用户名: 密码: 验证码:
碳纳米管电极催化降解典型PPCPs的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,PPCPs (Pharmaceutical and Personal Care Products)已被公认为是当今一类特殊的环境污染物,而常规的污水处理厂和自来水厂对这些污染物不能取得理想的去除率,这些污染物一部分残留在活性淤泥中,而大部分则直接通过二级处理系统,随出水被排放出去,因此需要寻找可行的技术去降解这些物质。
     本文中研究了双氯芬酸和三氯生的电化学降解过程。双氯芬酸是一种常用的非甾体抗炎药,由于其具有的难生物降解性,所以传统的城市污水处理设备并不能有效的处理双氯芬酸。三氯生是一种优异的杀菌添加剂,广泛用于卫生保健等领域。三氯生极难溶于水,并且当三氯生通过光降解转化为二恶英时,那么将对水中的生物造成巨大的危害。
     实验中研究了多壁碳纳米管(MWCNTs)电极对水相中PPCPs的电化学还原脱氯作用。考察了初始浓度、电解电压、pH值、电解质浓度和电解时间对PPCPs去除效率的影响。实验中,对比了石墨电极和碳纳米管电极对PPCPs的电化学降解过程,发现由于碳纳米管较大的表面积和优良的储氢能力,碳纳米管电极要优于石墨电极。实验数据还表明,对碳纳米管进行镀钯修饰能较大的提高电极的脱氯能力。实验结果表明,使用镀钯的碳纳米管电极进行电解时,当这两种PPCPs的浓度为50 mg·L-1,电压为30V,pH值为11,电解质Na2SO4浓度为1000 mg·L-1时,经过8h电解,PPCPs的去除效率达98%以上,脱氯率达80%以上。当这两种PPCPs的浓度为1 mg·L-1,电压为30V,pH值为7,电解质Na2SO4浓度为1000mg·L-1时,经过8h电解,PPCPs基本被完全去除。
     电极的SEM图谱显示,纯化后的MWCNTs拥有更小的粒径,因此拥有了更多的活化点。镀钯电极上钯的分布是非连续,这可能是由于碳纳米管独特的纳米结构和钯的化学沉积机理决定的。质谱的分析表明,碳纳米管上污染物降解的主要活性物质为氢气或H.。
PPCPs (Pharmaceutical and Personal Care Products) has been recognized as a special kind of environmental pollutants nowadays, and the conventional sewage treatment plant and water plant could not be achieved ideal removal efficiency on these pollutants. Parts of these pollutants remained in the active mud, but most of these were directly through the secondary treatment system, and then were discharged out with the effluent. So, it is necessary to look for a technology which can degrade these substances effectively.
     In the aquatic environment, (i.e. internal surface waters), diclofenac is a an anti-inflammatory non-steroidal drugs and hard to biodegrade, so the traditional urban sewage treatment equipment can not remove diclofenac effectually. Triclosan is a kind of bactericides that has found applications in hygiene and health. Triclosan is poorly water-soluble and it is very toxic to water living organisms since it can be photodegraded to chlorodioxins.
     Electrocatalytic reductive dechlorination of diclofenac in aqueous solution was studied with a multiple-walled cardon nanotubes (MWCNTs) cathode and a platinum anode. The experiments were carried out to explore the effects of initial concentration, electrolytic voltage, pH, concentration of electrolyte and electrolysis time on dechlorination. In the experiment, the results of comparison between the MWCNTs electrode and the Graphite electrode show that MWCNTs electrode was more excellent, because it has large surface area and excellent hydrogen storage capacity. The results of the Pt/MWCNTs electrode show that when the concentration of PPCPs was 50 mg·L-1, the electrolytic voltage was 30V, the pH was 11, the concentration of Na2SO4 was 1000 mg·L-1, after 8h electrocatalytic reduction, the removal rate of diclofenac reached 98%, but the removal rate of chlorine reached 80%. when the concentration of PPCPs was 1 mg·L-1, the electrolytic voltage was 30V, the pH was 7, the concentration of Na2SO4 was 1000 mg·L-1, after 8h electrocatalytic reduction, PPCPs was completely removed.
     SEM images show:to unpurified MWCNTs, purified MWCNTs have smaller grain diameter and more actives sites. The distribution of palladium on the electrode is discontinuous, due to the characteristic structure of MWCNTs and the mechanism of chemical deposition. MS show that hydrogen or H·is the main active substance in the degradation of pollutants on the carbon nanotubes.
