验研究结果给出了PCF型除尘脱硫洗涤器的运行工况和结构参数。
     基于湿法除尘机理,建立了PCF型洗涤器湿法除尘的理论模型。模型建立过程中,将PCF型洗涤器划分成不同的区域,重点考虑喷淋区(初处理室)、自激通道、自激室和内筒四部分对颗粒的捕集作用。根据湿式除尘机理,分别建立各区域的除尘子模型,然后将各部分的除尘效率进行综合。利用理论模型预测了不同操作条件下的除尘效率,并借助实验结果进行了验证。
     根据双膜传质理论,建立了PCF型洗涤器内石灰石浆液滴吸收SO2的理论模型。模型以烟气为研究对象,假定传质速率在一个控制单元或时间步长内是不变的。用十种离子(Cl-、Ca2+、H+、OH-、SO2(aq)、CO2(aq)、HSO3-、HCO3-、SO32-和C032-)来定义液相的组成,烟气流动过程中考虑了SO2的吸收和CO2的解吸。同时,模型的建立也考虑自激室对烟气的二次净化作用。利用理论模型预测了装置不同工况下的脱硫效率,并将预测值和实验值进行了对比以验证模型的准确性。通过分析PCF型洗涤器内的脱硫过程表明,在实验研究的范围内,在初处理室(喷淋区)内,SO2的吸收是由气膜和液膜扩散共同控制的。
     利用计算流体动力学(CFD)软件包中的Fluent软件对PCF型除尘脱硫洗涤器内的流动特性及性能进行了数值模拟。模拟中应用结构化网格技术划分网格,运用雷诺应力湍流模型(RSM)描述烟气湍流运动,选用颗粒轨道模型(DPM模型)跟踪液滴轨迹,采用随机漫步模型(DRW模型)考察湍流对液滴运动的影响,用压力—速度耦合的SIMPLE算法求解耦合的连续方程和动量方程。
     以上的研究表明:①随着风速增大,装置压降随之增大,除尘效率增加不明显,脱硫效率降低,脱水性能略有提高(一定风速范围内)。②液气比对装置的除尘效率和脱硫效率都有很显著的影响,液气比在一定范围内增加时,除尘效率和脱硫效率都会随之增加;但液气比对装置压降和出口烟气含湿量影响不大。③装有导流板的PCF型洗涤器较无导流板的PCF型洗涤器虽然压降略有增加,但综合性能有明显的提高。④与其他洗涤器相比,PCF型除尘脱硫洗涤器具有压降低、烟气处理量大、吸收速率高、脱水性能好等诸多优点。⑤建立的除尘理论模型和钙基脱硫理论模型都可以有效地预测新型PCF洗涤器的除尘、脱硫性能。理论预测值和实验测定值显示了良好的吻合性。⑥CFD方法通过将不同工况下的流场、速度场、压力场、浓度场、液滴轨迹等进行了可视化,可以更直观的观察现象,揭示洗涤器内的流动特性,从而加深对流场规律的理解,具有很强的工程实践意义。
     论文在最后,结合相关的工程项目,对PCF型装置在现场中的应用情况进行了研究分析。研究表明,该装置净化后的烟气粉尘浓度、SO2浓度和烟气林格曼黑度均低于国家标准和当地标准;并且具有显著的社会、环境和经济效益,应用前景广阔。
As seen from the present status of air pollution in China, particles and SO2, emitted from the coal-fired industrial boilers, are still the main air pollutants influencing the urban air quality. As the requirements for air pollution control are becoming increasingly strict, there is a constant demand for more effective pollution control technologies. And, present work should put emphasis on the research and development of the devices suitable for Chinese situations and possessing own intellectual property rights. In our dissertation, a novel type device-PCF dedust and desulphurization scrubber was developed based on amount of home and abroad literatures. Meanwhile, some related investigations were conducted on the device combining the experiment, numerical theory and CFD simulation. The main work and conclusions are listed as follows:
     Experimental analysis of PCF scrubber performance. Firstly, we studied the physical-and chemical-properties of the fly-ash and limestone. And consequently, the work is to investigate the device performance including resistance, dust collection, desulphurization and dewatering performance. Some reasonable parameters were obtained according to the experimental results.
