用户名: 密码: 验证码:
铈改性钛基纳米管的脱硝活性及抗碱/碱土金属中毒性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物是烟气中的主要污染物之一,选择性催化还原法是国内外首选的脱硝技术。目前广泛使用的钒基催化剂具有有毒、易发生碱/碱土金属中毒的缺陷。基于此,本文系统研究了具有优异脱硝活性、选择性和抗碱/碱土金属中毒性能的新型铈改性钛基纳米管脱硝催化剂,为改进脱硝催化剂和解决催化剂中毒问题作出积极有益的探索。
     首先,本文研究了铈添加量、焙烧温度和钛基纳米管的pH值对催化剂结构和脱硝活性的影响,获得了具有优异脱硝活性和选择性的钛基纳米管催化剂制备工艺。通过优化工艺制得的催化剂在270-500℃的反应温度区间内脱硝效率维持在96%以上,300-450℃时脱硝效率更是接近100%。
     在优化制备工艺的基础上,本文对铈钛催化剂的构效关系进行了深入探讨,发现氧化铈负载在不同形貌的钛载体材料上之后,其物理化学特性和催化特性有所不同,三价铈和氧空位的生成对其催化活性具有决定性影响。氧化铈负载在钛基纳米管上具有特别突出的脱硝活性,这不仅与钛基纳米管较大的比表面积相关,还与其特殊的纳米管道结构有关。钛基纳米管的管道约束了氧化铈的生长,对氧化铈的氧化还原特性具有一定的调变作用,且钛基纳米管对氨气有独特的吸附能力,有利于SCR脱硝反应的进行。
     随后,本文考察了铈钛纳米颗粒催化剂因碱/碱土金属导致的严重失活现象,发现其失活的主因不是酸性位的破坏,而是活性氧化铈形态的变化。加入Na+或Ca2+后,在熔盐熔化作用下,无定形的氧化铈转化为结晶态的氧化铈,Ce3+和氧空位急剧减少,氧化铈还原速率减慢,氧化铈的氧化还原循环受阻,因此失活。
     与铈钛纳米颗粒催化剂不同的是,本文开发的铈改性钛基纳米管表现出优异的抗钠中毒性能,干混法添加Na/Ce摩尔比为1的Na之后,催化剂在350℃时仍能维持90%的脱硝活性,浸渍法负载Na+之后,在350℃左右仍能维持超过80%的脱硝活性。其抗中毒性能源于钛基纳米管对活性氧化铈的保护作用:钛基纳米管的管壁将固体金属毒物隔绝在管壁外,从而保护了管道内的活性氧化铈,使得管道内的氧化铈免遭毒害;同时,质子化的钛基纳米管具有较强的离子交换能力,可以将碱/碱土金属离子通过离子交换固定在管壁层间,阻止他们毒害活性氧化铈。
     最后,本文针对“壳保护”抗中毒机理进行了拓展研究,发现管状结构的完好程度和钛基纳米管的离子交换能力是有效保护氧化铈的关键影响因素。一旦管状结构被破坏,钛基纳米管对氧化铈的双重保护作用将消失,氧化铈将迅速失活;乙醇浸泡处理可以增加钛基纳米管层间的OH基团数量,使得可供离子交换的质子增多,捕获碱/碱土金属离子的能力也相应增强,最终有效提高催化剂对碱/碱土金属的抗性。分别添加了与Ce的摩尔比为1的Na+、K+、Ca2+后,反应温度350℃时的脱硝效率仍可分别维持在97%、88%和95%。
NOx is one of the key air pollutants from flue gas, and selective catalytic reduction with NH3was the most reliable method to reduce the emission of NOx from stationary sources. Although vanadia-based catalysts have been extensively employed in commercial SCR processes, the drawbacks associated with the toxicity of vanadium pentoxide to environment and the alkali&alkaline earth metal poisoning still remain. Aiming to develop non-vanadia deNOx catalysts with high activity and remarkable resistance to alkali&alkaline earth metal poisoning, the structure, SCR performance and resistance to poisons of ceria doped titanate nanotubes (Ce/TNTs) were systematically investigated in this paper.
