用户名: 密码: 验证码:
钯/泡沫镍电极制备及其电催化还原水中氯酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯酚类化合物具有致癌、致畸、致突变效应,毒性大,难生物降解,在环境中降解周期长,给自然环境造成了很大危害,被许多国家视为优先控制污染物。近年来,电催化还原法处理氯酚类化合物因具有高度灵活性、易于控制、成本小、不产生二次污染等优点,引起了研究者的广泛重视。本文以钯/泡沫镍电极为电还原阴极,以对氯苯酚、2,4-二氯酚为目标物,研究电极的制备工艺及氯酚类化合物脱氯反应的影响因素。
     本文采用恒电流沉积法,从沉积电流、沉积温度、氯化钯沉积液浓度、沉积时间四个方面考察对电极脱氯性能的影响,优化钯/泡沫镍电极的制备工艺条件。脱氯实验表明随着沉积电流的增加,电极的脱氯性能先增加后减小;随着沉积温度的升高,电极的脱氯性能变化不大;随着氯化钯沉积液浓度的升高,电极的脱氯性能增强;随着沉积时间的延长,电极脱氯性能出现波动现象。在综合考虑电极的脱氯性能、成本、能耗等方面得出最佳的钯/泡沫镍电极制备工艺条件为:沉积电流为6mA、沉积温度为40℃、氯化钯沉积液浓度为1mmol/L、沉积时间为120min(沉积至溶液为无色),并且在该条件下所制备的电极具有良好的脱氯稳定性和重复使用性。
     借助X-射线光电子能谱(XPS)、扫描电子显微镜(SEM)、X-射线衍射(XRD)等表征手段对电极的元素组成及价态、表面形貌、晶体结构进行分析,实验结果表明,在最佳制备条件下所得的钯/泡沫镍电极确实有钯颗粒负载,并且在基体表面分布均匀,粒径较小,结构紧密,比表面积较大,具有一定空间延伸性。以对氯苯酚、2,4-二氯酚为目标物,从目标物的初始浓度、工作电流、溶液温度三方面探讨最佳脱氯条件。在综合考虑目标物的去除率及电流效率得出最佳脱氯条件为:对氯苯酚的初始浓度为1.0mmol/L、工作电流为5mA、溶液温度为50°C,在此条件下,电化学还原脱氯80min对氯苯酚的去除率即可达到100%;2,4-二氯酚的初始浓度为0.5mmol/L、工作电流为5mA、溶液温度为40°C,在这样的脱氯条件下,反应180min,2,4-二氯酚的去除率可达62.6%。动力学研究表明在最佳脱氯条件下,对氯苯酚和2,4-二氯酚的电催化还原反应均符合准一级反应动力学过程。
Chlorophenols compounds with great toxicity are carcinogenic, teratogenic, mutagenic, and difficult to be biodegraded. Their degradation period in the environment is long, and they have caused great damage to the natural environment. So chlorophenols compounds have been listed as priority control of pollutants by many countries. In recent years, more and more investigators have paid attentions to the electrocatalytic hydrodechlorination to deal with chlorophenols compounds, because this method has many advantages such as high flexibility, easy to control, low cost, non-secondary pollution and so on. In this article, palladium-modified nickel foam electrodes were prepared and used as cathode to degrade 4-chlorophenol and 2,4-dichlorophenol. Preparation conditions of electrodes and the influencing factors of disposing chlorophenols compounds were investigated.
     The preparation technology of the palladium-modified nickel foam electrodes, using the method of constant current electrodeposition, had been optimized in this paper. The preparation conditions, including the deposition current, the deposition temperature, the deposition time and the concentration of PdCl2 solution, were investigated. Experimental results showed that along with the increase of the deposition current, the dechlorination property of Pd/Ni-foam electrode rose firstly, then droped. The increase of deposition temperature could not bring about bigger influence on the dechlorination property. With rising of the concentration of PdCl2 solution, the property got better, but fluctuated with the extension of deposition time. Considering the dechlorination property of electrodes, cost and energy consumption, the best preparation technology conditions were 6mA(deposition current), 40℃(deposition temperature), 1.0mmol/L(concentration of PdCl2), 120min(deposits time, until the yellow PdCl2 solution turned colorless) and the Pd/Ni-foam electrode had good stability and reusability.
