用户名: 密码: 验证码:
新型葡萄糖生物传感器及碘离子与氢离子选择性电极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为三部分。每部分包括相关综述和研究报告。
     电流型酶传感器是生物传感器领域中研究最多的一种类型,其电极反应包括酶化学反应和异相电子转移反应。电子转移的难易和速度决定着这类传感器的性质。第一代电流型酶传感器通过氧来传递电子,具有背景电流大、响应特性差、易受环境中氧浓度的影响、干扰大等缺点。近年来,第二代电流型酶传感器以一些电子媒介体如二茂铁及其衍生物等代替氧,加强了酶与电极间的直接电子传输,起到了酶与电极间的电子开闭器作用,加速了电极反应,降低了环境干扰,克服了第一代电流型传感器的上述缺点。
     论文第一部分首次探索了染料萘酚绿B作为新型电子媒介体的电化学行为,证明其是一种良好的电子媒介体,能有效促进葡萄糖氧化酶与电极之间的电子传递。将萘酚绿B作为电子媒介体与葡萄糖氧化酶一起固定于电极,研制出性能优良的新型葡萄糖生物传感器,其电子传递快速,响应时间短,不受氧气浓度的影响,检测电位低,抗干扰能力强,灵敏度高。该传感器被初步应用于人血清中葡萄糖的测定。
     溶剂聚合膜(SPM)离子选择性电极载体的设计、合成和应用是离子选择性电极研究的一个重要方向。近年来, 以金属配合物作为中性载体且呈现Anti-Hofmeister行为的阴离子选择性电极是电化学和电分析领域中公认的活跃研究课题。论文第二部分的研究集中于合成的新型金属配合物为中性载体的碘离子选择性电极的基础研究及其作为化学传感器在食品和药物研究中的初步应用。详细研究了高灵敏度高选择性碘离子电极中性载体——过渡金属配合物分子的设计、合成及其作为电极载体对碘离子的选择性电位响应特性。
     首次用锰(Ⅲ)Schiff碱单核配合物[Mn(Ⅲ)-BSAPC]和双核配合物[Mn(Ⅲ)-BSAPDCA]作中性载体研制出对Ⅰ具有高选择性且呈现Anti-Hofmeister行为的阴离子电极。合成了一氯·二水杨醛缩丙醇胺合锰(Ⅲ)[Mn(Ⅲ)-BSAPC]、二水杨醛缩丙醇胶合镍(Ⅱ)[Ni(Ⅱ)-BSAPC]、二水杨醛缩
    丙醇胺合锌(11)「Zn 11)-BSAPC」、双水杨醛缩丙醇肘双氯乙酸合-惭(Ill)「Mfldll)一BSAPDCA」和双水杨醛缩丙醇月 合.锌( )[Zn(11)-BSAPDCA」。电极稳定性、重现性好,电阻小,响应快c电极的选择性次序为:厂>>Oo>Sal。SCN。NO,>Br>NO/。CI>SO。z。采用交流阻抗技术、红外光谱和紫外可见光谱分析技术研究了电极的响应机理,研究结果表明,配合物中心金属原于的结构以及载体本身的结构与电极的响应行为之间有非常密切的构效关系。将电极用于食用碘盐及药物泛影葡胺注射液中碘含量的测定,其结果与国标法和药典法一致。 pH测量与现代工业、农业、医学、生物工程、环境及科学研究等领域息局、相关。随着现代科学技术在生命科学、环境科学、工业生产和医学研究等领域的迅速发展,用传统的玻璃电极进行pH测量时往往会产生一定的困难,这是由于玻璃电极存在阻抗高、易破损、不能用于含HF的溶液,且在高碱度情况下存在“钠误差”等缺陷。同时由于其体积大,不适用于微区、微环境和生物活体的在线检测,更难适应在恶劣环境下应用。因此,进行各种新的或特殊用途的pH传感器的研究、开发和应用引起了大家广泛的兴趣。论文第三部分研究了金属/金属氧化物pH传感器,并向微型化方向发展,研制出一种基于贵重金属表面电化学修饰的 pH传感器,成功应用于原位检测人牙菌斑 pH;该工作电极与以三维网状结构的亲水性高分子材料为框架支持活性组分KCI的参比电极相结合制得耐高温高压全固态pH复合传感器;适用于工业上在高温高压条件下进行pH值在线测量控制。
This thesis consists of three parts. Each part includes a review and a research report.