     Firstly, the preparation process of highly active and selective Ce/TNTs was optimized. It was found that the Ce loading, the calcination temperature and the pH value of TNTs all significantly influenced the SCR performance of Ce/TNTs. The NO conversion over the optimal catalyst exceeded96%at270-500℃and was even close to100%at300-450℃.
     Secondly, the relationship between the structure of the titanium supports and the performance of ceria was studied. It was observed that the nature of titanium supports had significantly influenced the chemical state of Ce because of their special surface properties and unique structures and morphologies, leading to the presence of different catalytic performances for each catalyst. In comparison with the catalysts supported by TiO2nanoparticles, the Ce/TNTs showed a superiority in SCR of NO due to the improved redox potential and special adsorption of NH3.
     Thirdly, the deactivation mechanism of Ce/TiO2SCR catalysts by the deposition of Na+and Ca2+ions was proposed. Ce/TiO2catalyst using TiO2particle as the support was deactivated seriously by the deposition of Na+or Ca2+ions. It was found that amorphous ceria was dominant in the fresh Ce/TiO2catalyst, but the amorphous ceria would grow to ceria crystal during the calcination process with the deposition of Na-or Ca2+ions. Then, the dispersion of ceria on the surface of T1O2became worse and the surface Ce3+transformed to Ce4+.This transformation directly led to the disappearance of oxygen vacancy in ceria particles and slowed down the reduction rate of ceria. Thus, the rate of oxidation/reduction recycle was declined. Though the acidity of Ce/TiO2changed little, the enlargement of ceria nanoparticles and the restrained Ce4+/Ce3+redox recycle rate resulted in the decline of SCR activity of Ce/TiO2catalys.
     Finally, the resistance of Ce/TNTs to alkali poisoning was investigated. Ce/TNTs showed a remarkable resistance to alkali metal poisoning in deNOx application, where the NO conversion at350℃maintained at90%after wet-impregnation of Na (Na/Ce molar ratio at1) and kept at80%after solid Na mixing. The catalyst effectively shielded the main active phase, CeO2, from the poisons with the tubular channel of H2Ti12O25. Furthermore, the poisons (e.g., Na+) could also be stabilized in the interlayer of H2Ti12O25through ion exchange. This catalyst developed herein gives a new sight for the design of "shell protection" catalysts to improve their tolerance to poisons. In addition, the maintenance of the tubular morphology and the capacity of ion-exchange were the two key factors that determined the alkaline resistance. Treating the TNTs with ethanol could increase the amount of ion-exhangenable OH group and consequently improved the resistance. In such a case, the NO conversion at350℃still maintained at97%,88%and95%after Na+, K+and Ca2+adding.
引文
[1]吴忠标,大气污染控制工程,科学出版社,北京,2002.
    [2]T. Castro, S. Madronich, S. Rivale, A. Muhlia, B. Mar, The influence of aerosols on photochemical smog in Mexico City, Atmos. Environ.2001,35 (10):1765-1772.
    [3]C. L. Weber, P. Jaramillo, J. Marriott, C. Samaras, Life Cycle Assessment and Grid Electricity:What Do We Know and What Can We Know?, Environ. Sci. Technol. 2010,44(6):1895-1901.
    [4]D. D. Davis, G. Smith, G. Klauber, Trace Gas Analysis of Power Plant Plumes Via Aircraft Measurement:O3, NOx, and SO2 Chemistry, Science 1974,186 (4165): 733-736.
    [5]S. Morin, J. Savarino, M. M. Frey, N. Yan, S. Bekki, J. W. Bottenheim, J. M. F. Martins, Tracing the Origin and Fate of NOx in the Arctic Atmosphere Using Stable Isotopes in Nitrate, Science 2008,322 (5902):730-732.
    [6]R. Miroslav, Reduction of nitrogen oxides in flue gases, Environ. Pollut.1998, 102 (1, Supplement 1):685-689.