     Some modern physical methods, such as X-ray photoelectron spectroscopy(XPS), scanning electron microscope(SEM), X-ray diffraction(XRD) and so on, were used to characterize the elements and valence, surface morphology and crystal structure of the Pd/Ni-foam electrode. The results indicate that Pd particle had loaded on the surface of Ni-foam substrate and presented micro sizes, uniform distribution, close structure, large specific surface area, and certain space extensibility at the best preparation condition.
     The effects of initial concentration, current intensity and temperature on the hydrodechlorination of 4-chlorophenol and 2,4-dichlorophenol were examined in the aqueous. Relatively high initial concentration(1mmol/L), moderate current intensity (5mA), and temperature(50℃) were beneficial to improve the hydrodechlorination of 4-chlorophenol in consideration of the removal rate and current efficiency. Under the optimized conditions, 1mmol/L of 4-chlorophenol could be removed rapidly with the rate of 100% after 80min electrolysis. For 2,4-dichlorophenol, the optimized conditions were 0.5mmol/L, 5mA and 40°C, the removal rate reached 62.6% after 180min electrolysis. The degradation of 4-chlorophenol and 2,4-dichlorophenol on Pd/Ni-foam electrode is in good agreement with the fisrt-odrer reaction kinetics equation.
引文
1丛燕青.氯酚的电化学降解行为及治理研究.浙江大学博士学位论文. 2005
    2王静,冯玉杰,崔玉虹.电化学水处理技术的研究应用进展.环境保护. 2003, (12):19~22
    3中国国家环境保护总局.中国2003年环境状况公报.环境保护. 2004, (7): 3~17
    4 K. Abe, K. Tanaka. Fe3+ and UV-enhanced of Chlorophenolic Compounds in Aqueous Medium. Chemosphere. 1997, 35(12):2837~2847
    5 B. Moyers, J. S. Wu. Removal of Organic Precursors by Permanganate Oxidation and Alum Coagulation. Water Research. 1985, 19(3):309~314
    6刘艳.对氯苯酚电化学降解影响因素的研究.黑龙江大学硕士学位论文. 2008
    7中华人民共和国国家标准. GB 5749-2006
    8葛慧,李保华,孙治荣.电化学法去除水中氯代有机化合物的研究进展.化工环保. 2008, 28(4):317~322
    9吕文华.环境污染物邻氯苯酚的电催化还原脱氯研究.曲阜师范大学硕士学位论文. 2009
    10蒋其昌.造纸工业环境保护概论.中国轻工业出版社. 1992
    11 J. Folke, P. Lindgaard-Joergensen. Organics in Wheat and Rye Straw Pulp Bleaching and Combined Mill Effluents. 1. Chemical Characterization and Biodegradation Studies. Toxicological and Environmental Chemistry. 1985, 10(1): 1~24
    12姜梅,牛世全,展惠英等.氯酚类化合物的微生物降解研究进展.应用生态学报. 2003, 14(6):1003~1006
    13 I. Rodriguez, M. P. Llompart, R.Cela. Solid-phase Extraction of Phenols. Journal of Chromatography A. 2000, 885(1~2):291~304