引文
[1]Naddeo V, Belgiorno V, Ricco D, et al. Degradation of diclofenac during sonolysis, ozonation and their simultaneous Application [J]. Ultrasonics Sonochemistry,2009,16(6): 790-794
    [2]Sindia M. Rivera-Jimenez, Arturo J, et al. Nickel (Ⅱ) grafted MCM-41:A novel sorbent for the removal of Naproxen from water [J]. Microporous and Mesoporous Materials,2008, 116(1-3):246-252
    [3]Klaus K. The presence of pharmaceuticals in the environment due to human use-present knowledge and future challenges [J]. Journal of Environmental Management,2009,90(8): 2354-2366
    [4]周海东,黄霞,文湘华.城市污水中有关新型微污染物PPCPs归趋研究的进展[J].环境工程学报,2007,12(1):l-9
    [5]Bolong N, Ismail A, Salim M, et al. A review of the effects of emerging contaminants in wastewater [J]. Desalination,2009,23(1-3):229-246
    [6]Taggart M, Senacha K, Green R, et al. Diclofenac residues in carcasses of domestic ungulates available to vultures in India [J]. Environment International,2007,33(6): 759-765
    [7]Vieno N, Tuhkanen T, Kronberg L. Seasonal variation in the occurrence of pharmaceudcals in effluents from a sewage treatment plant and in the recipient [J]. Water Environment Science Technology,2005,39(21):8220-8226
    [8]Ana A, Amadeo R, Luis P, et al. Evaluation of triclosan and biphenylol in marine sediments and urban wastewaters by pressurized liquid extraction and solid phase extraction followed by gas chromatography mass spectrometry [J]. Analytica Chimaca Acta,2003,480(2): 193-205
    [9]Li Yongmei, Huang Manhong, Gu Guowei. Qrganic composition of urban wastewater[C]. Yunnan:The 9th-10th Joint Seminars of JSPS-MOE Core University Program Urban Environment,2005
    [10]Junker T, Alexy R, Knacker T, et al. Biodegradability of 14C-labeled antibiotics in a modified laboratory scale sewage treatment plant at environmentally relevant concentrations [J]. Environmental Science & Technology,2006,40(1):318-324
    [11]Tauxe-Wuersch A, De Alencastro L, Grandjean D, et al. Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment [J]. Water Research,2005, 39(9):1761-1772
    [12]Suarez S, Lema M, Omil F. Pre-treatment of hospital wastewater by coagulation-flocculation and flotation [J]. Bioresource Technology,2009,100(7): 2138-2146
    [13]Kasprzyk-Hordern B, Dinsdale M, Guwy J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters [J]. Water Research,2009,43(2):363-380
    [14]Clara M, Strenn B, Gans O, et al. Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants [J]. Water Research,2005,39(19):4797-4807
    [15]Carballa M, Omil F, Lema J, et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatmenr plant [J]. Water Research,2004,38(12):2918-2926
    [16]Kang X, Bhandari A, Das K, et al. Qccurrence and fate of pharmaceuticals and personal care products (PPCPs) in biosolids [J]. Journal of Encironmental Quality,2005,34(1): 91-104
    [17]Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes [J]. Environment International,2009, 35(2):402-417
    [18]Sharma K. Oxidative transformations of environmental pharmaceuticals by Cl2, ClO2, O3, and Fe(Ⅵ):Kinetics assessment [J]. Chemosphere,2008,73(9),1379-1386
    [19]童君,熊振湖.水中安乃近高级氧化法去除及其产物的毒性评价[J].中国环境科学,2009,29(9):967-971
    [20]Zhao Xu, Hou Yining, Liu Huijuan, et al. Electro-oxidation of diclofenac at boron doped diamond:Kinetics and mechanism [J]. Electrochimica Acta,2009,54(17):4172-4179
    [21]Kim Ilho, Tanaka Hiroaki. Photodegradation characteristics of PPCPs in water with UV treatment [J]. Environment International,2009,35(5):793-802
    [22]Coelho A, Sans C, Aguera A, et al. Effects of ozone pre-treatment on diclofenac: Intermediates, biodegradability and toxicity assessment [J]. Science of The Total Environment,2009,407(11):3572-3578