    [7]G. Busca, L. Lietti, G. Ramis, F. Berti, Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review, Appl. Catal. B-environ.1998,18 (1-2):1-36.
    [8]R. Q. Long, R. T. Yang, Superior Fe-ZSM-5 Catalyst for Selective Catalytic Reduction of Nitric Oxide by Ammonia, J. Am. Chem. Soc.1999,121 (23): 5595-5596.
    [9]A. Kling, C. Andersson, A. Myringer, D. Eskilsson, S. G. Jaras, Alkali deactivation of high-dust SCR catalysts used for NOx reduction exposed to flue gas from 100 MW-scale biofuel and peat fired boilers:Influence of flue gas composition, Appl. Catal. B-environ.2007,69 (3-4):240-251.
    [10]M. Klimczak, P. Kern, T. Heinzelmann, M. Lucas, P. Claus, High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts Part I: V2O5-WO3/TiO2 catalysts, Appl. Catal. B-environ.2010,95 (1-2):39-47.
    [11]F. Tang, B. Xu, H. Shi, J. Qiu, Y. Fan, The poisoning effect of Na+ and Ca2+ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3, Appl. Catal. B-environ.2010,94 (1-2):71-76.
    [12]H. Kamata, K. Takahashi, C. U. I. Odenbrand, The role of K2O in the selective reduction of NO with NH3 over a V2O5(WO3)/TiO2 commercial selective catalytic reduction catalyst, J. Mol. Catal. A-Chem.1999,139 (2-3):189-198.
    [13]J. R. Strege, C. J. Zygarlicke, B. C. Folkedahl, D. P. McCollor, SCR deactivation in a full-scale cofired utility boiler, Fuel 2008,87 (7):1341-1347.
    [14]吴丽燕,苏英钢,葛介龙,梁材,沈伯雄,周聪,钒钛系SCR脱硝催化剂在高硫高钙灰条件下的适应性研究,科技导报2007,(20).
    [15]H. Ronald M, Catalytic abatement of nitrogen oxides-stationary applications, Catal. Today 1999,53 (4):519-523.
    [16]V.I. Parvulescu, P. Grange, B. Delmon, Catalytic removal of NO, Catal. Today 1998,46(4):233-316.
    [17]陈进生,火电厂烟气脱硝技术:选择性催化还原法,北京电力出版社,北京,2008.
    [18]U. S. EPA, The EPA air pollution control cost manual, U.S. EPA Office of air quality planning and standards,2002.
    [19]P. Forzatti, Present status and perspectives in de-NOx SCR catalysis, Appl. Catal. A-gen.2001,222 (1-2):221-236.
    [20]N.-Y. Tops(?)e, Mechanism of the Selective Catalytic Reduction of Nitric Oxide by Ammonia Elucidated by in Situ On-Line Fourier Transform Infrared Spectroscopy, Science 1994,265 (5176):1217-1219.
    [21]N. Y. Topsoe, H. Topsoe, J. A. Dumesic, Vanadia/Titania Catalysts for Selective Catalytic Reduction (SCR) of Nitric-Oxide by Ammonia:I. Combined Temperature-Programmed in-Situ FTIR and On-line Mass-Spectroscopy Studies, J. Catal.1995,151 (1):226-240.
    [22]N. Y. Topsoe, J. A. Dumesic, H. Topsoe, Vanadia-Titania Catalysts for Selective Catalytic Reduction of Nitric-Oxide by Ammonia:I.I. Studies of Active Sites and Formulation of Catalytic Cycles, J. Catal.1995,151 (1):241-252.
    [23]J. A. Dumesic, N. Y. Tops(?)e, H. Tops(?)e, Y. Chen, T. Slabiak, Kinetics of Selective Catalytic Reduction of Nitric Oxide by Ammonia over Vanadia/Titania, J. Catal.1996,163 (2):409-417.
    [24]W. Q. Xu, Y. B. Yu, C. B. Zhang, H. He, Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst, Catal. Commun.2008,9 (6):1453-1457.
    [25]X. Gao, Y. Jiang, Y. Fu, Y. Zhong, Z. Luo, K. Cen, Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3, Catal. Commun.2010,11 (5):465-469.