     A dust collection theory model of the PCF scrubber was established on the basis of wetting dust collection mechanisms. Due to the fact that the dominant particle collection mechanisms are different in different zones of the PCF device, the device was divided into different zones and put emphasis on the effects of preliminary treating chamber, self-excitation channel, self-excitation chamber and inner cylinder. Based on the mechanisms, the sub-model for each zone is firstly established. After this, the sub-model synthesizes and evaluates the individual components of a process as a whole. The dedust efficiency at different operating conditions were predicted employing the theory model and compared the predicted data with that of experiment.
     Based on the two-film theory, a theoretical model of SO2absorption into the droplets of limestone slurry has been developed within the novel wet-type PCF device. This model treated flue gas as the studied object and assumed that the composition of droplets and absorption rate of SO2remain unchanged in a time step size. Chloride ion (Cl-), calcium ion (Ca2+) and eight dissolved species (H+, OH-, SO2(aq), CO2(aq), HSO3-, HCO3-, SO32-and CO32-) were considered to define the liquid phase composition. During the flue gas flow, we considered that the absorption of SO2and desorption of CO2into the gas phase. Meanwhile, the second purification of self-excitation chamber on the SO2was supplemented to improve the model accuracy. Using the established model predicted SO2removal efficiency at different work conditions and some auxiliary experiments were conducted to validate the predicted results. The results show that the SO2absorption rate in spay zone (preliminary treating chamber) is controlled by a combination of gas-and liquid-film diffusions in the range of tested operating conditions.
     Flow characteristics and performance of the PCF scrubber were simulated using a computational fluid dynamics (CFD) software package (Fluent). In the simulation, structural grid method was used to grid, Reynolds stress model (RSM) was employed to describe the gas phase, discrete phase model (DPM) was used in the droplet trajectory, discrete random walking (DRW) model was used to reflect the influence of turbulence on droplet trajectory, and pressure-velocity couple SIMPLE method was used to resolves the coupled continuity equation and momentum equations.
     The results show that:①With the gas velocity increasing, pressure drop increases, dedust efficiency and dewatering performance enhance slightly, and desulphurization efficiency decreases.②The liquid-gas ratio (L/G) has great effect on the dedust efficiency and desulphurization efficiency. In a restricted range of liquid-gas ratio, they both increase with the increase of L/G. However, the water content in outlet flue gas is not changed greatly with the L/G change.③Although the introduction of guiding plates increases the pressure drop, the comprehensive performance of the PCF device is improved greatly.④Compared with other scrubbers, the PCF device possesses many virtues such as lower pressure drop, larger flue gas treatment capacity, higher absorption rate, good dewatering performance, and so on.⑤The models of dust collection and desulphurization proposed in present study are effective models to evaluate and predict the dust collection and desulphurization performance of the novel type PCF device. The data of prediction and experiment show good agreement.⑥The CFD method visualizes the flow field such as velocity field, pressure field, concentration field, droplet trajectory, and so on, which can help us observe the phenomena directly, illustrate the flow characteristics in the scrubber and further knowledge the flow field rule. So, this method has powerful engineering application virtues.
     In the end of this dissertation, we investigated the practical application of the PCF device combining with engineering projects. The results illustrate that the dust and SO2concentrations and Ringelmann number in the flue gas purified by the PCF device are much lower than the national and local standards. Moreover, the PCF wet dedust and desulphurization technology possesses an excellent social benefit, environmental benefit and economic benefit, and thereby leads to a promising future of application.