    [23]Sanchez-Polo M, Rivera-Utrilla J, Prados-Joya G, et al. Removal of pharmaceutical compounds, nitroimidazoles, from waters by using the ozone/carbon system [J]. Water Research,2008,42(15):4163-4171
    [24]Sires I, Oturan N, Mehmet Oturan A, et al. Electro-Fenton degradation of antimicrobials triclosan and triclocarban [J]. Electrochimica Acta,2007,52(17):5493-5503
    [25]Beltran F, Pocostales P, Alvarez P, et al. Diclofenac removal from water with ozone and activated carbon [J]. Journal of Hazardous Materials,2009,163(2-3):768-776
    [26]Grobert Nicole. Nanotubes-grow or go[J]. Materials today,2006,10(9):64
    [27]张军波,黄碧纯,叶代启,等.碳纳米管在环境保护中的应用研究进展[J].环境科学与技术,2007,30(3):112-114
    [28]孙晓刚.碳纳米管应用研究进展[J].微纳电子技术,2004,1:20-25
    [29]Ando Y, Zhao X L. New Diamond Frontier Carbon Technology [M].2006,16:123
    [30]Grobert Nicole, carbon nanotubes-becoming clean[J]. Materials today,2007,1-2(10):28-35
    [31]李德昌,李玉魁,李昕,等.碳纳米管膜电极的制备及其分析应用[J].西安电子科技大学学报(自然科学版),2005,32(6):877
    [32]王莉莉,孙卓,陈婷.电泳法制备碳纳米管场发射阴极的研究[J].真空科学与技术学报,2006,26(1):4-7
    [33]Musameh M, Wang J, Merkoci A, et al. Low potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes [J]. Electrochemistry Communication, 2002,4(10):743
    [34]Du C S, Heldbrant D, Pan N, et al. Preparation and preliminary property study of carbon nanotubes films by electrophoretic deposition [J]. Mater Letters,2002,57(2):434-438
    [35]Thomas B, Shaffer M, et al. Multi-walled carbon nanotube coatings using electrophoretic deposition (EPD) [J]. Journal of America Ceram Society,2005,88(4):980
    [36]Kim J H, Nam K-W, Ma S B, et al. Fabrication and electrochemical properties of carbon nanotube film electrodes [J]. Carbon,2006,44(10):1963-1968
    [37]陈燕,张慧勤.多壁碳纳米管/聚丙烯复合材料的微观结构及结晶性能研究[J].河南工业大学学报(自然科学版),4(28):81-83
    [38]王沛,姜博,叶雄英,等.多壁碳纳米管/SBS复合材料的制备及其渗流特性[J].功能材料与器件学报,1(14):231-235
    [39]Yu J R, Lu K B, Sourty E, et al. Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology [J]. Carbon,2007,45(15): 2897-2903
    [40]Choi Jae-Hyun, Jegal J, Kim Woo-Nyon, et al. Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes [J]. Journal of Membrane Science,2006,284(1-2):406-415
    [41]Anoop Anand K, Agarwal U, Nisal A, et al. PET-SWNT nanocomposites through ultrasound assisted dissolution-evaporation [J]. European Polymer Journal,2007,43(6): 2279-2285
    [42]Wang Z J, Li M Y, Zhang Y J, et al. Thionine-interlinked multi-walled carbon nanotube/gold nanoparticle composites [J]. Carbon,2007,45(10):2111-2115
    [43]Li Y H, Wang S G, Wei J Q, et al. Lead adsorption on carbon nanotubes [J]. Chemical Physics Letters,2002,357(3-4):263-266
    [44]Li Y Hi, Wang S G, Cao A Y, et al. Adsorption of fluoride from water by amorphous alumina suppurted on carbon nanotubes [J]. Chemical Physics Letters,2001,350(5-6): 412-416
    [45]Peng X J, Li Y H, Luan Z K, et al. Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes [J]. Chemical physics Letters,2003,376(1-2):154-158
    [46]Wang W D, Philippe S, Philippe K, et al. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method [J]. Journal of Molecular Catalysis A:Chemical,2005,235(1-2):194-199
    [47]方涛,罗永松,李晓勤,等.碳纳米管空气阴极的制备及其光电催化性能[J].材料导报,2005,11(19):86-88
    [48]方建慧,温轶,施利毅,等.碳纳米管电极电催化氧化降解染料溶液的研究[J].无机材料学报,2006,6(21):1351-1356
    [49]杨春海,张升晖,余爱农,等.羟甲香豆素在刚果红功能化水溶性多壁碳纳米管膜电极上的电化学行为[J].应用化学,2008,4(25):449-454
    [50]Yang S X, Li X, Zhua W P, et al. Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol [J]. Carbon,2008,46(3):445-452

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700