用户名: 密码: 验证码:
碳纳米管阵列电极的制备及其电化学还原处理部分有机污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管由于其具有优良的机械强度、化学性能和吸附性能,是一种极具应用前景的环境功能材料。以开发碳纳米管功能材料在环境领域中的应用为目的,本文采用简单易操作的常压化学气相沉积法,以二甲苯作为碳源,二茂铁作为催化剂,氢气/氩气为载气,分别在石墨、钛、镍三种不同的基体上尝试制备碳纳米管电极,采用混酸(HNO_3+H_2SO_4)氧化对碳管进行纯化和修饰。采用扫描电镜和透射电镜对制得的碳管形貌进行表征,表明在钛基体上可以生长出碳纳米管有序阵列,采用FT-IR测试表明纯化修饰后碳管的表面具有磺酸基(-SO_3H),羰基(-C=O),羟基(-OH)等亲水性基团,采用交流阻抗分析不同沉积时间的碳管的电学性质,并且综合考虑机械性能和电极稳定性等因素,确定最佳的化学气相沉积时间为5min。采用直流恒电位沉积催化剂Pd,制备出Pd/MWCNTs/Ti电极。
     碳纳米管具有优良的储氢能力和电子传导能力。将Pd/MWCNTs/Ti电极应用于加氢还原的反应体系中,对环境中的有机污染物进行降解实验。本文采用H型反应器,考察了Pd/MWCNTs/Ti电极对偶氮染料酸性红B的脱色反应效果和对2,4,5-三氯联苯的还原脱氯效果,同时建立了具有高脂溶性、低水溶性的多氯联苯类物质的电化学还原反应体系。结果表明Pd/MWCNTs/Ti电极对偶氮染料的脱色具有良好的效果,在-0.8V的外加偏压下,120min的脱色率达到77.2%,脱色反应受外加偏压和阳极电解液pH值的影响较大,电极的稳定性良好;Pd/MWCNTs/Ti电极对2,4,5-三氯联苯的还原脱氯尚未获得良好的脱氯效果,在-1.1V的外加偏压下,40h脱氯效率仅有26.5%。由于多氯联苯还原脱氯效果不明显,本文从加强传质的角度出发,提出了反应装置的改进方案。
     总之,采用气相沉积法制备碳纳米管电极,不但方法简单,成本低,而且碳纳米管电极在环境污染治理领域具有良好的应用价值和深远的应用前景。
Carbon Nanotubes(CNTs) are promising functional materials for their strongmechanism intensity, chemical capability and considerable adsorption. In order todevelop their application in environmental field, the multi-walled carbon nanotubes(MWCNTs) on different Ti, Ni, graphite substrates are prepared by chemical vapordeposition (CVD) with dimethylbenzene as carbon source and ferrocene as catalystand then they are purified in the HNO_3+H_2SO_4 solution in this study, respectively.The prepared electrodes are characterized by SEM, transmission electron microscopy(TEM), and X-ray diffraction (XRD). The results indicate that carbon nanotubes arewelled arrayed on the Ti substrate and their diameter is about 10nm to 30nm. TheFT-IR spectrum shows that the surface of multi-walled Carbon nanotubes containssome hydrophile groups such as -SO_3H, -C=O and -OH. The electric capability ofdifferent chemical vapor deposition time is detected by A.C impedance. Theconclusion is that the optimal deposition time is 5 min considering the mechanismintensity, stability and electric capability. The Pd is electrochemical deposited on thecarbon nanotubes at the 200 mV potential bias and then the Pd/MWCNTs/Ti electrodeis prepared for further use.
     It is known that the carbon nanotubes have excellent abilities of storing uphydrogen and electronic conduction. Therefore the Pd/MWCNTs/Ti electrode isapplied in the electrochemical reaction of hydrogenation in the field of environmentalpollution removal. The decolor efficiency of azo dye and the dechlorinationalefficiency of 2,4,5- polychlorinated biphenyl(2,4,5-PCB) are investigated usingH-type reactor with Pd/MWCNTs/Ti electrode as cathode. The results suggest that theapplication of Pd/MWCNTs/Ti in decoloring azo dye can achieve approving effectwith the decolor efficiency 77.2%at -0.8V voltage during 120 min electrochemicalreaction. The decolor efficiency is strongly influenced by the potential bias and the pHvalue of anodic electrolyte meanwhile the Pd/MWCNTs/Ti electrode is provided withgood stability in the reaction. On the other hand, the dechlorination of 2,4,5-PCB hasnot achieve satisfactory effect with its dechlorinational efficiency only 26.5%at -1.1V potential bias during 40 hours electrochemical reaction. Also, at the point ofenhancing transmission ability, an improved scheme is proposed in this study.