引文
[1]“中国能源供求状况及前景分析”课题组.中国能源供求状况及前景分析.统计研究,2007,24(10):3-10
    [2]谌天兵,武建军,韩甲业.燃煤污染现状及其治理技术综述.煤,2006,15(2):1-4
    [3]国家统计局.中国统计年鉴.北京:中国统计出版社,2009
    [4]刘炳江,郝吉明,贺克斌,等.中国酸雨政策和二氧化硫污染控制区区划及实施政策研究.中国环境科学,1998,18(1):1-7
    [5]康娜,高庆先,周锁铨,等.区域大气污染数值模拟方法研究.环境科学研究,2006,19(6):20-26
    [6]韩明霞,过孝民.我国城市的大气污染及其对居民的健康影响.城市规划,2006,30(6):84-87
    [7]国家环境保护总局.2009年中国环境状况公报.2010,24-27
    [8]国家环境保护总局.2008年中国环境状况公报.2009,30-34
    [9]郝吉明.大气污染控制工程(第二版).北京:高等教育出版社,2004,12-19
    [10]刘天齐.三废处理工程技术手册(废气卷).北京:化学工业出版社,1998,138-139
    [11]金国淼.除尘设备.北京:化学工业出版社,2002,1-25
    [12]王飞,李彩亭,曾光明,等.伞罩型湿式脱硫除尘器内部流场数值模拟.水动力学研究与进展(A),2007,22(4):464-469
    [13]郭瑞堂,高翔,王君,等.液柱塔内流场和S02吸收的CFD模拟和优化.浙江大学学报(工学版),2007,41(3):494-498
    [14]陈海林,杨春平,甘海明,等.螺旋型垂直筛板布气的喷射鼓泡脱硫除尘器的研制和性能.环境科学学报,30(2):294-301
    [15]钟秦.燃煤烟气脱硫脱硝技术及工程实例(第二版).北京:化学工业出版社,2006,11-291
    [16]刘天齐.三废处理工程技术手册(废气卷).北京:化学工业出版社,1998,197-238
    [17]周祖飞,金新荣.影响湿法烟气脱硫效率的因素分析.浙江电力,2001(3):42-45
    [18]程峰.液柱冲击塔湿法烟气脱硫的试验和理论研究:[浙江大学博士学位论文].杭州:浙江大学机械工程与能源学院,2005
    [19]陈浩.火电厂烟气脱硫技术及防腐施工要求.青海电力,2008,27(2):17-21
    [20]聂华.2×300MW火电机组脱硫工艺研究及设计:[重庆大学硕士学位论文].重庆:重庆大学资源及环境科学学院,2004
    [21]费小猛,张永春,张驭时,等.改性活性炭脱除含C02原料气中低浓度S02的研究.广州化学,2006,31(4):7-11
    [22]苏青青,杨嘉谟.燃煤烟气脱硫技术发展.武汉化工学院学报,2005,27(1):32-35
    [23]刘增辉.烟气脱硫脱硝集成技术工艺分析及试验:[天津大学硕士学位论文].天津:天津大学环境科学与工程学院,2007,
    [24]王斌斌,仇性启.烟气脱硫技术研究现状与进展.通用机械,2006,(6):7579
    [25]Ortiz de Salazar R, Ollero P, Cabanillas A, et al. Flue gas desulphurization in a circulating fluidized bed. Coal Science and Technology,1995,24:1843-1846
    [26]吴新,赵长遂,吴树志.炉内喷钙脱硫技术的工业应用研究.热能动力工程,2001,16(96):609-611
    [27]Brogren C, Karlsson H T. The impact of the electrical potential gradient on limestone dissolution under wet flue gas desulphurization conditions. Chemical Engineering Science,1997,52(18):3101-3106
    [28]黄红.添加金属氧化物对脱硫剂脱硫性能影响的研究:[西安建筑科技大学硕士学位论文].西安:西安建筑科技大学环境与市政工程学院,2005
    [29]Wu Y, Li J, Wang N H, et al. Industrial experiments on desulphurization of flue gases by pulsed corona induced plasma chemical process. Journal of Electrostatics,2003,57(3-4):233-241
    [30]王耀听.活性炭联合脱硫脱硝技术综述.电站系统工程,2004,20(6):41-43
    [31]杜黎明,刘金荣.燃煤锅炉同时脱硫脱硝技术工艺性分析.中国电力,2007,40(2):71-74
    [32]王福军.计算流体动力学分析-CFD软件原理与应用.北京:清华大学出版社,2005,1
    [33]van Heek K H. Progress of coal science in the 20th century. Fuel,2000,79(1): 1-26
    [34]金涌,祝京旭,汪展文,等.流态化工程原理.北京:清华大学出版社,2001,241-243
    [35]Ranade V V. An efficient computational model for simulating flow in stirred vessels:a case of Rushton turbine. Chemical Engineering Science,1997,52(24): 4473.4484
    [36]Cockx A, Line A, Roustan M, et al. Numerical simulation and physicalmodeling of the hydrodynamics in an air-lift internal loop reactor. Chemical Engineering Science,1997,52(21):3787-3793
    [37]李珊红.新型伞形罩洗涤器的实验和数值模拟研究:[湖南大学博士论文].长沙:湖南大学环境科学与工程学院,2008
    [38]王树立,张雅琴,张敏卿.湍流两相流动模式理论综述及展望.抚顺石油学院学报,1997,17(2):37-43
    [39]王维,李佑楚.颗粒流体两相流模型研究进展.化学进展,2000,12(2):208217
    [40]周力行.湍流气粒多相流动和燃烧的理论与数值模拟.北京:科学出版社,1994,153-200
    [41]欧阳洁,李静海.模拟气固多相流动非均匀结构的颗粒运动分解轨道模型.中国科学(B辑),1999,29(1):29-38
    [42]Griffiths W D, Boysan F. Computational fluid dynamics (CFD) and empirical modeling of the performance of a number of cyclone samplers. Journal of Aerosol Science,1996,27(2):281-304
    [43]Haim M, Weiss Y, Kalman H, et al. The effect of the inlet conditions on the numerical solutions of particle-gas flows. Advanced Powder Technology,2003, 14(1):87-110