    14 M. Pera-Titus, V. Garca-Molina, M. A. Banos, et al. Degradation of Chlorophenols by means of Advanced Oxidation Processes: a General Review. Applied Catalysis B-Environmental. 2004, 47(4):219~256
    15郑璐,朱承驻,徐莺等.电解对氯苯酚稀水溶液中脱氯降解机理研究.环境科学研究. 2004, 14(6):54~58,69
    16林莉莉.电催化法去除水溶液中对氯苯酚的研究.浙江大学硕士学位论文. 2009
    17 T. G. Dnais, T. A. Albnais, D. E. Pertkais, et al. Removal of Chlorinated Phenols from Aqueous Solutions by Adsorption on Alumina Pillared Clays and Mesoporous Alumina Aluminum Phosphates. Water Research. 1998, 32(2): 295~302
    18 D. W. Kirk, H. Sharifian, F. R. Foulkes. Anodic Oxidation of Aniline for Waste-Water Treatment. Journal of Applied electrochemistry. 1985, 15(2): 285~292
    19聂锦旭,肖贤明,刘立凡.改性膨润土絮凝剂处理含酚废水的试验研究.工业水处理. 2006, 26(l):30~32
    20谢兰英,李忠,奚红霞等.超临界条件下苯酚在NKA-II树脂上的吸附相平衡.化工学报. 2002, 53(8):798~803
    21胡俊杰,李学字,魏春城.络合萃取法处理高浓度含酚废水的研究.化工矿物与加工. 2001, (12):6~7,14
    22 M. Xiao, J. T. Zhou, Y. Tan, et al. Treatment of Highly-Concentrated Phenol Wastewater with an Extractive Membrane Reactor Using Silicone Rubber. Desalination. 2006, 195(l~3):281~293
    23肖庚富,王家玲.曝气浸没固定生物膜法及其在污水处理中的应用.环境科学与技术. 1993, (4):l~5
    24施汉昌,赵胤慧,冀静平.氯酚废水的生物处理技术的研究与进展.化学通报. 1998, 8:l~3
    25傅珊珊.氯代芳香化合物生物降解性能研究.云南环境科学. 2001, 20(2): 15~17
    26董爱明.氯酚类化合物生物降解的研究现状及其应用前景.净水技术. 1996,
    55(l):18~22
    27 E. Sahinkaya. F. B. Dilek. Effect of Feeding Time on the Performance of a Sequencing Batch Reactor Treating a Mixture of 4-CP, and 2,4-DCP. Journal of Environmental Management. 2007, 83(4):427~436.
    28杨志军,梁鑫森,吴文忠等.含酚废水的超临界水氧化研究进展.环境污染治理技术与设备. 2002, 3(11):50~54
    29施宝昌,沈维榕,王勤娜.光催化氧化处理苯酚废水.北京化工大学学报. 2002, 29(6):86~88
    30徐宁,王凤翔,吕效平.低频超声辐照降解间苯二酚水溶液的研究.环境污染治理技术与设备. 2006, 7(9):69~72
    31 K. S. Lin, H. P. Wang, M. C. Li. Oxidation of 2,4-dichlorophenol in Supercritical Water. Chemosphere. 1998, 36(9):2075~2083
    32 C. K. J. Yeh, Y. A. Kao, C. P. Cheng. Oxidation of Chlorophenols in Soil at Natural pH by Catalyzed Hydrogen Peroxide: the Effect of Soil Organic Matter. Chemosphere. 2002, 46(l):67~73
    33 J. Yoon, S. Kim, D. S. Lee, et al. Characteristics of p-chlorophenol Degradation by Photo-Fenton Oxidation. Water Science and Technology. 2000, 42(3~4): 219~224
    34钟理, C. H. Kuo.含氯酚废水O3/H2O2高级氧化过程及其动力学.中国造纸. 2000, (3):35~39
    35程丽华,黄君礼,高会旺. Fenton试剂降解氯酚类化合物的研究进展.化工环保. 2004, 24(增刊):87~89
    36李来胜,祝万鹏,李中和.催化臭氧化——一种有前景的水处理高级氧化技术.给水排水. 2001, 27(6):26~29
    37 M. Ernst, F. Lurot, J. C. Schrotter. Catalytic Ozonation of Refractory Organic Model Compounds in Aqueous Solution by Aluminum Oxide. Applied Catalysis B-environmental. 2004, 47(1):15~25.