     In conclusion, chemical vapor deposition is an easily-operated and economicalprocess for synthesis multi-walled carbon nanotubes (MWCNTs). Furthermore, themulti-walled carbon nanotubes electrode has outstanding application value andpromising prospect in environmental field.
引文
[1] Iijima S. Helical. Microtubles of graphitic carbon. Nature, 1991, 354(6348):56-58.
    [2] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature, 1993, 363(6430):603.
    [3] Bethune D S, Kiang C H, Devries M S.Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls[J]. Nature, 1993, 363(6430):605-607.
    [4] Wang N, Tang Z K, Li G D, et.al. Single-Walled 4A Carbon Nanotube Arrays[J]. Nature, 2000, 408:50
    [5] Zhou O, Fleming R M, Murpby D W. Defects in carbon nanostructures [J]. Science, 1994, 263:1773.
    [6] Ebbesen T W, Takada T. Topological and SP~3 defect structures in nanotubes [J]. Carbon, 1995, 33(7):937
    [7] Morishita K, Takarada T. Gasification behavior of carbon nanotubes[J]. Carbon, 1997, 35(7):977
    [8] Krishnan A, Dujardin E, Ebbesen T W. Young's Modulus of Single-walled Carbon Nanotubes [J]. Physics Review B-Condensed Matter, 1998, 58:14013.
    [9] Young H L, Seong G K, David T. Catalytic Growth of Single-walled Carbon Nanotubes[J]. Physics Review Letters, 1997, 78:2393.
    [10] 孙晓刚,曾效舒,程国安.碳纳米管的特性及应用[J].中国粉体技术,2001,6(7):29-33.
    [11] 高永刚,施兴华,赵亚博.碳纳米管的力学行为[J].机械强度,2001,23(4):402-412.
    [12] White C T, Robertson D H, Mintmire J W. Helieal and Rotational Symmetries of Nanoscale Graphitic Tubules[J]. Phys. Rev.B, 1993, 47:5485.
    [13] Rinzler A G, Hafner J H, Nikolaev P. Unraveling Nanotubes:Field Emission from an Atomic Wire[J]. Science, 1995, 269:1550.
    [14] Ajayan P M, Iijima S. Capillarity-induced filling of Carbon Nanotubes [J]. Nature, 1993, 361:333
    [15] Gtegg S J, Sing K S W. Adsorption Surface area and Porosity[B]. London Academic Press Inc Ltd, 1982.
    [16] Pederson M R, Broughton J Q, Bekkedahl T A. Nanocapillarity in fullerene tubules[J]. Phys Rev Lett, 1992, 69:2689-2692.
    [17] Curl R F, Smalley R E. Fullerenes[J]. Scientific American, 1991, 4(256):54.
    [18] Joumet C, Master W K, Bernier P. Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J]. Nature, 1997, 388(6644):756.
    [19] Ando Y, Zhao X L, Hirahara K. Mass production of single-wall carbon nanotubes by the arc plasma jet method [J]. Chemical Physics Letters, 2000, 323:580.
    [20] Guo T, Nikolaev R Thess A. Catalytic growth of single-walled manotubes by laser vaporization [J]. Chemical Physics Letters, 1995, 243(1-2):49.
    [21] Thess A, Lee R, Nikolaev R Crystalline Ropes of Metallic Carbon Nanombes [J]. Science, 1996, 273:483-487.
    [22] Journet C, Bernier R Production of carbon nanotubes[J]. Applied Physics A, 1998, 67:1.
    [23] Alvarez L, Guillard T, Olalde G. Large scale solar production of fullerenes and carbon nanotubes [J]. Synth Metal, 1999, 103:2476.
    [24] Yacaman M J, Yoshida M M, Rendon L. Catalytic growth of carbon microtubules with fullerene structure [J]. Appl Phys Lett, 1993, 62(6):657.
    [25] Dai H, Wong W, Lu Y. Large-scale synthesis of single-crystalline Te nanobolts by a low temperature [J]. Nature, 1995(375):769.
    [26] Endo M, Takeuchi K, Igarashi S. The production and structure of pyrolytic carbon nanotubes (PCNTs) [J]. Journal of Physics and Chemistry of Solid, 1993, 54(12):1841.
    [27] Kroto H W, Heath J R, O'Brien S C. C_(60):Buckrninster Fullerene [J]. Nature, 1985(318):162.
    [28] Ebbesen T W, Ajayan P M. Large scale synthesis of carbon nanotubes [J]. Nature, 1992(358):220.
    [29] Ishigami M, Gumings J, Zettl A. A.simple method for the continuous production of carbon nanotubes[J]. Chemical Physics Letters, 2000, 319(5-6):457.
    [30] Hsu W K, Terrones M, Hare J R Electrolytic formation of carbon nanostructures [J]. Chemical Physics Letters, 1996, 262(1-2): 161.