    [44]Zhang Z, Xie Z L. Numerical simulation of fluid-solid two-phase flows. Journal of Chemical Industry and Engineering,2001,52(1):1-12
    [45]Eric P, Bo L. Fundamentals of turbulent gas-solid flows applied to circulating fluidized bed combustion. Progress in Energy and Combustion Science,1998, 24(4):259-296
    [46]王维,李佑楚.颗粒流体两相流模型研究进展.化学进展,2000,12(2):208217
    [47]Ge W, Li J H. Simulation of particle-fluid systems with macroscale pseudo-particle modeling. Powder Technology,2003,137(1-2):99-108
    [48]Spalding D B. A. general purpose computer program for multi-dimensional one-and two-phase flow. Mathematics and Computers in Simulation,1981, 23(3):267-276
    [49]陶文铨,林汉涛,李长发.传热学的研究与发展.北京:高等教育出版社,1995,253-256
    [50]陈贵林.CFD软件的明日之星.CAD与自动化,1994,10:55-62
    [51]王瑞金,张凯,王刚.Fluent技术基础与应用实例.北京:清华大学出版社2007,50-54
    [52]温正,石良辰,任毅如.FLUENT流体计算应用教程.北京:清华大学出版社,2009,4-8
    [53]江帆,黄鹏.Fluent高级应用与实例分析.北京:清华大学出版社,2008,112-117
    [54]FLUENT 6.3 User's Guide. Fluent Inc, September 2006
    [55]Ana Pilar G S, Jeroen van B, Patrick R, et al. Numerical and experimental modelling of pollutant dispersion in a street canyon. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(4-5):321-339
    [56]Neofytou P, Venetsanos A G, Rafailidis S, et al. Numerical investigation of the pollution dispersion in an urban street canyon. Environmental Modelling & Software,2006,21(4):525-531
    [57]金颖,周伟国,阮应君.烟气扩散的CFD数值模拟.安全与环境学报,2002,2(1):21—23
    [58]邓启红,汤广发,张国强.室内空气环境的数值研究方法.建筑热能通风工程,2004,23(1):34—38
    [59]Mohebbi A, Taheri M, Fathikaljahi J, et al. Simulation of an orifice scrubber performance based on eulerian/lagrangian method. Journal of Hazardous Materials,2003,100 (1-3):13-25
    [60]van Baten J M, Krishna R. Modelling sieve tray hydraulics using computational fluid dynamics. Chemical Engineering Journal,2000,77(3):143-151
    [61]Pak S I, Chang K S. Performance estimation of a venture scrubber using a computational model for capturing dust particles with liquid spray. Journal of Hazardous Materials,2006,138(3):560-573
    [62]Jiao J Y, Zheng Y, Sun G G, et al. Study of the separation efficiency and the flow field of dynamic cyclone. Separation and Purification Technology,2006,49 (2): 157-166
    [63]Narasimha M, Sripriya R, Banerjee P K. CFD modelling of hydrocyclone prediction of cut size. International Journal of Mineral Processing,2005,75 (1-2):53-68
    [64]Udaya B K, Rama M, Ramakrishnan N, et al. CFD validation for flyash particle classification in hydrocyclones. Minerals Engineering,2007,20(3):290-302
    [65]Chuah T G, Gimbun J, Thomas S Y. A CFD study of the effect of cone dimensions on sampling aerocyclones performance and hydrodynamics. Powder Technology,2006,162 (22):126-132
    [66]Kwan S Y, Hideto Y. Effect of mist injection position on particle separation performance of cyclone scrubber. Separation and Purification Technology,2004, 37 (3):221-230
    [67]Xiang R B, Lee K W. Numerical study of the flow field in cyclones of different height. Journal of Chemical Engineering and Processing,2005,44 (8):877 883
    [68]顾正萌,郭烈锦,高晖.沉流式滤筒除尘器气固两相流动的数值模拟与分析.化工机械,2002,29(4):197—202
    [69]钱付平,章名耀.底部加直管旋风分离器的性能预测.热能动力工程,2005,20(1):41—44
    [70]Thomas W S, Wadie F G. Experimental approach and techniques for the evaluation of wet flue gas desulphurization scrubber fluid mechanics. Chemical Engineering Science,1994,49(24):4667-4679