    Since the work of Leland C. Clark, electrochemical biosensors have attracted a great deal of interest and have become the subject of intense investigations. The electrochemical biosensors perform simple, fast, specific and accurate monitoring with compact and user-friendly instrumentation to transform traditional methods of analysis. The first successful electrochemical biosensor is the amperometric glucose biosensor using the Clark-type oxygen electrode with direct electron transfer from the glucose oxidase to the surface of the electrode. However, there are some disadvantages in using the oxygen electrode-based glucose biosensor. It is insensitivity in view of slow process of direct electron transfer. Variable oxygen concentrations in the sample may introduce fluctuations into the electrode response. The glucose biosensor uses a relatively high potential, which is necessary in order to efficiently oxidize hydrogen peroxide. At this potential, ascorbic acid and uric acid always found in the blood sample are
     oxidized electrochemically and cause interfering signals in the amperometric measurements.
    Electron transfer mediators are involved to circumvent these disadvantages. The mediators include ferrocene and its derivatives, potassium hexacyanoferrate and tetrathiafulvalene. Water-soluble dyes such as methylene blue, neutral red, toluidine blue and methyl viologen have also been used as mediators in solution because of their high electron transfer efficiency and low cost. l-Nitroso-2-naphthol-6-sodium sulphonate ferric salt (naphthol green B) has excellent redox characteristics. In Part I of the thesis, the soluble dye, naphthol green B, was used as a new mediator to develop an amperometric glucose biosensor. Naphthol green B, which is low cost and
    
    
    easy obtained, has been shown to be an efficient mediator, promoting electron transfer from glucose oxidase to graphite electrode. The naphthol green B has low formal potential, which can reduce the overvoltage of the H2O2 oxidation to eliminate electrochemical interference. Rapid response, oxygen independence and high sensitivity are shown by the naphthol green B mediated biosensor. Under the conditions of our studies, naphthol green B performs better than ferrocene and its derivatives in terms of electroactivity, especially the high sensitivity and low oxidation-reduction potential. Naphthol green B can be used successfully as a mediator for detecting glucose.
    Design, synthesis and application of highly selective neutral carriers are main research subjects in the ion selective electrode studies. Recently, study on solvent polymeric membrane (SPM) anion selective electrodes based on metal complexes as neutral carrier and exhibiting anti-Hofmeister selectivity pattern is an important project in the fields of electrochemistry and electroanalytical chemistry. Part II of the thesis focuses on the development of SPM anion selective electrodes based on new neutral carriers and their application as electrochemical sensors in food and medicine.
    New solvent polymeric membrane electrodes based on Schiff base complexes of [Mn(HI)-BSAPC] and [Mn(III)-BSAPDCA] are first described, which demonstrate excellent selectivity toward iodide ion. The resulting electrodes exhibit potentiometric anion-selectivity sequences deviated from the Hofmeister pattern. Bis(salicylaldehydearmnopropanol)chloromanganese(III) [Mn(III)-BSAPC], bis-(salicylaldehydeaminopropanol)nickel( II) [Ni( II )-BSAPC], bis(salicylaldehyde-aminopropanol)zinc( II) [Zn( II )-BSAPC], bis(salicylaldehydeaminopropanol)di-chloroaceticdimanganese(III) [Mn(III)-BSAPDCA] and bis(salicylaldehydeamino-propanol)dizinc(II) [Zn( II )-BSAPDCA] were synthesized for preparation of iodide ion selective electrodes. The electrodes incorporating Schiff base complexes of Manganese(III) have the advantages of low resistance, fast response, fair stability and reproducibility. The selectivity sequence is iodide ?perchlorate > salicylate > thio
引文
1. Clark, L. C.; Lyons, C. Ann. N. Y. Acad. Sci. 1962, 102, 29.
    2. Updike, S. J.; Hicks, G. P. Nature 1967, 214, 986.
    3. Turner, A. P. F. Biosensor: Fundamental and Application, Oxford University Press: Oxford, 1989.
    4. Fumio, I. M. Chem. Sens. 1990, 6, 2.
    5.易惠中,功能材料,1991,22,175.
    6. Wolfbeis, O. S, Fresenius J. Anal. Chem. 1990, 337, 522.
    7. Koryta, J. Electrochim. Acta 1986, 31, 515.
    8.彭图治,王国顺,分析化学手册,第四分册,电分析化学,化学工业出版社,北京,1999.
    9. Carr, P. W. Anal. Chem. 1977, 49, 799.
    10. Jochum, P.; Kowwalrki, B. Anal. Chim. Acta 1982, 144, 25.
    11. Ward, W. K.; Jansen, L. B.; Anderson, E.; Reach, G.; Klein, J. C.; Wilson, G. S. Biosens. Bioelectron. 2002, 17, 181.