    [26]L. Chen, J. Li, M. Ge, R. Zhu, Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia, Catal. Today 2010, 153 (3-4):77-83.
    [27]G. S. Qi, R. T. Yang, R. Chang, S. Cardoso, R. A. Smith, Deactivation of La-Fe-ZSM-5 catalyst for selective catalytic reduction of NO with NH3:field study results, Appl. Catal. A-gen.2004,275 (1-2):207-212.
    [28]P. Kern, M. Klimczak, T. Heinzelmann, M. Lucas, P. Claus, High-throughput study of the effects of inorganic additives and poisons on NH3-SCR catalysts. Part II: Fe zeolite catalysts, Appl. Catal. B-environ.2010,95 (1-2):48-56.
    [29]Y. J. Zheng, A. D. Jensen, J. E. Johnsson, J. R. Thogersen, Deactivation of V2O5-WO3-TiO2 SCR catalyst at biomass fired power plants:Elucidation of mechanisms by lab-and pilot-scale experiments, Appl. Catal. B-environ.2008,83 (3-4):186-194.
    [30]O. Krocher, M. Elsener, Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution-I. Catalytic studies, Appl. Catal. B-environ.2008,77 (3-4):215-227.
    [31]D. Nicosia, I. Czekaj, O. Krocher, Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels lubrication oils and urea solution-Part II. Characterization study of the effect of alkali and alkaline earth metals, Appl. Catal. B-environ.2008,77 (3-4):228-236.
    [32]J. Due-Hansen, A. L. Kustov, S. B. Rasmussen, R. Fehrmann, C. H. Christensen, Tungstated zirconia as promising carrier for DeNOx catalysts with improved resistance towards alkali poisoning, Appl. Catal. B-environ.2006,66 (3-4):161-167.
    [33]A. L. Kustov, M. Y. Kustova, R. Fehrmann, P. Simonsen, Vanadia on sulphated-ZrO2, a promising catalyst for NO abatement with ammonia in alkali containing flue gases, Appl. Catal. B-environ.2005,58 (1-2):97-104.
    [34]A. L. Kustov, S. B. Rasmussen, R. Fehrmann, P. Simonsen, Activity and deactivation of sulphated TiO2-and ZrO2-based V, Cu, and Fe oxide catalysts for NO abatement in alkali containing flue gases, Appl. Catal. B-environ.2007,76:9-14.
    [35]包信和,纳米限域体系的催化特性,中国科学(B辑:化学)2009,(10).
    [36]J. M. Sun, X. H. Bao, Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts, Chem. Eur. J.2008,14 (25):7478-7488.
    [37]J. Sun, D. Ma, H. Zhang, X. Liu, X. Han, X. Bao, G. Weinberg, N. Pfander, D. Su, Toward Monodispersed Silver Nanoparticles with Unusual Thermal Stability, J. Am. Chem. Soc.2006,128 (49):15756-15764.
    [38]X. L. Pan, X. H. Bao, Reactions over catalysts confined in carbon nanotubes, Chem. Commun.2008, (47):6271-6281.
    [39]W. Chen, X. L. Pan, M. G. Willinger, D. S. Su, X. H. Bao, Facile autoreduction of iron oxide/carbon nanotube encapsulates, J. Am. Chem. Soc.2006,128 (10): 3136-3137.
    [40]W. Chen, X. L. Pan, X. H. Bao, Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes, J. Am. Chem. Soc.2007,129 (23): 7421-7426.
    [41]X. L. Pan, Z. L. Fan, W. Chen, Y. J. Ding, H. Y. Luo, X. H. Bao, Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles, Nat. Mater.2007,6(7):507-511.
    [42]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube, Langmuir 1998,14 (12):3160-3163.
    [43]B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang, N. Wang, Formation mechanism of TiO2 nanotubes, Appl. Phys. Lett.2003,82 (2):281-283.
    [44]J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, Z. Zhang, Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2, Dalton Trans.2003, (20):3898-3901.