    [71]曾芳,陈力,李晓芸.湿法脱硫塔数值计算.华北电力大学学报,2002,29(2):106—110
    [72]周山明,金保升,仲兆平.大型烟气脱硫塔的流体动力学模拟及优化设计东南大学学报,2005,35(1):105—110
    [73]林永明,高翔,俞保云,等.计算流体力学(CFD)在大型湿法烟气脱硫系统中的研究与应用进展.热力发电,2005,(12):34—37
    [74]Marocco L, Inzoli F. Multiphase Euler-Lagrange CFD simulation applied to Wet Flue Gas Desulphurisation technology. Multiphase Flow,2009,35(1):185-194
    [75]张德见,魏先勋,曾光明,等.新型炉窑烟气湿式脱硫除尘技术.环境科学与技术,2003,26(1):43—44
    [76]李立清,曾光明.锅炉烟气脱硫除尘一体化装置的开发与应用.环境污染治理技术与设备,2000,1(2):39—43
    [77]李彩亭,魏先勋.套筒式湿法除尘脱硫装置.中国专利.ZL 03248323.6,2004-07-14
    [78]国家技术监督局.中华人民共和国国家标准(GB/T 16913.3—1997)
    [79]国家技术监督局.中华人民共和国煤炭行业标准(MT/T 713—1997)
    [80]国家技术监督局.中华人民共和国国家标准(GB/T 16913.8—1997)
    [81]国家技术监督局.中华人民共和国国家标准(GB/T 16913.9—1997)
    [82]国家技术监督局.中华人民共和国国家标准(GB/T 16913.5—1997)
    [83]朱天乐,李曜,凌炫,等.湿式烟气脱硫中石灰石反应活性.环境科学,2005,26(6):15—18
    [84]时正海,赵彩虹,周屈兰,等.微型鼓泡床中石灰石溶解特性的实验研究.热能动力工程,2004,19(3):234—237
    [85]Hosten C, Gulsiim M. Reactivity of limestones from different sources in Turkey. Minerals Engineering,2004,17(1):97-99
    [86]Allers T, Luckas M, Schmidt K G. Modeling and measurement of the dissolution rate of solid particles in aqueous suspensions-Part I:modeling. Chemical Engineering & Technology,2003,26(11):1131-1136
    [87]Allers T, Luckas M, Schmidt K G. Modeling and measurement of the dissolution rate of solid particles in aqueous suspensions-Part II:experimental results and validation. Chemical Engineering & Technology,2003,26(12):1225-1229
    [88]郭瑞堂,高翔,王君,等.湿法烟气脱硫系统中石灰石活性的评价.动力工程,2008,28(3):430—432
    [89]吴祖成.注册环保工程师执业资格考试基础考试(下)复习教程.天津:天津大学出版社,2007,139—140
    [90]Boll R H. Particle Collection and pressure drop in venturi scrubbers. Industrial & Engineering Chemistry Fundamentals,1973,12 (1):40-50
    [91]Tosun G. A study of concurrent downflow of nonfoaming gas-liquid systems in a packed bed.2. Pressure drop:search for a correlation, Industrial & Engineering Chemistry Product Research and Development,1984,23(1) 35-39
    [92]Thorat B N, Kataria K, Kulkarni A V, et al. Pressure drop studies in bubble columns. Industrial & Engineering Chemistry Research,2001,40(16):3675 3688
    [93]B.C. Meikap, M.N. Biswas, Fly-ash removal efficiency in a modified multistage bubble column scrubber, Sep. Purif. Technol.36 (2004) 177-190
    [94]李思民.新型湿法除尘脱硫斜板塔的数值模拟:[湖南大学硕士学位论文].长沙:湖南大学环境科学与工程学院,2007,49—52
    [95]向晓东.现代除尘理论与技术.北京:冶金工业出版社,2002,110-111
    [96]Li S H, Li C T, Zeng G M, et al. Simulation and experimental validation studies on a new type umbrella plate scrubber. Separation and Purification Technology, 2008,62(2),323-329
    [97]Raj Mohan B, Jain R K, Meikap B C. Comprehensive analysis for prediction of dust removal efficiency using twin-fluid atomization in a spray scrubber. Separation and Purification Technology,2008,63(2),269-277
    [98]Dou B L, Pan W G, Jin Q, et al. Prediction of SO2 removal efficiency for wet flue gas desulfurization. Energy Conversion Management,2009,50(10):2547-2553
    [99]Zheng Y J, Kiil S, Johnsson J E. Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurization. Chemical Engineering Science,2003,58(20):4695-4703
    [100]Takeshita M, Soud H. FGD performance and experience on coal-fired plant. IEACR/58, IEA Coal Research, London,1993