    12. Myler, S.; Collyer, S. D.; Bridge, K. A.; Higson, S. P. J. Biosens. Bioelectron. 2002, 17, 35.
    13. Kurzawa, C.; Hengstenberg, A.; Schuhmann, W. Anal. Chem. 2002, 74, 355.
    14. Zhang, Z.; Chouchane, S.; Magliozzo, R. S.; Rusling, J. F. Anal. Chem. 2002, 74, 163.
    15. Brahim, S.; Narinesingh, D.; Guiseppi-Elie, A. Biosens. Bioelectron. 2002, 17, 53.
    16. Rhemrev-Boom, R. M.; Tiessen, R. G.; Jonker, A. A.; Venema, K.; Vadgama, P.; Korf, J. Clin. Chim. Acta 2002, 316, 1.
    17. Yamagishi, F. G.WO Pat. 2002029378, 2002.
    18. Tierney, M. J.; Tamada, J. A.; Potts, R. O.; Jovanovic, L.; Garg, S. Biosens. Bioelectron. 2001, 16, 621.
    19. Xu, J. J.; Zhang, X. Q.; Yu, Z. H.; Fang, H. Q.; Chen, H. Y. Fresenius J. Anal. Chem. 2001, 369, 486.
    
    
    20. Cowan, J. A.; Gray, H. B. Chem. Scripta 1988, 28A, 21.
    21. Onuchic, J. N.; Beratan, D. N.; Hopfield, J. J.J. Phys. Chem. 1986, 90, 3707.
    22. Heller, A. Acc. Chem. Res. 1990, 23, 128.
    23. Liu, J.; Wang, J. Food Technol. Biotechnol. 2001, 39, 55.
    24. Gavalas, V. G.; Chaniotakis, N. A. Anal. Chim. Acta 2000, 404, 67.
    25. Chen, L.; Gorski, W. Electroanalysis 2002, 14, 78.
    26. Jin, P.; Yamaguchi, A.; Oi, F. A.; Matsuo, S.; Tan, J.; Misawa, H. Anal. Sci.2001, 17, 841.
    27. Turkusic, E.; Kalcher, K.; Schachl, K.; Komersova, A.; Bartos, M.; Moderegger, H.; Svancara, I.; Vytras, K. Anal. Lett. 2001, 34, 2633.
    28. Zhang, C.; Gao, Q.; Aizawa, M. Anal. Chim. Acta 2001, 426, 33.
    29. Cass, A. E. G.; Davis, G.; Francis, G. D.; Hill, H. A. O.; Aston, W. J.; Higgins, I. J.; Plotkin, E. V.; Scott, D. L.; Turner, A. P. F. Anal. Chem. 1984, 56, 667.
    30. Bartlett, P. N.; Tebbutt, P.; Whitaker, R. C. Prog. Reaction Kinetics 1991, 16,55.
    31.时蕾,贾学顺,王玉炉,合成化学,1998,6,137.
    32.袁耀锋,叶素明,张蕴文,王积涛,化学通报,1995,5,24.
    33. Dombrowski, K. E.; Baldwin; Wendy J. Organomer Chem. 1986, 302, 281.
    34. Cosnier, S.; Novoa, A.; Mousty, C.; Marks, R. S. Anal. Chim. Acta 2002, 453,71.
    35. Fiorito, P. A.; Cordoba, D. T.; Susana, I. J. Brazilian Chem. Soc. 2001, 12,729.
    36. Piro, B.; Dang, L. A.; Pham, M. C.; Fabiano, S.; Tran-Minh, C. J. Electroanal. Chem. 2001, 512, 101.
    37. Miao, Y.; Chia, L. S.; Goh, N. K.; Tan, S. N. Electroanalysis 2001, 13,347.
    38. Sung, K. J.; Wilson, G. S. Anal. Chem. 1996, 68,591.
    39.田承云,陈静,张黎,电化学,1998,4,418.
    40. Yabuki, S.; Mizutani, F.; Hirata, Y. J. Electroanal. Chem. 1999, 468, 117.
    41. Yamamoto, K.; Ohgaru, T.; Torimura, M.; Kinoshita, H.; Kano, K.; Ikeda, T. Anal. Chim. Acta 2000, 406, 201.
    
    
    42. Wang, J.; Park, D. S.; Pamidi, P. V.; J. Electroanal. Chem. 1997, 434, 185.
    43. Tian, F. M.; Zhu, G. Y. Anal. Chim. Acta 2002, 451,251.
    44. Niu, J. J.; Lee, J. Y. Sens. Actuators B 2002, 82, 250.
    45.张成如,杨孔章,高等学校化学学报,1996,17,401.