    [45]A. Nakahira, T. Kubo, C. Numako, Formation Mechanism of TiO2-Derived Titanate Nanotubes Prepared by the Hydrothermal Process, Inorg. Chem.2010,49 (13):5845-5852.
    [46]S. Zhang, L. M. Peng, Q. Chen, G. H. Du, G. Dawson, W. Z. Zhou, Formation Mechanism of H2Ti3O7 Nanotubes, Phys. Rev. Lett.2003,91 (25):256103.
    [47]X. M. Sun, Y. D. Li, Synthesis and characterization of ion-exchangeable titanate nanotubes, Chem. Eur. J.2003,9 (10):2229-2238.
    [48]C.-C. Tsai, H. Teng, Structural Features of Nanotubes Synthesized from NaOH Treatment on TiO2 with Different Post-Treatments, Chem. Mater.2005,18 (2): 367-373.
    [49]D. V. Bavykin, M. Carravetta, A. N. Kulak, F. C. Walsh, Application of Magic-Angle Spinning NMR to Examine the Nature of Protons in Titanate Nanotubes, Chem. Mater.2010,22 (8):2458-2465.
    [50]E. M. Jr, P. Jardim, B. A. Marinkovic, F. C. Rizzo, M. A. S. d. Abreu, J. e. L Zotin, A. S. Ara'ujo, Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes:a comparison study between nanostructured and bulk materials, Nanotechnology 2007,18 (49):495710.
    [51]R. Ma, T. Sasaki, Y. Bando, Alkali metal cation intercalation properties of titanate nanotubes, Chem. Commun.2005, (7).
    [52]D. V. Bavykin, J. M. Friedrich, F. C. Walsh, Protonated Titanates and TiO2 Nanostructured Materials:Synthesis, Properties, and Applications, Adv. Mater.2006, 18 (21):2807-2824.
    [53]D. V Bavykin, A. A. Lapkin, P. K. Plucinski, J. M. Friedrich, F. C. Walsh, TiO2 nanotube-supported ruthenium(III) hydrated oxide:A highly active catalyst for selective oxidation of alcohols by oxygen, J. Catal.2005,235 (1):10-17.
    [54]T. Akita, M. Okumura, K. Tanaka, K. Ohkuma, M. Kohyama, T. Koyanagi, M. Date, S. Tsubota, M. Haruta, Transmission electron microscopy observation of the structure of TiO2 nanotube and Au/TiO2 nanotube catalyst, Surf. Interface Anal.2005, 37 (2):265-269.
    [55]V. ldakiev, Z. Y. Yuan, T. Tabakova, B. L. Su, Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction, Appl. Catal. A-gen.2005,281 (1-2):149-155.
    [56]J. N. Nian, S. A. Chen, C. C. Tsai, H. S. Teng, Structural feature and catalytic performance of Cu species distributed over TiO2 nanotubes, J. Phys. Chem. B 2006, 110 (51):25817-25824.
    [57]Z. Wu, F. Dong, W. Zhao, H. Wang, Y. Liu, B. Guan, The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity, Nanotechnology 2009,20 (23):235701.
    [58]C. Ratanatawanate, C. R. Xiong, K. J. Balkus, Fabrication of PbS quantum dot doped TiO2 nanotubes, Acs Nano 2008,2 (8):1682-1688.
    [59]C.-H. Lin, S.-H. Chien, J.-H. Chao, C.-Y. Sheu, Y.-C. Cheng, Y.-J. Huang, C.-H. Tsai, The Synthesis of Sulfated Titanium Oxide Nanotubes, Catal. Lett.2002,80 (3): 153-159.
    [60]M. Kitano, K. Nakajima, J. N. Kondo, S. Hayashi, M. Hara, Protonated Titanate Nanotubes as Solid Acid Catalyst, J. Am. Chem. Soc.2010,132 (19):6622-6623.
    [61]C.-C. Tsai, H. Teng, Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment, Chem. Mater.2004, 16 (22):4352-4358.