    [101]Burford D P, Pearl I G, Stevens G E. Phase I results from the DOE/SCS CT-121 project at Georgia Power's Plant Yates. Proceedings of 56th American Power Conference, Chicago, IL,1994 (2),1655-1660
    [102]中华人民共和国国家标准—大气污染物综合排放标准(GB 16297-1996)
    [103]中华人民共和国国家标准—锅炉大气污染物排放标准(GB 13271-2001)
    [104]中华人民共和国国家标准—火电厂大气污染物排放标准(GB 13223-2003)
    [105]Wu Y, Li Q, Li F. Desulfurization in the gas-continuous impinging stream gas-liquid reactor. Chemical Engineering Science,2007,62(6):1814-1824
    [106]Warych J, Szymanowski M. Model of the wet limestone flue gas desulfuriza-tion process for cost optimization. Industrial & Engineering Chemistry Research, 2001,40(12):2597-2605
    [107]Gao H L, Li C T, Zeng G M, et al. Flue gas desulphurization based on limestone-gypsum with a novel wet-type PCF device. Separation & Purification Technology,2011,76 (3):253-260
    [108]Hrastel I, Gerbec M, Stergarsek A. Technology optimization of wet flue gas desulphurization process. Chemical Engineering Technology,2007,30(1): 220-233
    [109]Eden D, Luckas M. A heat and mass transfer model for the simulation of the wet limestone flue gas scrubbing process. Chemical Engineering Technology,1998, 21(1):56-60
    [110]Frandson J B W, Kiil S, Johnsson J E. Optimization of a wet FGD pilot plant using fine limestone and organic acids. Chemical Engineering Science,2001,56 (10):203-215
    [111]He S, Oddo J E, Tomson MB. The nucleation kinetics of calcium sulfate dehydrate in NaCl solutions up to 6m and 90℃. Journal of Colloid Interface Science,1994,162 (3):297-303
    [112]Ukawa N, Takashin T, Oshima M. Effects of salts on limestone dissolution rate in wet limestone flue gas desulphurization. Journal of Chemical Engineering (JPN),1993,26(1):112-113
    [113]Davini P, Demichele G, Ghette P. An investigation of the influence of sodium chloride on the desulphurization properties of limestone. Fuel,1992,71 (7):831-834
    [114]Kiil S, Nygaard H, Johnson J E. Simulation studies of the influence of HC1 on the performance of a wet flue gas desulphurization pilot plant. Chemical Engineering Science,2002,57(3):347-354
    [115]尹连庆,徐铮.氯离子对电厂脱硫石膏脱水影响研究及机理探讨.粉煤灰,2008,(3):12—14
    [116]李明,李丹,肖立川,等.烟气湿法脱硫脱水结构的试验研究.同济大学学报,2001,29(3):371-374
    [117]Dockery D W, Pope C A. Acute respiratory effects of particulate air pollution. Annual Review of Public Health 1994, (15):107-132
    [118]Khoder M I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere,2002,49(6):675-684
    [119]Celis J E, Morales J R, Zaror C A, et al. A study of the particulate matter PM10 composition in the atmosphere of Chillan, Chile. Chemosphere,2004,54(4):541-550
    [120]Namdeo A, Bell M C. Characteristics and health implications of fine and coarse particulates at road side, urban background and rural sites in UK. Environment International,2005,31(4):565-573
    [121]Peukert W, Wadenpohl C. Industrial separation of fine particles with difficult dust properties. Powder Technology,2001,118(1):136-148
    [122]赵旭东,吴少华,马春元,等. 湿法脱硫除尘一体化装置应用中的问题及解决措施.热能动力工程,2002,17(98):186—188
    [123]Agarwal D C. FGD scrubbrs:Technology nobody wanted but eventually needed[J]. Pollution Engineering,1984,16(6):34-38
    [124]陈卫华.锅炉烟气湿式净化技术研究.环境工程,2001,19(5):35—36
    [125]王淑勤,胡满银,刘忠.文丘里旋风水膜除尘器利用废碱液脱硫的试验研究.河北电力技术,1999,1(18):33—35
    [126]王祖武,黄梅,王聪玲,等.文丘里水膜除尘器除尘脱硫增效技术研究.环境污染与防治,2003,25(4):231-233