    [31] 陈茂惠,黄镇财,吴国涛等.不同形貌碳纳米管的制备及其嵌锂性能研究[J].电化学,2002(04).
    [32] Li W Z, Xie S S, Qian L X. Large-Scale Synthesis of Aligned Carbon Nanotubes [J]. Science, 1996, 274:1701-1703.
    [33] Huang J Y, Yasuda H, Mori H. Highly curved carbon nanostructures produced by ball-milling [J]. Chemical Physics Letters, 1999, 303:130.
    [34] Vander Wal R L, Ticich T M, Curtis V E. Flame synthesis of substrate-supported metal-catalyzed carbon nanotubes [J]. Chemical Physics Letters, 2000, 323:217.
    [35] Yamamoto K, Koga Y, Fujiwara S. New method of carbon nanotube growth by ion beam irradiation[J]. Applied Physics Letters, 1996, 69(27):4174-4175.
    [36] Chemozatonskii L A, Val'chuk K P, Kiselev N A. Synthesis and structure investigations of alloys with fullerene and nanotube inclusions[J]. Carbon, 1997, 35(6):749-753.
    [37] Kyotani T, Tsai L F, Tomita A. Preparation of Ultrafine Carbon Tubes in Nanochannels of an Anodic Aluminum Oxide Film[J]. Chem Mater, 1996(8):2109-2113.
    [38] 杨翔,陈代璋,方勤方等.碳纳米管分离提纯技术[J].地学前缘,2000,7(2):527-534.
    [39] 杨占红,李新海,王红强等.用空气氧化法高效纯化碳纳米管[J].新型碳材料,1999,14(2):67-71.
    [40] 杨占红,李新海,李晶等.碳纳米管纯化技术研究[J].中南工业大学学报,1999,30(4):389-391.
    [41] Jefrey L B, Edward T M, Michael J Bet al. Dissolution of small diameter single-wall carbon nanotube in organic solvents[J]. Chem. Commun. 2001, (2) 193-194.
    [42] 杨迎春,张丽,徐成华.改性碳纳米管对Fe~(3+)的吸附研究[J].环境科学与技术,2006,29(S1):1-2.
    [43] 裘凯栋,黎维斌.水溶液中六价铬在碳纳米管上的吸附[J].物理化学学报,2006, 22(12):1542-1546.
    [44] 曾卫环,王红娟,彭峰.碳纳米管对铅离子的吸附性能研究[J].广东化工,2005,14(1):9-11.
    [45] 刘立柱,孙明礼.对硝基苯酚在碳纳米管上的吸附行为研究[J].中国科技信息,2006,1(1):52.
    [46] 耿成怀,成荣明,徐学诚.碳纳米管对对硝基苯胺和N,N-二甲基苯胺的吸附[J].华东师范大学学报 ,2005,5(6):138-140
    [47] Yan Hui,Shuguang Wang,Xianfeng Zhang. Adsorption of fluoride from water by aligned carbon nanotubes[J].Materials Research Bulletin,2003,38(3):469-476.
    [48] 代凯,施利毅,方建慧.碳纳米管电极电吸附脱盐工艺的研究[J].应用科学学报,2005,235(5):539-544.
    [49] 刘笑笑,王立世,张水锋.对苯二酚在多壁碳纳米管修饰电极上的电化学行为研究[J].分析测试学报,2007,26(1):24-28.
    [50] 吴芳辉,赵广超,魏先文.多壁碳纳米管修饰电极对对苯二酚的电催化作用[J].分析化学研究报告,2004,32(8):1057—1060.
    [51] 徐志兵,周建军,魏先文.负载TiO2的碳纳米管光催化降解晴纶废水的研究[J].安徽师范大学学报,2005,28(1):61—64.
    [52] 温轶,方建慧,曹为民.碳纳米管电极电催化氧化降解活性艳红X-3B研究[J].电化学,2005,11(3):329-332.
    [53] 韦正乐,黄碧纯,叶代启.烟气NO_x低温选择性催化还原催化剂研究进展[J].化工进展,2007,26(3):320-325.
    [54] 张玲金,谢文明.多壁纳米碳管固相萃取测定水中的有机氯农药[J].分析测试学报,2004,23(增刊):258-261.
    [55] Wu F, Zhao G, Wei X. Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode[J].Electrochem Commun,2002,(4):690-694.
    [56] 吴芳辉,赵广超,魏先文多壁碳纳米管修饰电极对对苯二酚的电催化作用[J].分析化学,2004,32(8):1057-1060.
    [57] Ding Y P, Liu W L, Wu Q S. Direct simultaneous determination ofdihydroxybenzene isomers at C-nanotube-modified electrodes by derivative voltammetry[J]. Electroanal Chem, 2005,575(2):275-280.