    [62]Z. B. Wu, R. B. Jin, Y. Liu, H. Q. Wang, Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature, Catal. Commun. 2008,9 (13):2217-2220.
    [63]H. Y. Zhu, Y. Lan, X. P. Gao, S. P. Ringer, Z. F. Zheng, D. Y. Song, J. C. Zhao, Phase Transition between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions, J. Am. Chem. Soc.2005,127 (18):6730-6736.
    [64]Zhu, Gao, Y. Lan, Song, Xi, Zhao, Hydrogen Titanate Nanofibers Covered with Anatase Nanocrystals:A Delicate Structure Achieved by the Wet Chemistry Reaction of the Titanate Nanofibers, J. Am. Chem. Soc.2004,126 (27):8380-8381.
    [65]L. Song, L. Cao, J. Li, W. Liu, F. Zhang, L. Zhu, G. Su, Lead titanate nanotubes synthesized via ion-exchange method: Characteristics and formation mechanism, J. Alloys Compd.2011,509 (20):6061-6066.
    [66]G. Armstrong, A. R. Armstrong, J. Canales, P. G. Bruce, Nanotubes with the TiO2-B structure, Chem. Commun.2005, (19):2454-2456.
    [67]E. Beche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz), Surf. Interface Anal.2008,40 (3-4):264-267.
    [68]F. Larachi, J. Pierre, A. Adnot, A. Bernis, Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts, Appl. Surf. Sci.2002,195 (1-4):236-250.
    [69]C. T. Campbell, C. H. F. Peden, Oxygen Vacancies and Catalysis on Ceria Surfaces, Science 2005,309 (5735):713-714.
    [70]P. Dutta, S. Pal, M. S. Seehra, Y. Shi, E. M. Eyring, R. D. Ernst, Concentration of Ce3+ and Oxygen Vacancies in Cerium Oxide Nanoparticles, Chem. Mater.2006,18 (21):5144-5146.
    [71]F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, R. Rosei, Electron Localization Determines Defect Formation on Ceria Substrates, Science 2005,309 (5735):752-755.
    [72]X. Liu, K. Zhou, L. Wang, B. Wang, Y. Li, Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods, J. Am. Chem. Soc.2009,131 (9): 3140-3141.
    [73]A. Barrie, F. J. Street, An Auger and X-ray photoelectron spectroscopic study of sodium metal and sodium oxide, J. Electron. Spectrosc. Relat. Phenom.1975,7 (1): 1-31.
    [74]L. Xue, C. Zhang, H. He, Y. Teraoka, Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst, Appl. Catal. B-environ.2007,75 (3-4):167-174.
    [75]S. Damyanova, C. A. Perez, M. Schmal, J. M. C. Bueno, Characterization of ceria-coated alumina carrier, Appl. Catal. A-gen.2002,234 (1-2):271-282.
    [76]L. Z. Linganiso, G. Jacobs, K. G. Azzam, U. M. Graham, B. H. Davis, D. C. Cronauer, A. J. Kropf, C. L. Marshall, Low-temperature water-gas shift:Strategy to lower Pt loading by doping ceria with Ca2+ improves formate mobility/WGS rate by increasing surface O-mobility, Appl. Catal. A-gen.2011,394 (1-2):105-116.
    [77]G. L. Bauerle, S. C. Wu, K. Nobe, Parametric and Durability Studies of NOx Reduction with NH3 on V2O5 Catalysts, Ind. Eng. Chem. Prod. Res. Dev.1978,17 (2): 117-122.
    [78]G. T. Went, Studies of supported vanadium oxide catalysts for the selective catalytic reduction of nitrogen oxides, University of California, Berkeley,1991.
    [79]S. Matsuda, T. Kamo, A. Kato, F. Nakajima, T. Kumura, H. Kuroda, Deposition of ammonium bisulfate in the selective catalytic reduction of nitrogen oxides with ammonia, Ind. Eng. Chem. Prod. Res. Dev.1982,21 (1):48-52.