    38陈哲铭,陈丽燕,刘秀艳等.催化臭氧氧化处理对氯苯酚的研究.环境污染与防治. 2007, 29(6):443~445
    39赵德明,史惠祥,雷乐成等. US/UV协同催化氧化降解对氯苯酚的研究.环境科学学报. 2003, 23(5):588~592
    40赵德明,史惠祥,雷乐成等. Fenton试剂强化双低频超声降解对氯苯酚的研究.浙江大学学报(工业版). 2004, 38(1):114~120
    41皮运正,王建龙.臭氧氧化水中4-氯酚的机理和反应途径.中国科学B辑. 2006, 36(1):87~92
    42文岳中,姜玄珍,刘维屏.高压脉冲放电与臭氧氧化联用降解水中对氯苯酚.环境科学. 2002, 23(2):73~76
    43冯玉杰,李晓岩,尤宏等.电化学技术在环境工程中的应用.化学工业出版社. 2002
    44卞文娟,周明华,雷乐成.高压脉冲液相放电降解水中邻氯苯酚.化工学报. 2005, 56(1):152~156
    45宋日海,魏刚,熊蓉春.废水处理用催化电极的研究与应用.水处理技术. 2006, 32(12):4~9
    46杨波.基于把修饰电极的多氯联苯电催化还原脱氯研究.清华大学博士学位论文.2007
    47 O. Kargina, B. MacDougall, Y. M. Kargin, et al. Dechlorination of Monochlorobenzene Using Organic Mediators. Journal of the ElectrochemicalSociety. 1997, 144(11):3715~3721
    48 N. C. Ross, R. A. Spackman, M. L. Hitchman, et al. An Investigation of the Electrochemical Reduction of Pentachlorophenol with Analysis by HPLC. Journal of Applied Electrochemistry. 1997, 27(l):51~57
    49朱晓军,朱建华.脱氯技术现状与研究进展.化工生产与技术. 2005, 12(1): 24~28
    50 N. J. Bunce, S. G. Merica, J. Lipkowski. Prospects for the Use of Electrochemical Methods for the Destruction of Aromatic Organochlorine Wastes. Chemosphere. 1997, 35(11):2719~2726
    51 I. F. Cheng, Q. Fernando, N. Korte. Electrochemical Dechlorination of 4-Chlorophenol to Phenol. Environmental Science and Technology. 1997, 31(4): 1074~1078
    52 A. I. Tsyganok, I. Yamanaka, K. Otsuka. Pd-loaded Carbon Felt as the Cathode for Selective Dechlorination of 2,4-dichlorophenoxyacetic Acid in Aqueous Solution. Journal of the Electrochemical Society. 1998, 145(11):3844~3850
    53秦振林.钯修饰阵列碳纳米管电极对多氯联苯的电还原脱氯.大连理工大学硕士学位论文. 2008
    54刘蕾.氧化物修饰电极的制备及用于含酚废水处理的研究.大庆石油学院硕士学位论文. 2007
    55范经华,范彬,张忠国等.多孔钛板负载Pd阴极电催化加氢还原水中五氯酚.环境科学. 2006, 27(8):1586~1590
    56 H. Cheng, K. Scott, P. A. Chtistensen. Electrochemical Hydrodehalogenation of Chlorinated Phenols in Aqueous Solutions-I. Material Aspects. Journal of the Electrochemical Society. 2003, 150(2):D17~D24
    57 C. H. Lin, S. K. Tseng. Electrochemically Reductive Dechlorination of Pentachlorophenol Using a High Overpotential Zinc Cathode. Chemosphere. 1999, 39(13):2375~2389.