    [127]马广大.除尘器性能计算.北京:中国环境科学出版社,1990,20—30
    [128]Craw F M. Air pollution control. New York:McGraw-Hill,1976,64-105
    [129]Sandboch F. Principles of pollution control. New York:Longman,1982,16-31
    [130]化工设备设计全书编辑委员会.除尘设备设计.上海:上海科学技术出版社,1983,384—386
    [131]Gimenes M L, Handley D. A model for particle collection in a turbulent bed contactor-new packings. Trans IChemE Part A 1998, (76):855-863
    [132]Kim H T, Jung C H, Oh S N, et al. Particle removal efficiency of wet gravitational scrubber considering impaction, interception, diffusion. Environmental Engineering Science,2001,18 (2):125-136
    [133]Swaray S G M, Hamdullahpur F. A new semi-empirical model for predicting particulate collection efficiency in low-to-high temperature gas cyclone separators. Advanced Powder Technology,2004,2(1):137-164
    [134]李彩亭,魏先勋.燃煤烟气湿式除尘脱硫技术研究.环境工程,2000,18(4):32—34
    [1 35]谢瑞腾.洗涤法脱硫除尘净化小型锅炉的烟气.工业安全与防尘,1995,12(3):3—25
    [136]陈明功,支友刚,戚彬.10万t/a水泥立窑含尘废气湿法净化的工程体会.环境工程,2003,21(6):40—43
    [137]董芃,李军,翟明.湿式除尘器在运行中存在问题分析.通风除尘,1996,22(6):29—30
    [138]刘社育,蒋仲安,金龙哲.湿式除尘器除尘机理的理论分析.中国矿业大学学报,1998,27(1):47—50
    [139]林肇信,童志权,佘名汉,等.大气污染控制工程.北京:高等教育出版社,1991,202—372
    [140]Meikap B C, Kundu G, Biswas M N. Modeling of a novel multi-stage bubble column scrubber for flue gas desulfurization. Chemical Engineering Journal, 2002,86(3):331-342
    [141]Buonicore A J, Davis W T. Air pollution engineering manual. Van Nostrand Reinhold, New York,1992
    [142]原永涛,王方群,齐立强,等.化学添加剂对“粉煤灰—脱硫石膏”胶结材抗压强度的影响.科技导报,2007,25(18):47—51
    [143]郝吉明.大气污染控制工程(第二版).北京:高等教育出版社,2004,155
    [144]Langmuir D B. Surface migration on tantalum crystals under influence of electric and thermal gradients. Acta Metallurgica,1957,5(1):13-23
    [145]郝吉明.大气污染控制工程(第二版).北京:高等教育出版社,2004,157
    [146]Johnstone D R. A twin tracer technique permitting the simultaneous evaluation of the field performance of two spraying machines or spraying techniques. Journal of Agricultural Engineering Research,1977,22(4):439-443
    [147]吴忠标.大气污染控制工程.北京:科学出版社,2001,146
    [148]郝吉明.大气污染控制工程(第二版).北京:高等教育出版社,2004,211
    [149]Olausson S, Wallin M, Bjerle I. A model for the absorption of sulfur dioxide into a limestone slurry. Chemical Engineering Journal,1993,51(1):99-108
    [150]Lancia A, Musmarra D, Pepe F. Modeling of SO2 absorption into limestone suspensions. Industrial & Engineering Chemistry Research,1997,36(1):197 203
    [151]Frandsen J B W, Kiil S, Johnsson J E. Optimization of a wet FGD pilot plant using fine limestone and organic acids. Chemical Engineering Science,2001, 56(10):3275-3287
    [152]Brogren C, Hans T K. Modeling the absorption of SO2 in a spray scrubber using the penetration theory. Chemical Engineering Science,1997, (52):3085-3099
    [153]Muginstein A, Fichman M, Gutfinger C. Gas absorption in a moving drop containing suspended solids. International Journal of Multiphase Flow,2001, 27(6):1079-1094
    [154]Scala F, D'Ascenzo M. Absorption with instantaneous reaction in a droplet with sparingly soluble fines. AIChE J,2002,48 (8):1719-1726
    [155]Wang L, Song Y B, Zhang M C, et al. Modeling study on the impaction and humidification process in desulfurization activation reactor. Chemical Engineering Science,2005,60 (4):951-962