    [80]I. S. Nam, J. W. Eldridge, J. R. Kittrell, Deactivation of a vanadia-alumina catalyst for nitric oxide reduction by ammonia, Ind. Eng. Chem. Prod. Res. Dev.1986, 25 (2):192-197.
    [81]J. Svachula, N. Ferlazzo, P. Forzatti, E. Tronconi, F. Bregani, Selective reduction of nitrogen oxides (NOX) by ammonia over honeycomb selective catalytic reduction catalysts, Ind. Eng. Chem. Res.1993,32 (6):1053-1060.
    [82]R. Q. Long, R. T. Yang, Selective catalytic reduction of NO with ammonia over V2O5 doped TiO2 pillared clay catalysts, Appl. Catal. B-environ.2000,24 (1):13-21.
    [83]X. Chen, S. S. Mao, Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications, Chem. Rev.2007,107 (7):2891-2959.
    [84]X. L. Weng, B. Perston, X. Z. Wang, I. Abrahams, T. Lin, S. F. Yang, J. R. G. Evans, D. J. Morgan, A. F. Carley, M. Bowker, J. C. Knowles, I. Rehman, J. A. Dan-, Synthesis and characterization of doped nano-sized ceria-zirconia solid solutions, Appl. Catal. B-environ.2009,90 (3-4):405-415.
    [85]X. L. Weng, P. Boldrin, I. Abrahams, S. J. Skinner, S. Kellici, J. A. Darr, Direct syntheses of Lan+1NinO3n+1 phases (n = 1,2,3 and infinity) from nanosized co-crystallites, J. Solid State Chem.2008,181 (5):1123-1132.
    [86]X. L. Weng, P. Boldrin, I. Abrahams, S. J. Skinner, J. A. Darr, Direct syntheses of mixed ion and electronic conductors La4Ni3O10 and 3Ni2O7 from nanosized coprecipitates, Chem. Mater.2007,19 (18):4382-4384.
    [87]D. S. Zhang, H. X. Fu, L. Y. Shi, J. H. Fang, Q. Li, Carbon nanotube assisted synthesis of CeO2 nanotubes, J. Solid State Chem.2007,180:654-660.
    [88]I. A. Siddiquey, T. Furusawa, Y. Hoshi, E. Ukaji, F. Kurayama, M. Sato, N. Suzuki, Silica coating of CeO2 nanoparticles by a fast microwave irradiation method, Appl. Surf. Sci.2008,255 (5):2419-2424.
    [89]M. Chang, J. R, Deka, F. C. Chang, Effect of synthesis process on the Young's modulus of titanate nanowire, Phys. Status Solidi A 2010,207 (2):327-333.
    [90]T. Tsumura, K. Sogabe, T. Kiyo, M. Toyoda, Fabrication of titanate nanowires with different dimensions, Mater. Lett.2011,65 (15-16):2322-2325.
    [91]D. Wu, J. Liu, X. Zhao, A. Li, Y. Chen, N. Ming, Sequence of Events for the Formation of Titanate Nanotubes, Nanofibers, Nanowires, and Nanobelts, Chem. Mater.2005,18(2):547-553.
    [92]L. Wu, H. J. Wiesmann, A. R. Moodenbaugh, R. F. Klie, Y. Zhu, D. O. Welch, M. Suenaga, Oxidation state and lattice expansion of CeO2-x nanoparticles as a function of particle size, Phys. Rev. B 2004,69 (12):125415.
    [93]M. F. Luo, J. Chen, L. S. Chen, J. Q. Lu, Z. Feng, C. Li, Structure and redox properties of CexTi1-xO2 solid solution, Chem. Mater.2001,13 (1):197-202.
    [94]J. P. Chen, R. T. Yang, Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3, J. Catal.1990,125 (2):411-420.
    [95]T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2, J. Raman. Spectrosc.1978,7 (6):321-324.
    [96]W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, Q. Chen, Raman scattering study on anatase TiO2 nanocrystals, J. Phys. D:Appl. Phys.2000,33 (8):912.
    [97]V. G. Keramidas, W. B. White, Raman spectra of oxides with the fluorite structure, J. Chem. Phys.1973,59 (3):1561-1562.