    58 C. H. Lin, S. K. Tseng. Electrochemically Reductive Dechlorination of Chlorophenol Using Nickel and Zinc Electrodes. Water Science and Technology. 2000, 42(3~4):167~172
    59 B. Yang, G. Yu, D. M. Shuai. Electrocatalytic Hydrodechlorination of 4-chlorobiphenyl in Aqueous Solution Using Palladized Nickel Foam Cathode. Chemosphere. 2007, 67(7):1361~1367
    60吕文华,刘海燕,杨玉美等. Pd修饰Ti电极上2-氯酚的电催化还原.曲阜师范大学学报. 2009, 35(4):85~88
    61 H. Cheng, K. Scott, P. A. Chtistensen. Electrochemical Hydrodehalogenation ofChlorinated Phenols in Aqueous Solutions-II. Effect of operating patameters. Journal of the Electrochemical Society. 2003, 150(2):D25~D29
    62宋爽,林莉莉,何志桥等. Pd-Ni双金属复合物修饰泡沫镍电极对水中4-氯酚的电化学脱氯.化工学报. 2009, 60(6):1554~1559
    63 G. Chen, Z. Y. Wang, D. G. Xia. Electrochemically Reductive Dechlorination of Micro Amounts of 2,4,6-trichlorophenol in Aqueous Medium on Molybdenum Oxide Containing Supported Palladium. Electrochimica Acta. 2004, 50(4): 933~937
    64 G. Chen, Z. Y. Wang, D. G. Xia. Electrochemically Codeposited Palladium/Molybdenum Oxide Electrode for Electrocatalytic Reductive Dechlorination of 4-chlorophenol. Electrochemistry Communications. 2004, 6(3): 268~272
    65 G. Chen, Z. Y. Wang, T. Yang, et al. Electrocatalytic Hydrogenation of 4-chlorophenol on the Glassy Carbon Electrode Modified by Composite Polypyrrole/Palladium Film. Journal of Physical Chemistry B. 2006, 110(10): 4863~4868
    66崔春月.具有微结构表面碳电极对水中氯代酚的电催化还原脱氯.大连理工大学博士学位论文. 2006
    67王姝,杨波,张婷婷等.钯/泡沫镍对水体中4-氯酚的氢解脱氯研究.中国环境科学. 2009, 29(10):1065~1069
    68王辉,王建龙. Pd/C气体扩散电极电化学降解4-氯酚的比较研究.中国科学, B辑. 2007, 37(4):408~414
    69于世林.高效液相色谱方法及应用.第二版.化学工业出版社. 2005
    70伍钦,彭绍玲,郑团. DSA-泡沫镍电极电解法处理印染废水.现代化工. 2004,
    24(增刊):123~125
    71胡海,肖文浚,上官文峰.泡沫金属的制备、性能及其在催化反应中的应用.工业催化. 2006, 14(10):55~58
    72 Z. R. Sun, B. H. Li, X. Hu, et al. Electrochemical Dechlorination of Chloroform in Neutral Aqueous Solution on Palladium/foam-nickel and Palladium/polymeric Pyrrole Film/foam-nickel Electrodes. Journal of Environmental Sciences-China. 2008, 20(3):268~272
    73胡海.泡沫金属负载纳米TiO2的制备、表征及其光催化性能的研究.上海交通大学博士学位论文. 2007
    74孙治荣,葛慧,张晓光等.不同基体材料的载把修饰电极的制备及比较.北京工业大学学报. 2008, 34(12):1314~1319
    75杨波,余刚,黄俊. Pd修饰Ti电极对水相中2,4,5-PCB还原脱氯的研究.物理化学学报. 2006, 22(3):306~311
    76肖耀坤,苑娟,胡波年等.石墨电极上电沉积钯镍合金的循环伏安研究.湖南大学学报(自然科学版). 2004, 31(2):5~9
    77杨波,余刚,张祖麟.电化学方法用于氯代芳烃污染物去除的研究.化学进展. 2006, 18(1):87~92
    78 I. G. Casella, M. Contursi. Electrocatalytic Reduction of Chlorophenoxy Acids at Palladium-modified Glassy Carbon Electrodes. Electrochimica Acta. 2007, 52(24):7028~7034
    79 T. Arunagiri, T. D. Golden, O. Chyan. Study of Palladium Metal Particle Deposition on the Conductive Diamond Surface by XRD, XPS and Electrochemistry. Materials Chemistry and Physics. 2005, 92(1):152~158