    [156]Bandyopadhyay A, Biswas M N. Prediction of the removal efficiency of a novel two-stage hybrid scrubber for flue gas desulfurization. Chemical Engineering Technology,2006,29 (1):130-145
    [157]Dou B L, Byun Y C, Hwang J G.. Flue gas desulphurization with an electrostatic spraying absorber. Energy & Fuels,2008,22(2):1041-1045
    [158]Ramachandran P A, Sharma M M. Absorption with fast reaction in a slurry containing sprayingly soluble fine particles. Chemical Engineering Science, 1969,24(11):1681-1686
    [159]Liu S, Xiao W. Modeling and simulation of a bubbling SO2 absorber with granular limestone slurry and an organic acid additive. Chemical Engineering Technology,2006, (29):1167-1173
    [160]Gerbec M, Stergarsek A, Kocjancic R. Simulation model of wet flue gas desulphurization plant, Comput. Chem. Eng.1995,19, s283-s286
    [161]Lin C, Zhang J Y. Enhancement factor of gas absorption in gas-liquid-solid three-phase reaction system accompanied by solid dissolution. Advances in Separation Science and Technology, Beijing:China Environmental Science Press,1998,606-610
    [162]Gao H L, Li C T, Zeng G M, et al. Prediction and experimental validation studies of wet flue gas desulphurization with a novel type PCF device based on limestone-gypsum. Energy & Fuels,2010,24 (9):4944-4951
    [163]Dennis J E, Schnabel R B. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ,1983
    [164]Bokotko R P, Hupka J, Miller J D. Flue gas treatment for SO2 removal with air-sparged hydrocyclone technology. Environmental Science & Technology, 2005,39(4):1184-1189
    [165]程峰,骆仲泱,高翔,等.液柱冲击塔湿法烟气脱硫的试验研究.浙江大学学报(工学版),2005,39(11):1783-1787
    [166]Gao H L, Li C T, Zemg G M, et al. Experimental study of wet flue gas desulphurization with a novel type PCF device. Chemical Engineering and Processing:Process Intensification,2011,50 (2):189-195
    [167]李之光.相似与模化(理论及应用).北京:国防工业出版社,1982,4
    [168]邵雄飞.旋流板塔内两相流场的CFD模拟与分析:[浙江大学硕士学位论文].杭州:浙江大学能源与工程学院,2004
    [169]Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics:the finite volume method. London:Library Calaloguing in publication data,1995
    [170]Chen C J, Jaw S Y. Fundamentals of Turbulence Modeling. Taylor and Francis. Washington,1998
    [171]Talbot L. Thermophoresis of particles in a heated boundary layer. Journal of Fluid Mechanics,1980,101(4):737-758
    [172]Li A, Ahmadi G. Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Science and Technology,1992, 16(4):209-226
    [173]Saffman P G. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics,1965,22(2):385-40
    [174]Morsi S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics,1972,55(1):193-208
    [175]Papageorgakis G C, Assanis D N. A spray breakup model for low injection pressures. International Communications in Heat and Mass Transfer,1996. 23(1):1-10
    [176]Schmidt B, Stichl M J. Two phase flow and mass transfer in scrubber. Chemical Engineering Science,1991,46(1):320-341
    [177]Kolaitis D I, Founti M A. A tabulated chemistry approach for numerical modeling of diesel spray evaporation in a "stabilized cool flame" environment. Combustion and Flame,2005,145(1-2):259-271
    [178]Launder B E, Spalding D B. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering,1974,3(2):269-289
    [179]Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Communications in Heat and Mass Transfer,1972, (15):1787-1806

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700