    [98]W. H. Weber, K. C. Hass, J. R. McBride, Raman study of CeO2:Second-order scattering, lattice dynamics, and particle-size effects, Phys. Rev. B 1993,48 (1):178.
    [99]B. C. Viana, O. P. Ferreira, A. G. Souza Filho, C. M. Rodrigues, S. G. Moraes, J. Mendes Filho, O. L. Alves, Decorating Titanate Nanotubes with CeO2 Nanoparticles, J. Phys. Chem. C 2009,113 (47):20234-20239.
    [100]B. Reddy, A. Khan, Nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 Mixed Oxides:Influence of Supporting Oxide on Thermal Stability and Oxygen Storage Properties of Ceria, Catal. Surv. Asia 2005,9 (3):155-171.
    [101]S. Yang, Y. Feng, J. Wan, W. Zhu, Z. Jiang, Effect of CeO2 addition on the structure and activity of RuO2/γ-Al2O3 catalyst, Appl. Surf. Sci.2005,246 (1-3): 222-228.
    [102]S. Yang, W. Zhu, Z. Jiang, Z. Chen, J. Wang, The surface properties and the activities in catalytic wet air oxidation over CeO2-TiO2 catalysts, Appl. Surf. Sci. 2006,252(24):8499-8505.
    [103]N. Perkas, O. Palchik, I. Brukental, I. Nowik, Y. Gofer, A Mesoporous Iron—Titanium Oxide Composite Prepared Sonochemically, J. Phys. Chem. B 2003, 107(34):8772-8778.
    [104]P. Afanasiev, Ce—Zr Mixed Oxides Prepared in Molten Nitrates, Chemlnform 2002,33 (52):25-25.
    [105]F. Bondioli, A. Bonamartini Corradi, C. Leonelli, T. Manfredini, Nanosized CeO2 powders obtained by flux method, Mater. Res. Bull.1999,34 (14-15): 2159-2166.
    [106]F. Bondioli, A. B. Corradi, T. Manfredini, C. Leonelli, R. Bertoncello, Nonconventional Synthesis of Praseodymium-Doped Ceria by Flux Method, Chem. Mater.1999,12(2):324-330.
    [107]C. F. Wang, S. J. Guo, X. L. Pan, W. Chen, X. H. Bao, Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels, J. Mater. Chem.2008,18 (47):5782-5786.
    [108]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets, Nature 2008,453 (7195):638-U634.
    [109]U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep.2003,48: 53-229.
    [110]M. N. Guo, C. X. Guo, L. Y. Jin, Y. J. Wang, J. Q. Lu, M. F. Luo, Nano-sized CeO2 with extra-high surface area and its activity for CO oxidation, Mater. Lett.2010, 64(14):1638-1640.
    [111]M. Hodos, E. Horvath, H. Haspel, A. Kukovecz, Z. Konya, I. Kiricsi, Photosensitization of ion-exchangeable titanate nanotubes by CdS nanoparticles, Chem. Phys. Lett.2004,399 (4-6):512-515.
    [112]S. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green, A simple chemical method of opening and filling carbon nanotubes, Nature 1994,372 (6502):159-162.
    [113]D. Ugarte, A. Chatelain, W. A. deHeer, Nanocapillarity and chemistry in carbon nanotubes, Science 1996,274 (5294):1897-1899.
    [114]D. Schebarchov, S. C. Hendy, Capillary Absorption of Metal Nanodroplets by Single-Wall Carbon Nanotubes, Nano Lett.2009,9 (10):3668-3668.
    [115]P. Kondratyuk, J. T. Yates, Molecular views of physical adsorption inside and outside of single-wall carbon manotubes, Ace. Chem. Res.2007,40:995-1004.
    [116]T. W. Ebbesen, Wetting, filling and decorating carbon nanotubes, J. Phys. Chem. Solids 1996,57 (6-8):951-955.
    [117]B. C. Huang, R. Huang, D. J. Jin, D. Q. Ye, Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides, Catal. Today 2007,126 (3-4): 279-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700