    [58] Wang J, Kawde AN, Jan M R. Single-wall carbon nanotube-based voltammetric sensor and biosensor [J]. Biosens Bioelectron,2004,20(5):995-1000.
    [59] 林丽,曹旭妮,张文.碳纳米管修饰电极用于高效液相色谱对全血中巯基化合物的测定[J].分析化学,2003,31(3):261—265.
    [60] 郭淼,潘敏,陈金霞.室温下镀钯多壁碳纳米管对苯的气敏响应特性[J].分析化学研究简报,2006,34(12):1755-1758.
    [61] 明亮,习霞,刘杰.水中痕量铅多壁碳纳米管修饰电极测定[J].中国公共卫生,2007,23(4):509-510.
    [62] 王修中,陈艳玲,田春香.碳纳米管化学修饰电极测定土壤沉积物中的铜[J].分析科学学报,2004,20(2):133-135.
    [63] 肖亦,潘献晓,晋玉秀.碳纳米管修饰玻碳电极同时测定土壤中的铜和镉[J].商丘师范学院学报,2006,22(2):121-124.
    [64] 方向生,郭淼,陈文菊.碳纳米管及其修饰物对挥发性有机物气敏性的研究[J].传感技术学报,2006,19(5):2130-2134.
    [65] Wang S J, Zhu W X, Liao D W. In situ FT-IR studies of NO reduction over carbon nanotues (CNTs) and 1 wt% Pd/CNTs [J].Catalysis Today,2004,93(5):711-714.
    [66] Chen P, Xu X, Lin J. High H_2 up take by alkali-doped carbon nanotubes under ambient pressure and moderate temperature[J].Science,1999(285):91-93.
    [67] 成明会,刘畅,丛洪涛.具有优异储氢性能的高质量单壁碳管的合成[J].物理,2000,29(8):449-450.
    [68] 冯玉杰,李晓岩,尤红等.电化学技术在环境工程中的应用[B].北京:化学工业出版社,2005.
    [69] Britto P J, Santhanam K S V, Rubio A et al. Improved charge transfer at carbon nanotube electrodes [J]. Adv. Mater, 1999, 11 (2): 154-157.
    [70] Che G L, Lskshrni B B, Fisher E R. Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature, 1998, 393 (6683): 346-349.
    [71] Li W Z, Liang C H, Qiu J S et al. Homogeneous and controllable Pt particles deposited on multi-wall carbon nanotubes as cathode catalyst for direct methanol fuel cells [J]. Carbon, 2004, 42 (3): 436-439.
    [72] 褚道葆,张莉艳,张金花.NanoTiO_2-CNT复合膜电极在DMF溶液中对糠醛的异相电催化还原[J].物理化学学报,2006,2(3):373-377.
    [73] 朱玉奴,彭图治,李建平.碳纳米管负载纳米铂修饰电极及电催化氧化H_2O_2的研究[J]. 高等学校化学学报,2004,25(9):1637-1641.
    [74] 温轶,方建慧,曹为民.碳纳米管电极电催化氧化降解活性艳红X-3B研究[J].电化学,2005,11(3):329-332.
    [75] 马仁志,魏秉庆,徐才录等.基于碳纳米管的超级电容器[J].中国科学(E辑),2000,30(2):112-116.
    [76] 陈贵如,徐才录,毛宗强等.碳纳米管上沉积铂工艺的研究[J].清华大学学报,2001,41(2):5-7.
    [77] Sawai K, Ohzuku T. A method of impedance spectroscopy for predicting the dynamic behavior of electrochemical system and its application to high-area carbon electrode.[J]. Electrochern. Soc., 1997, 144 (3): 988-995.
    [78] Cop B, Kumbhar P S, Moreau C et al. Liquid phase hydro-genation of cinnamaldehyde over supported ruehenium catalysts: Influence of partical size, bimetallics and nature of support[J]. Mol. Catal. 1993, 85 (2): 215-228.
    [79] Zhang A M, Dong J L, Xua Q H et al. Palladium cluster filled in inner of carbon nanotubes and their catalytic properties in liquid phase benzene hydrogenation[J]. Catal. Today, 2004, (93/95): 347-352.
    [80] Nhut J M, Vieira R, Tessonnier J et al. Synthesis and catalytic uses of carbon and silicon carbide nanostures [J]. Catal. Today, 2002, 76 (1): 11-32.
    [81] 朱玉奴,彭图治,李建平.碳纳米管负载纳米铂修饰电极及电催化氧化H_2O_2的研究[J].高等学校化学学报,2004,25(9):1637-1641.
    [82] Britto P J, Santhanam K S V, Rubio A et al. Improved charge transfer at carbon nanotube electrodes [J]. Adv. Mater, 1999, 11 (2): 154-157.
    [83] Che G L, Lskshrni B B, Fisher E R. Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature, 1998, 393 (6683): 346-349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700