    46. Kinoshita, H.; Torimura, M.; Yamamoto, K.; Kano, K.; Ikeda, T. J. Electroanal. Chem. 1999, 478, 33.
    47.朱荣贵,赫春香,韩吉林,陈洪渊,分析化学,1996,24,158.
    48. Wang, B. Q.; Dong, S. J. Talanta 2000, 51,565.
    49. Sato, A.; Torimura, M.; Takagi,T.; Kano, K.; Ikeda, T. Anal. Chem. 2000, 72,150.
    50. de Mattos, I. L.; Lukachova, L. V.; Gorton, L.; Laurell, T.; Karyakin, A. A. Talanta 2001, 54, 963.
    51. O'Halloran, M. P.; Pravda, M.; Guilbault, G. G. Talanta 2001, 55,605.
    52. Garjonyte, R.; Malinauskas, A. Biosens. Bioelectron. 2000, 15,445.
    53. Wang, B. Q.; Li, B.; Wang, Z. X.; Xu, G. B.; Wang, Q.; Dong, S. J. Anal. Chem. 1999, 71, 1935.
    54. Deng, Q.; Li, B.; Dong, S. J. Analyst 1998, 123, 1995.
    55. Yuan, C.; Yang, R.; Chen; Deng, J.J. Electroanal. Chem. 1998, 455, 121.
    56. Zen, J. M.; Lo, C. W. Anal, Chem. 1996, 68, 2635.
    57. Kulys, J.; Gleixner, G.; Schuhmann, W.; Schmidt, H. L. Electroanalysis 1993, 5,201.
    58.何亚明,张维成,王志茹,分析测试学报,1999,18,76.
    59. Daniela, D.; Schlereth; Rob, P. H.; Kooyman J. Electroanal. Chem. 1997, 431,285.
    60. Daniela, D.; Schlereth J. Electroanal. Chem. 1997, 425, 77.
    61. Wang, B. Q.; Li, B.; Deng, Q.; Dong, S. J. Anal. Chem. 1998, 70, 3170.
    62. Junior, L. R.; Neto, G.O.; Fernandes, J. R.; Kubota, L. T. Talanta 2000, 51,547.
    63. Li, J.; Chia, L. S.; Goh, N. K.; Tan, S. N. Anal. Chim. Acta 1998, 362, 203.
    64. Li, J.; Tan, S. N.; Oh, J. T. J. Electroanal. Chem. 1998, 448, 69.
    
    
    65. Li, J.; Chia, L. S.; Goh, N. K.; Tan, S. N.; Ge. H. Sens. Actuators B 1997, 40,135.
    66. Li, J.; Tan, S. N.; Ge, H. L. Anal. Chim. Acta 1996, 335, 137.
    67. Bonfranceschi, A.; Cordoba, A. P.; Keunchkararian, S. J. Electroanal. Chem.1999, 477, 1.
    68. Mailley, P. Talanta 2001, 55, 1005.
    69. Sugawara, K.; Takano, T.; Fukushi, H.; Hoshi, S.; Akatsuka, K.; Tanaka, S. J.Electroanal. Chem. 2000, 482, 81.
    70. Ikariyama, Y.; Yamauchi, S.; Yukiashi, T.; Ushioda, H. J. Electrochem. Soc.1989, 136, 702.
    71. Ikariyama, Y.; Yamauchi, S.; Yukiashi, T.; Ushioda, H. Anal. Lett. 1987, 20,1407.
    72. Ikariyama, Y.; Yamauchi, S.; Yukiashi, T.; Ushioda, H. Anal. Lett. 1987, 20,1791.
    73. Wang, J.; Chen, Q. Anal. Chem. 1994, 66, 1007.
    74. Wang, J.; Angnes, L. Anal. Chem. 1992, 64, 456.
    75. Rodriguez, M. C.; Rivas, G. A. Anal. Lett. 2001, 34, 1829.
    76. Sakslund, H.; Wang, J.; Hammerich, O. J Electroanal. Chem. 1996, 402, 149.
    77. Chi, Q.; Dong, S. Anal. Chim. Acta 1993, 278, 17.
    78. Zhang, Z. R.; Bao, W. F.; Liu, C. C. Talanta 1994, 41,875.
    79.马全红,邓家祺,复旦学报(自然科学版),2000,39,400.