    80 K. T. Kawagoe, D. C. Johnson. Electrocatalysis of Anodic Oxygen-transfer Reactions-oxidation of Phenol and Benzene at Bismuth-doped Lead Dioxide Electrodes in Acidic Solutions. Journal of the Electrochemical Society. 1994, 141(12):3404~3409
    81王连生.《有机污染物化学》(下册).科学出版社. 1991
    82 S. R. Al-Abed, Y. X. Fang. Influences of pH and Current on Electrolytic Dechlorination of Trichloroethylene at a Granular-graphite Packed Electrode. Chemosphere. 2006, 64(3):462~469
    83 R. Chetty, P. A. Christensen, B. T. Golding, et al. Fundamental and Applied Studies on the Electrochemical Hydrodehalogenation of Halogenated Phenols at a Palladised Titanium Electrode. Applied Catalysis A-General. 2004, 271(1~2): 185~194
    84 R. Bejankiwar, J. A. Lalman, R. Seth, et al. Electrochemical Degradation of
    1,2-dichloroethane(DCA) in a Synthetic Groundwater Medium Using Stainless-steel Electrodes. Water Research. 2005, 39(19):4715~4724
    85 B. Mahdavi, D. Miousse, J. Fournier, et al. Hydrogen evolution Reaction at Nickel Boride Electrodes in Aqueous and in Aqueous Methanolic and Ethanolic Solutions. Canadian Journal of Chemistry-Revue Canadienne De Chimie. 1996,
    74(3):380~388
    86 B. Yang, G. Yu, J. Huang. Electrocatalytic Hydrodechlorination of
    2,4,5-trichlorobiphenyl on a Palladium-modified Nickel Foam Cathode. Environmental Science and Technology. 2007, 41(21):7503~7508
    87 W. C. Conner, J. L. Falconer. Spillover in Heterogeneous Catalysis. Chemical Reviews. 1995, 95(3):759~788
    88王姝,杨波,余刚.钯/泡沫镍电极对水体中2-氯联苯的电催化脱氯作用.中国环境科学. 2008, 28(6):522~526
    89 Y. X. Fang, S. R. Al-Abed. Palladium-facilitated Electrolytic Dechlorination of 2-chlorobiphenyl Using a Granular-graphite Electrode. Chemosphere. 2007, 66(2):226~233
    90 Z. Q. He, S. Song, H. M. Zhou, et al. C. I. Reactive Black 5 Decolorization by Combined Sonolysis and Ozonation. Ultrasonics Sonochemistry. 2007, 14(3): 298~304.
    91薛军.辐射分解处理氯酚类有机污染物的研究.清华大学博士学位论文. 2007
    92 S. Contreras, M. Rodriyguez, F. Al Momani. Contribution of the Ozonation Pre-treatment to the Biodegradation of Aqueous Solutions of 2,4-dichlorophenol. Water Research. 2003, 37(13):3164~3171
    93王建龙.生物固定化技术与水污染控制.科学出版社. 2002
    94程婷.零价铁强化2,4-二氯酚还原脱氯的效应及机理研究.湘潭大学硕士学位论文. 2008
    95覃业贤,汤凤霞,黄国林.活性炭对水中2,4-二氯酚的吸附研究.林产化工通讯. 2003, 37(6):38~40
    96全向春,施汉昌,王建龙等.固定化细胞降解2,4-二氯酚的动力学及其对SBR系统强化效果研究.环境科学. 2002, 23(增刊):36~39
    97孙振世,杨哗,陈英旭等.纳米TiO2薄膜光催化降解2,4-二氯酚的动力学研究.环境科学学报. 2003, 23(6):716~720
    98朱燕,郁志勇,李洁等.金属离子和氧化剂对3,5-二氯酚光化学降解的影响.中国环境监测. 2002, 18(5):21~24
    99王海涛,朱馄,魏翔等. UV/H2O2降解水中2,4-二氯酚试验研究.兰州交通大学学报(自然科学版). 2003, 22(3):31~33
    100鲁奕良,徐新华,汪大翠.氯酚废水的UV-Fenton氧化-生化组合处理研究浙江大学学报(理学版). 2003, 30(4):439~448
    101 S. M. Kulikov, V. P. Plekhanov, A. I. Tsyganok, et al. Electrochemical Reductive Dechlorination of Chlororganic Compounds on Carbon Cloth and Metal-modified Carbon Cloth Cathodes. Electrochimica Acta. 1996, 41(4): 527~531

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700