    80. Centonze, D.; Losito, I.; Malitesta, C.; Palmisano, F.; Zambonin, P. G. J. Electroanal. Chem. 1997, 435, 103.
    81. Itamar, W.; Azallazalia, R. Anal. Chem. 1994, 66, 1535.
    82. Janada, P.; Weber, J. J. Electroanal. Chem. 1991, 300, 119.
    83.吴辉煌,吴宝璋,电化学,1998,4,210.
    84. Crumbliss, A. L.; O'Daly, J. P.; Perine, S. C.; Stonehuerner, J.; Tubergen, K. R.; Zhao, J.; Henkens, R. W. Biotech. Bioeng. 1992, 40, 483.
    85. Yabuki, S.; Mizutani, F. Proc. East Asia Conf. Chem. Sens. 2nd, 1995, 270.
    86. Bharathi, S. Anal. Commun. 1998, 35, 29.
    
    
    87. Wang, J.; Pamidi, P. V. A. Anal. Chem. 1997, 69, 4490.
    88.唐芳琼,沈继锋,张金芳,张改莲,高等学校化学学报,1999,20,634.
    89. Boguslavsky, L.; Kalash, H.; Xu, Z. Anal. Chim. Acta 1995, 311, 15.
    90. Koide, S.; Yokoama, K.; J. Electroanal. Chem. 1999, 468, 193.
    91. Han, S.; Britta, L. S. Electrochim. Acta 1999, 45,845.
    92. Niwa, O.; Kurita, R.; Liu, Z.; Horiuchi, T.; Torimitsu, K. Anal. Chem. 2000, 72, 949.
    93. Vogtle, F.; Plevoets, M.; Nieger, M. J. Am. Chem. Soc. 1999, 121, 6290.
    94. Zen, J. M.; Kumar, A. S.; Chang, M. Electrochim. Acta 2000, 45, 1691.
    95. Nalini, B.; Narayanan, S. S. Anal. Chim. Acta. 2000, 405, 93.
    96. Inagaki, T.; Lee, H, S.; Hale, P. D.; Skotheim, T. A.; Okamoto, Y.Macromolecules 1989, 22, 4641.
    97. Timothy, T. E.; James, W. W.; John, J. J Electroanal. Chem. 2000, 480, 94.
    98. Pariente, F.; Tobalina, F.; Moreno, G.; Hernandez, L.; Lorenzo, E.; Abruna, H. D. Anal. Chem. 1997, 69, 4065.
    99. Lowry, J. P.; Mc Ateer, K.; El Atrash, S. S.; Duff, A.; O Neill, R. D. Anal.Chem. 1994, 66, 1754.
    100.Malitesta, C.; Palmisano, F.; Torsi, L.; Zambonin, P. G. Anal. Chem. 1990, 62, 2735.
    101.Tzang, C. H.; Yuan, R.; Yang, M. S. Biosens. Bioelectron. 2001, 16, 211.
    102.Mao, L. Q.; Yamamoto, K. Talanta 2000, 51,187.
    103.Kim, H. M. P. D. J. Appl. Electroanal. 2000, 30, 49.
    104.Xiao, Y.; Ju, H. X.; Chen, H. Y. Anal. Chim. Acta 1999, 391,299.
    105.Cai, C.; Xue, K. J. Electroanal. Chem. 1997, 427, 147.
    106.Yuan, Z.; Zhu, M.; Han, S. Anal. Chim. Acta 1999, 389,291.
    107.韩树波,朱敏,袁卓斌,高等学校化学学报,1999,20,1036.
    108.刘盛辉,莫卫民,陈帆,分析测试学报,1999,18,42.
    109.Zhu, M.; Han, S. B.; Yuan, Z. B. J. Electroanal Chem. 2000, 480, 255.
    110.Battaglini, F.; Bartlett, P. N.; Wang, J. H. Anal. Chem. 2000, 72, 502.
    111.Eugenii, K.; Vered, H. S.; Bilha, W. Bioelectrochem. Bioener. 1997, 42, 95.
    
    
    112.Barlett, P. N.; Booth, S.; Caruana, D. J. Anal. Chem. 1997, 69, 734.
    113.Curr, E. Synthetic Dyes in Biology. Medicine and Chemistry, Academic Press: London, England, 1971.
    114.Guilbault, G, G. Handbook of Enzymatic Methods of Analysis, Shanghai Technology Press: Shanghai, China, 1983.
    115.Wilson, G. S.; Thevenot, D. R. Biosensors:A Practical Approach, Oxford University Press: Oxford,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700